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The averaging method on the semi-axis is justified for systems of difference equations. A theorem on
closeness of the corresponding solutions of the exact and averaged systems on the semi-axis is proved. This
theorem is analogous to N. N. Bogoliubov’s second theorem about an averaging method for systems of
difference equations.

Наведено метод усереднення на пiвосi для систем рiзницевих рiвнянь. Доведено теорему про
близькiсть розв’язкiв точної та усередненої систем на пiвосi. Дана теорема є аналогом другої
теореми М. М. Боголюбова методу усереднення для систем рiзницевих рiвнянь.

We consider a system of difference equations of the form

xn+1 = xn + εfn(xn), (1)

where n = 0, 1, 2, . . . , x ∈ Rm, ε > 0 is a small parameter.
Let us assume that there exists the mean value of the sequence fn,

f(x) = lim
N→∞

1
N

N∑
n=0

fn(x). (2)

Then system (1) associates with the averaged system

yn+1 = yn + εfn(yn). (3)

The questions of closeness of the corresponding solutions xn(x0) (x0(x0) = x0) and yn(x0)
(y0(x0) = x0) of systems (1) and (3) for small values of the parameter ε are included in the
results representing the essence of N. N. Bogoliubov’s averaging method.
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This method for systems of differential equations in a standard form was initially substanti-
ated in the work [1] where the system

dx

dt
= εX(t, x)

is associated with the averaged system

dy

dt
= εX0(y),

X0(x) = lim
T→∞

1
T

T∫
0

X(t, x)dt.

By employing a series of theorems related to the averaging method one can investigate the
following two aspects:

1) establishing the closeness between the exact and averaged solutions on asymptotically

finite time intervals
(

of order
1
ε

)
;

2) establishing the correspondence between the exact and averaged solutions on the semi-
axis.

Further, the averaging method was extended to systems of differential equations of a special
form, systems of integro-differential equations, difference and partial differential equations,
equations in a Banach space, stochastic equations. In this connection, the reader is referred to
monographs [2, 3] which contain numerous references.

However, it is worth noticing that mainly the first N. N. Bogoliubov’s theorem on averaging
on a finite time interval was extended.

As for the averaging method on the semi-axis, N. N. Bogoliubov proved the correspondi-
ng theorem in the case where the averaged system has a quasistatic equilibrium position and
closeness is established for this particular solution.

The works [4, 5] proved the Banfi – Filatov averaging theorem on the semi-axis in the case
where the averaged system has an asymptotically stable solution different from the equilibrium
position.

For systems of differential equations of the form (1), the averaging theorem on a finite
interval was obtained in the communication [6] and on an infinite one, in the case of existence
of an equilibrium position in the averaged system (3) in works [7, 8].

The purpose of this work is to obtain an analogue of the Banfi – Filatov theorem for systems
of the form (1).

Consider system (1), where the function fn(x) is determined at n = 0, 1, 2, . . . , x ∈ D ⊂
⊂ Rm, D being some domain.

The following theorem holds.

Theorem 1. Let, in the domain D, the following conditions be fulfilled:
1) fn(x) satisfies the Lipschits condition with respect to x,

|fn(x)− fn(x′)| ≤ |x− x′| ∀x, x′ ∈ D (4)

(|x| being the Euclidean norm);
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2) fn(x) is uniform with respect to x ∈ D and n = 0, 1, 2, . . . , that is, there exists the limit

lim
N→∞

1
N

k+N∑
n=k

fn(x) = f(x) (5)

and the function f(x) is bounded;
3) the solution yn(x0) (y0(x0) = x0(x0)) of the averaged system is determined for all n ∈ N

and lies in the domain D along with some δ-neighborhood;
4) yn(x0) is uniformly asymptotically stable.
Then for any 0 < η < g there exists ε0 such that for ε < ε0, n ∈ N, the inequality

(xn(x0)− yn(x0)) < η, (6)

holds, where xn(x0) is a solution of system (1) such that x0(x0) = x0.

Proof. Note that it follows from the conditions of the theorem that f(x) is a Lipschits functi-
on. Indeed, let x and x′ be arbitrary points from the domain D. Then for µ > 0 we can find N ′

and N ′′ such that for N > max{N ′, N ′′}, the following inequalities hold:∣∣∣∣ 1
N

N∑
n=0

fn(x)− f(x)
∣∣∣∣ < µ

2
,

∣∣∣∣ 1
N

N∑
n=0

fn(x′)− f(x′)
∣∣∣∣ < µ

2
.

Then

|f(x)− f(x′)| =
∣∣∣∣f(x)− 1

N

N∑
n=0

fn(x) +
1
N

N∑
n=0

fn(x)−

− 1
N

N∑
n=0

fn(x′) +
1
N

N∑
n=0

fn(x′)− f(x′)
∣∣∣∣ ≤

≤ µ

2
+
µ

2
+

1
N

N∑
n=0

|fn(x′)− fn(x)| ≤ µ+ L|x− x′|

whence, by virtue of µ being arbitrary, we obtain

|f(x)− f(x′)| ≤ L|x− x′|.

Thus, the conditions of the averaging theorem on a finite interval [6] are fulfilled. By this
theorem for any ρ > 0, L > 0 and n̄0 ∈ N there exists ε0 so that for ε ⊂ ε0 solutions xn and yn
of the exact and averaged systems such that xn̄0 = yn̄0 satisfy the following inequality:

|xn − yn| < ρ/2, (7)
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with n ∈ N satisfying the condition n̄0 ≤ n ≤ n̄0 +
L

ε
.

Since the solution yn(x0) is uniformly asymptotically stable, for any η > 0 and n̄ ∈ N, we
can find ρ > 0 (independent of n̄ and ε) such that for any solution ȳn of the averaged system
satisfying, at the moment n̄, the inequality

|yn̄ − ȳn̄| < ρ

at n > n̄ the inequality

|yn − ȳn| <
η

2
(8)

holds for n > n̄.
By selecting η sufficiently small we can get solutions of the averaged system satisfying

inequality (8) lying in a δ-neighborhood of the solution yn(x0) for n ≥ n̄ and belonging to
the domain D together with some of their neighborhoods.

Moreover, by virtue of uniform asymptotic stability of the solution yn(x0), we can find L̄ > 0
independent of n̄ and ε (by virtue of the uniform asymptotic stability) such that if n ≥ n̄+ [L̄]
([ · ] is the integer part of the number) the inequality

|yn − ȳn| <
ρ

2
(9)

will be fulfilled.

Using the values of η, ρ and L̄ we select ε0 such that if ε < ε0 on the intervals of length
[
L̄

ε

]
,

the corresponding solutions of the exact and averaged system will satisfy inequality (7).
Due to the fact that ρ can be taken smaller than η, we can affirm that inequality (6), required

in the theorem, holds for n ≤
[
L̄

ε

]
(ε ≤ ε0).

We now subdivide the semi-axis with points of the form k[L̄], k = 1, 2, . . . . Let k0[L̄] be the
largest point of the integral points which belongs to the segment [0, [L̄/ε]].

Let us consider the solution ȳn of the averaged system such that ȳk0[L̄] = xk0[L̄]. From the
last equality and inequalities (7), (8) and (9), we have that, for n ∈ [k0[L̄], (k0 + 1)[L̄]], the
following estimates hold:

|x(x0)
n − ȳn| <

ρ

2
, (10)

|y(x0)
n − ȳn| <

η

2
, (11)

|y(x0)

(k0+1)[L̄]
− ȳ(k0+1)[L̄]| <

ρ

2
, (12)

k0[L̄] is taken as n̄.
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Hence, for n ∈ (k0[L̄]], (k0 + 1)[L̄]), we have

|xn − yn| ≤ |xn − ȳn|+ |yn − ȳn| <
ρ

2
+
η

2
< η,

i.e., the required inequality (6) is holds. Moreover, if n = (k0 + 1)[L̄], we have the inequality

|xn(x0)− yn(x0)| ≤ |xn(x0)− ȳn|+ |ȳn − yn(x0)| < ρ

2
+
ρ

2
= ρ,

which means that the point x(k0+1)[L̄](x0) falls into the zone of asymptotic stability of the soluti-
on yn(x0) of the averaged equation.

In what follows we consider yn as a solution of the averaged equation such that y(k0+1)[L̄] =
= x(k0+1)[L̄](x0). After some reasoning analogous to the preceding, we obtain that on the
interval ((k0 + 1)[L̄], (k0 + 2)[L̄]) the inequality

|xn(x0)− yn(x0)| < η

holds and, if n = (k0 + 2)[L̄], the inequality

|xn(x0)− yn(x0)| < ρ

is true as well.
This means that the required inequality (6) holds for [(k0+1)[L̄], (k0+2)[L̄]], the latter means

that the point x(k0+2)[L̄](x0) lies in the zone of asymptotic stability of the solution yn(x0).
Keeping on the above process we obtain that for any m ∈ N on the interval [(k0 + m)[L̄],

(k0 +m+ 1)[L̄]], inequality (6) hold and, if n = (k0 +m+ 1)[L̄], the inequality

|xn(x0)− yn(x0)| < ρ

holds too.
Since m ∈ N is arbitrary, the theorem is proved.
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