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Classical solutions of nonlinear first order partial differential equations are approximated in the paper by
solutions of quasilinear systems of difference equations. Sufficient conditions for the convergence of the
method are given. The proof of the stability of the difference problem is based on a comparison method.
Nonlinear estimates of the Perron type are assumed for increment functions.

This new approach to a numerical solving of nonlinear equations is generated by a method of quasili-
nearization for mixed problems. Numerical examples are given.

Kaacuuni po3e’ssxu HeAiHIlHUX OUepeHUiaAbHUX DIBHAHb 3 YACMUHHUMU NOXIOHUMU NePULO20 NO-
PAOKY HAOAUNCAIOMBCA PO3B ASKAMU KBASIAIHIUHUX CUCIeM PI3HUYesUX pieHAHb. HasedeHo docmamHio
YMO8Y 051 30IICHOCMIE 3aNnPONOHOBAH020 Mem00Y. [lo8edeHHs cmilikocmi pisHUYe80l 3ada4i 6a3yemuvcsa
Ha mMemoOi nopieHAHHA. Beawcaemuvcs, wio gynxyia npupocmy 3a00804bHAE HEAIHIUHI OUIHKU Neppo-
HIBCbKO20 MUnNY.

Llett HosuULL NIOXIO 00 HUCAOB020 PO3B’A3AHHA HEAIHIUHUX DIBHAHb OA3YEMbCA HA MemOoOl K8a3iai-
Heapuzayii 04a miwanux 3aoa4. Hasedeno uucaosi npuxkaaou.

1. Discretization of mixed problems. For any metric spaces X and Y we denote by C(X,Y)
the set of all continuous functions defined on X and taking values in Y. We will use vectorial
inequalities with the understanding that the same inequalities hold between their correspon-
ding components. Write

E =[0,a] x [-b,b] and Ey = {0} x [—b,b],
where a > 0, b = (by,...,b,) € R*withb; > 0for1l < i < n.SetQ) = F x R x R", and

suppose that f: Q@ — R is a given function of the variables (¢, z,p, q) where z = (z1,...,zy)
and ¢ = (q1,...,qn). Let us assume that f € C(Q, R) and that the first order partial derivatives

(aq1f<P)v s vaqnf(P)) = 8qf(P)
exist for P = (t,z,p,q) € Q. Write

0VE = {(t,e) e Bz = b}, 0VE={(t,z) e B:o; = b}, 1<i<n,
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GENERALIZED EULER METHOD FOR NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 457

and

E = U ( o EuaY ) :
In the following we will assume that
04, f(t,,p,q) >0 for (t,z,p,q) € WEXxRxR", 1<i<n, (1)
and
o f(t,2,p,q) <O for (t,z,p,q) € ExRxR", 1<i<n. )

Suppose that ¢: Ey U dpE — R is a given function. We consider the problem consisting of the
nonlinear differential equation

Oz(t,x) = f(t,z,2(t,x),0x2(t, x)) 3)
and the initial boundary condition
z(t,x) = @(t,z) for (t,z) € EyUOE, (4)

where 0,z = (04, 2,...,0,,2). Afunction v: E — R is called a classical solution of the above
problem if

(i)v € O(E, R) and v is of class C* on E\(Ey U ) E),

(ii) v satisfies (3) on E\(Ep U Oy F') and initial boundary condition (4) holds.

We formulate now a finite difference problem corresponding to (3), (4). Let N and Z be
the sets of natural numbers and integers, respectively. For z, y € R", x = (21,...,2p),y =
= (y1,.-.,Yn), We Write

n
roy = (z1y1,. .., 2ayn) and [z| = |z,

We define a mesh on the set E in the following way. Let (ho, '), B’ = (ha,..., hy), stand for
steps of the mesh. For h = (hg, #’) and (r,m) € Z*" where m = (my, ..., m,,), we define nodal
points as follows:

) — rho, M = moh, M = (xgml),...,x(m”)).

Let us denote by A the set of all h = (hg, h') such that thereis N = (Ny, ..., NV,,) € N with the
property Noh' = b. We assume that A # (). There is Ny € Nsuch that Nohg < a < (Np+1)hg.
Write

Ry {87, 2): (r,m) € 2147,
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458 Z.KAMONT, J. NEWLIN-LUKOWICZ

I, = {t":0<r < Ny}

and
E,=FEnN R;ll-'_n, OoEn = OgE N Rl+n,
E.n=EpN ([O,t(r)] X R”) where 0 < r < Nj.

For functions z : E), — R, u : E;, — R” u = (ul,...,un), and ¢ : I, — R, we write
z(sz) — z(t(r)7x(m)) u(r m) — u(t(r) (m) (S — ( )and

[El= max{yz(i,m)|: (t("),x(m)) c Enh}v

ullp, = max{[u®™)]: D, 2™ € B},
where 0 < r < Ny. Lete; = (0,...,0,1,0,...,0) € R", 1 standing in the j-th place. We denote
by d¢ the difference operator with respect to variable ¢ and by § = (41, ...,d,) the difference

operator for spatial variables (z1, ..., x,) = x. Write

n

1 1
(rym) _ - (r+1,m)  ~ (r,m-+ej) (r,m—e;)
0oz ™ z o ;:1 <z Itz g > (5)
and
1
L (rm) (rym+e;) _ (r,m—ej) < i<
0z o, (z i) — 2 g ) for 1 <j5<n. (6)

A classical difference method for the mixed problem consists in replacing partial deriva-
tives in (3) by the above difference operators. This leads to the difference equation

Sz — (t(r>7 2(m) S rm) 5Z(r,m>) (7)

with the initial boundary condition

Z(r,m) (pgﬂ m) on E07h U Op By, (8)
where §z(7) = (612(”"), o 0,2 and @y, Ey U0y E), — Ris agiven function. Sufficient

conditions for the convergence of method (7), (8) to a classical solution of (3), (4) are given in
the following theorem.

Theorem 1. Suppose that
1) f € C(, R), the derivatives (0y, f,...,0q,f) = Oyf existon Q and 0,f € C(2, R");
2) conditions (1), (2) are satisfied and there is A € R, such that

|f(tz,p,q) = f(t,2,p,9)] < Alp—p] on & €)
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GENERALIZED EULER METHOD FOR NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 459

3) h € A and thereis M = (My,...,M,) € R" such that M; > 0 for1 < i < n and
h' < Mhy;
4) the estimates

h
1_%‘8q]f(t7xapaqn 207 ].SJSTL,
J

are satisfied on §2;
5)v : E — R s a solution of (3), (4) and v is of class C' on E and there is a function
ag : A — Ry such that

’cp(“m) B (p;lr,m)‘ < ag(h) on Ey,UdE, and flbir% ag(h) = 0;

6) 2z, : B, — R is a solution of (7), (8).
Then there is a function o : A — R such that

llon, — znllrn < (k) for 0<r < Ny and lllin%a(h) =0

where vy, is the restriction of v to the set Ep,.

The above theorem may be proved by a method used in [1-3]. Note that the Lipschitz
condition (9) may be replaced in Theorem 1 by a nonlinear estimate of the Perron type.

Remark 1. Suppose that all the assumptions of Theorem 1 are satisfied and the solution
v: E — Rof(3),(4)is of class C2.
Then there are Cy,C' € R,y such that we have the following error estimate for method

(7). (8):
lon = znllrn < Coag(h) + Cho, 0 <r < No.
The above result may be proved by methods used in [1-3].
Note that the classical Euler method [1, 2] is not applicable to problem (3), (4). Now we

formulate a new class of difference problems corresponding to (3), (4). We need next assumpti-
onson f.

Assumption Hy[f]. Suppose that f € C(Q2, R) and
1) the partial derivatives

(8a:1f(P)7vaxnf(P)) = 8If(P)’ 8pf(P)7

(8q1f(P)a cee 7aqnf(P>) = 8qf(P)
exist for P = (t,z,p,q) € Qand 0,f,0,f € C(, R"), 0pf € C(Q, R);
2) conditions (1), (2) are satisfied.
Write

B, ={t",2™):0<r <Ny—1,-N <m < N}
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460 Z.KAMONT, J. NEWLIN-LUKOWICZ

Let us denote by (z,u),u = (uy,... ,uy), the unknown functions of the variables (¢("), (™).
Write

Prmy 4] = (t(r) p(m) (rm) u(nm)) 7

QU2 ] = (tm, 2(m) S (rm) u<r+1vm>) .

We consider the quasilinear system of difference equations
8027 = £ (QUz,u]) + 37 04, £ (QU[z0u)) (852 — ™) (10)
j=1

and

50uz(r7m) =0, f (P(r’m) [z, u]) + Oy f (P(T,m) 2, u}) UETM) I

+ Zﬁqu (P(T’m) [z,u]) 5jugr’m), 1 <¢<n, (11)
j=1

with the initial boundary condition

(7-7m) (r,m)

z = ¢y and ("™ = %(Lr’m) on EypUdEn, (12)

where ¢, : Eyp UOoE, — Rand vy, : Eyjp UOyE, — R™ are given functions. The difference
operators dp and § = (d1,...,0,) are defined in the following way. Suppose that the functions
(z,u) are given on the sets E, , and E,, 5, respectively, where 0 < r < Ny. Then we put

1 1
(rom) _ - (r+1,m) _ _(r,m) (r,m) _ (r—i-l,m) _ (r,m) <<
doz I <z z > , Oou; » (uZ u; ) , 1<i<mn (13)

The difference operators with respect to spatial variables are defined in the following way:

if 05, f (QU™[z,u]) 2 0 then 4,20 — hij (strmres) — 5t} (14)
it 9y, f (Q(T’m) [z,u]) < 0 then 5jz(r’m) = hi] (Z(T’m) — z(T’mfef)) ) (15)
if 0y, f (PU™)[z,0)) = 0 then  gju™ = hi] (w9 —ulm™) 1 <i<n, (16)
it Oy, f (P(T’m) [z,u]) < 0 then 5juy’m) = % (ul(-r’m) - ul(-r’mfej)> , 1<i<n. (17)
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GENERALIZED EULER METHOD FOR NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 461

The difference problem consisting of system of difference equations (10), (11) with dy and §
given by (13) - (17) and initial boundary condition (12) is called a generalized Euler method for
problem (3), (4). There exists exactly one solution (25, up) : Ep, — RY™ up = (up1,. .., unn),
of the above difference problem. For this purpose note that if (2j,u;) are defined on E, 3,
0 <r < Ny, and (t(”l),x(m)) € Ej then

(t(r),a:(’”*ej)), and (t(”,x(m—eﬂ) €E, for 1<j<n.

It follows that ugfﬂ’m) may be calculated from (11), (12) and then z("+1"™) may be calculated

from (10), (12). Then by induction the solution exists and it is unique on Ej,.

There are two main differences between the classical result presented in Theorem 1 and our
methods.

1. If we apply difference problem (7), (8) then we approximate the spatial derivatives of z
in (3) with the use of difference expressions (6). In our method we approximate the derivatives
with respect to x by using solutions of difference quations (11) which are generated by the
original problem.

2. Suppose that we calculate the number z,(fﬂ’m) by using method (7), (8). Then we apply

the vector &z considered at the point (¢("), (™). In our method we calculate z}(fﬂ’m) by means

of (10) and we need the vector u;, at the point (t("), (™)) and also at the point (¢""+1, 2(™)),
Difference problem (10)-(12) is obtained in the following way. Suppose that Assumption
Hylf] is satisfied and that the function ¢ : Ey U yE — R is of class C'. Existence theory for
classical or generalized solutions to mixed problem (3), (4) is based on a method of quasili-
nearization. The method consists in replacing problem (3), (4) with the following quasilinear
differential system for unknown functions (z,u), u = (uy,...,u,), of the variables (¢, z):

8t2(t,513) = f (U[27u7tvx]) +

+ > 0y, f Ulz, ust, 2]) (0, 2(t, ) — uj(t, 7)) (18)
j=1

and

Owui(t, ) = 0, f (Ulz,ust, z]) + Op f (Ulz,u; t, x]) ui(t, z) +

+ Y 0y, f (Ulz,ust,a]) Opjui(t,x), 1 <i<n, (19)
j=1

with the initial boundary condition
z(t,x) = p(t,z) and wu(t,z) = Oyp(t,z) for (t,x) € EyUOE (20)

where Uz, u;t,x] = (t,z, 2(t,x),u(t,z)). Note that each equation of system (18), (19) depends
on the unknown functions (z, ) and it contains partial derivatives of only one scalar function.
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462 Z. KAMONT, J. NEWLIN-EUKOWICZ

Under natural assumptions on given functions, the following properties of problem (18)-
(20) may be proved ([4, 5]):

(A)If(2,4) : E — RY"™ @ = (a1, ...,0y),is a classical solution of (18) - (20) then 9, = @
on E.

(B)If 9 : E — Risasolution of (3), (4) and v is of class C? on E then the functions (9, 9,7)
satisfy (18)—(20).

(O)If (2,0,2) : E — R is a solution of (18) - (20) then % satisfies (3), (4).

Difference problem (10) - (12) is a discretization of (18) —(20). The principal significance of
system (10), (11) is that the method of discretization of (18), (19) depends on the properties
of the functions (g, f, ..., 0y, f) and on the previous values of the unknown functions. System
(18), (19) has the following property: the differential equations of bicharacteristics for (18) and
for (19) are the same and they have the form

77,(75) = _8qf(tv77(t)a Z(t>n(t))7u(t7n(t)))'

This property of system (18), (19) is important in the investigation of the stability of difference
problem (10)—(17).

Remark 2. Suppose that f € C(Q, R) and

1) the derivatives (9,, f,...,0q,f) = 0,f existon Q and 9, f € C(2, R");

2) the Lipschitz condition (9) is satisfied and conditions (1), (2) hold.

Then the classical solution of mixed problem (3), (4) is unique. This result may be proved
by a method of differential inequalities.

Note that condition (9) may be replaced in the above statement by a nonlinear estimate of
the Perron type.

Existence results for mixed problem (3), (4) may be deduced from [4, 5], see also [6].

The papers [1-3] initiated the investigations of difference methods for nonlinear partial
differential equations and weakly coupled systems. Initial problems on the Haar pyramid and
initial boundary-value problems were considered. The main question in the theory of numerical
methods for nonlinear differential equations is to find a difference equation generated by the
original problem, which is stable. The method of difference inequalities or theorems on linear
recurrent inequalities are used in the investigation of the stability. The monograph [7] conta-
ins an exposition of recent developments on difference methods for hyperbolic differential or
functional differential equations.

The paper is organized as follows. In Section 2 we give sufficient conditions for the conver-
gence of the generalized Euler method. In the next section we consider some modification
of method (10)-(12) and we prove a convergence result under assumptions that the deri-
vatives 0, f,0,f, 0, f satisfy nonlinear estimates of the Perron type with respect to variables
(p, q). Numerical examples are given in the last part of the paper. Our results are a continuation
of paper [8], where the generalized Euler method was considered for initial problems on the
Haar pyramid. We use in the paper general ideas concerning difference equations which were
introduced in [2, 9, 10].

2. Convergence of the generalized Euler method. We formulate next assumptions on f.
Assumption H [ f]. Suppose that Assumption Hy|f] is satisfied and
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GENERALIZED EULER METHOD FOR NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 463

1) there is A € R, such that

10 (P, 10pf (P, 110 (P)]| < A

for P = (t,z,p,q) € Q;
2) there is L € R such that the terms

Haxf(t7xapu Q) - 8Z‘f(t7$7]§7 Q||7 |8pf(t7xvp7 Q) - apf(t7x7ﬁv q|7

||8qf(t,$,p, Q) - 8qf(ta$7257q_”

are bounded from above by L(|p — p| + ||¢ — ql])-
We prove the main result on the generalized Euler method.

Theorem 2. Suppose that Assumption H|f] is satisfied and
1) h € Aand

n

1
1—hth—j\8%f(t,x,p7q)! >0 on 1)
j=1

2) the function ¢ : EgUOyE — Ris of class C? and v : E — R is a solution of problem (3),
(4) and v is of class C? on F;

3) the functions (2, up) : B, — RY™ where up, = (upa, ..., uny), satisfy (10)—(12) with
0o and 6 given by (13)—(17) and there is a function oy : A — R such that

o) — Q™) L1 9,0m — M < g (h) on Eop U dE (22)

and }llin%) ag(h) = 0.
Then there is a function o : A — R such that

lvn = 2nllrp + |Ozvn — un|lrn < alh), 0 <r < Ny, (23)

and lim a(h) = 0, where vy, and O, vy, are the restrictions of v and J,v respectively to the set Ej,.

—0

Proof. Write w = 0,v and w = (w1, ...,wy,). Let us denote by wy, = (wp 1, ..., ws,n) the
restriction of w to the set F;, and put

§h = Un — 2, Ap = wp —Up (24)
with A\, = (Ap1, ..., Ann). Let the functions wy, g, w1 @ I, — R be defined by

I = Nenllens @] = [ Anllns (25)

) )

where 0 < r < Ny. Set wy, = wp o + wp,1. We will write a difference inequality for the function
wp,. We first prove some properties of wy, o. Let the functions I'y, g, Ay : E; — R be defined by

rha = doof™ = 9™ 37 0y, (P, w]) (00,00 — 0™ ) (26)
j=1

ISSN 1562-3076. Heainitini koausarnnsa, 2003, m. 6, N> 4



464 Z. KAMONT, J. NEWLIN-EUKOWICZ

and

ALY = (PO o,ul) = £(QU™ on, wa]) +

+ Z Ouy £ (QU™ Lz wn]) il

n

— Z 04, f (P(T’m) [v, w]) w](»r’m) +
j=1

+y {%f( > v, w]) g, f (Q [Zh,uh])}éjv,ﬁ’”m). (27)

J=1

Put
Wl = & 1 hozaqu( e unl) 85610

It follows from (10) and (18) that ¢, satisfies the difference equation
&7 = Walen ™™ 4 o [T + ALY (28)
where (£, (™) € B} . Write
Jelrom) = {5 € {1} 2 0, (QU™ [z wn]) = 0},

J_[r,m] = {1,...,n}\J+[r,m].

It follows from the definition of the operator J that the function &, satisfies the relation

Wil = €0 |1 hy 3 o Jout (@0l m) | +
1

Jj=

+ho Y %aqu (Q(T’m) [Zh,uh]> grmred)

j€Jrm] Y

— ho Z %aqu (Q(r,m) [Zh,uh]) gf(fvmfej)_

jeJ_[r,m] J
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GENERALIZED EULER METHOD FOR NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 465
It follows from assumptions (1), (2), (21) and from (6) that
Walgn) ™| < ) on B, (29)
Since the functions (v, w) satisfy equation (18), it follows that there is 79 : A — R, such that
‘rﬁ:gﬂ" <90(h) on Ej and limo(h) = 0. (30)
Let ¢ € Ry be such a constant that

0w (t, )|, [|0zv(t, )|,
(31)
[0wzv(t, z)||,  [|Ozzv(t,z)|| < € On E
where

Opav(t, ) = [Op,a,v(t, )], .

and

|0zzv(t, )| = maX{Z|amjv(t,x)|: 1<j< n}

=1

According to Assumption H|f]| we have
A7) < ) + (A 26L) [wfl) + ol + ko) (32)
where (£, (™) € E!. Applying (28)—(32) we conclude that the recurrent inequality
T < Wl + Ahowl) + ho(A + 22L) [w,(f()) +uwy T 1)} +

+ holyo(h) + hoé(A + 2¢L)] (33)

is satisfied for 0 < r < Ny — 1.
Now we write a difference inequality for wy, ;. Let the functions

Ln=Chas---,Thn): B — R,

Ah = (Ah,la-- . 7Ah,n): E]/L — Rn
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be defined by

Fg;m) = 5ow,(:im) — fw!™™ 4

+ Zﬁq]f( (Tm ]) (&cngr’m) - 5jw,(£;m)> , 1 <4¢<n,

and

Api =0y, f (P(T’m) [U,UJ]) — Oy, f (P(T’m) [zh,uh]> +

+ Opf (P(T’m) [v, w]) w( — Opf ( [zh, uh]) ugzm) +

+ i [aqu< prmiy ]) 04 f( [zh,uh]ﬂ d; w}(flm), 1<i<n.

7j=1
Write

U] ™™ = A(T ™ 4

+ hoza f(P(Tm)[zh uh}>5 )\(rm), 1<i<n,
7j=1

and
U] ™™ = (ﬁh[/\m](“m), . ,ﬁh[/\hm](”’m)) .
It follows from (11) and (19) that the function )\, satisfies the difference equation
™ = U] ko [0 4+ AT |
where (£, (™) € B/ . Write
Ii[r,m] = {j e{l,...,n}: 8qu< [zh,uh> > O},

I_[r,m] ={1,...,n}\I+[r,m].

(34)

(36)
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GENERALIZED EULER METHOD FOR NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 467

Then we have

Un A ™) = )\X’im) 1— h(] ‘8qu ( [Zh,Uh])‘ +
j= 7 h

+ho > %%f (P (rim) [Zhauh]) )‘i(:%m+€j) -

j€l frm]

— hg Z —8q]f( plrm) [zh,uh]) )\(T;lm 6J), 1<i<n.

JeI_[r,m] ]

According to (1), (2), (21) and (6), we have
HUh[)\h]("’m) H <o) on Ej. (37)

Since the functions (v, w) satisfy equations (19), it follows that there is v : A — R, such that

IT ™I < 4(h) on Ej and limy(h) = 0. (38)
It follows from Assumption H|f] that

I ™ < Ll (1+228) + Awfl] on  Ej,

and consequently

W T < Wil + hoy(h) + Lho(1 + 28w + Ahow]') (39)

where 0 < r < Ny — 1. Combining (33) with (39) we see that there are L > 0and 5 : A — R,
such that

WY < WA+ Lhe) + ho¥(h),  0<7r < No—1,

and }llm%) 4(h) = 0 which implies that

w < ag(h)el® +3(H)—=—,  0<r < N, (40)

This completes the proof.

Remark 3. Suppose that all the assumptions of Theorem 2 are satisfied and thereis M € R}
such that A’ < Mhyg. Then there are Cy, C' € R, such that we have the following error estimate
for method (10) - (12):
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468 Z.KAMONT, J. NEWLIN-LUKOWICZ

lon = znllrn + 020 — un|lrn < Coao(h) + Chy

where 0 < r < Ng.
The above result is a consequence of (30), (38) and (40).

Remark 4. In the results on error estimates we need estimates for the derivatives of the
solution v of problem (3), (4). One may obtain them by the method of differential inequalities.
The results given in [11] (Chapter VII ) and [12] for initial problems on the Haar pyramid can
be easily extended to mixed problems.

3. Convergence of the difference method with nonlinear estimates. We prove that the genera-
lized Euler method is convergent if the Lipschitz condition for the derivatives 0, f, 0y f, 0, f is
replaced by a nonlinear estimate of the Perron type. We change equation (10) in this case. We
consider the quasilinear system of difference equations consisting of equations (11) and

oz = f (P(r’m) [z, u]) + jz:;aqu (P(r’m) [z,u]) ((5jz(r’m) — ugr’m)) (41)

with initial boundary condition (12). Difference expressions

5oz and 50ugr’m), (5u£r’m) = <(51ul(-r’m), . ,5nu£r’m)), 1<i<n,
are given by (13) and (16), (17), respectively. Difference operator 6z is given by (14), (15)
with Pz, v] instead of Q("™)[z,u]. Numerical results obtained by the above difference,
method are better than those obtained by (7), (8). We show a numerical example.

Our basic assumptions are the following.

Assumption H [o]. The function o : [0,a] x Ry — R, is continuous and

1) o is nondecreasing with respect to both variables and o (¢,0) = 0 for ¢ € [0, a;

2) for each ¢ € Ry and d > 1 the maximal solution of the Cauchy problem

' (t) = en(t) + do(t,n(t)),  n(0) =0,
isn(t) =0, t €0,a
Assumption H[f]. Suppose that Assumption Hy[f] and condition 1 of Assumption H|f]

are satisfied and there is a function o : [0,a] x R4 — Ry satisfying Assumption H [o] and such
that the terms

Hazf(t7x;p; q) - al‘f(tvxaﬁa Q)Ha ‘apf(t7m7p7 q) - apf(t7x7ﬁ7 6)’7

||8qf(t,x,p7 Q) - aqf(t)x7p7 Q)H

are bounded from above by o (¢, |p — p| + ||g — ql|)-
Theorem 3. Suppose that Assumption H [f] is satisfied and
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1) h € A and condition (21) holds;

2) the function ¢ : EgUOyE — Ris of class C?> and v : E — R is a solution of problem (3),
(4) and v is of class C? on FE;

3) the function (zp,up) : B, — R up = (upy,. .., uny), satisfies (11), (41) and (12),

4) there is a function oy : A — Ry such that initial boundary estimate (22) is satisfied and
}ILILI%) Oé()(h) =0.

Then there is a number ¢y > 0 and a function o« : A — Ry such that condition (23) is
satisfied for ||h|| < ¢ and }llli% a(h) = 0.

Proof. Write w = 0,v. Let{ : E;, — Rand )\, : E; — R" be the functions defined
by (24) where v, and wy, are the restrictions of v and w to the mesh E}. We can now proceed
analogously to the proof of Theorem 2. It follows easily that the functions wy, ¢ and wy, 1 given
by (25) satisfy the recurrent inequalities

w,(:;l) < w}(:()) + 2Ah0w,(f) + 2¢hgo <t(T),w}(LT)) + hovo(h) (42)
and
w,(ﬁrl) < w}(f% + Ahgwg) + (1+2¢)0 <t(r),w}(f)) + hoy(h) (43)

where 0 < r < Ny —1and w, = wp + wp,1- The functions vy and ~ are given by conditions
(30) and (38) respectively, the constant ¢ is such that estimates (31) hold. The functions I'y, o,
I';, and A}, are defined by (26), (34) and (35) respectively, whereas the function Ay, o is given by
(27) with P [z, uy] instead of Q"™ [z, uy]. Adding inequalities (42) and (43) we conclude
that the function wy, satisfies the recurrent inequality

W < W 4 chow™ + dhgo (N),w,(j)) +hotyo(h) +~(R)), 0<r<Ny—1, (44)
where ¢ = 3A,d = 1 + 4¢. Consider the Cauchy problem
1'(t) = en(t) +do(t,n(t) + (k) +v(h),  n(0) = ao(h).

It follows from Assumption H[o] that there is &g > 0 such that for ||h|| < e there exists the
maximum solution 7, of the above problem and 7, is defined on [0, a]. Moreover we have

]llir% np(t) = 0 uniformly on [0, al.
The function 7, satisfies the recurrent inequality

mp 2 ) chon” + dhoo (17, 07) + ho (o(h) £ (), 0 <7< No—1. (43)

Since ng) < 7720), (44) and (45) show that w;f) < ng) for 0 < r < Ny. Then we get (23)
with a(h) = np(a) for ||h|| < €o. This proves the theorem.

Remark 5. The results of the paper can be extended to weakly coupled nonlinear systems
with initial boundary conditions.
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4. Numerical experiments. Now we give an example of a classical difference method and the
generalized Euler method for a nonlinear equation.

Letn = 2and E = [0,1] x [-1,1] x [1,—1]. Denote by z an unknown function of the
variables (¢, z,y). Consider the differential equation

Ovz(t, x,y) = x0y2(t, x,y) +yoyz(t,x,y) +
1
+ 5 sin[20,2(t2,y) —y0y2(tw,y)] — 42t 2, 9) + ftwy),  (46)
with the initial boundary condition

z(t,z,y) =0 for (t,z,y) € ExUOE. (47)
Here
_ 1 2 1)(] — o2 1 — 2242 L. 2 _ 2
flt.a.y) = goyla® = (1= y?) — tay(L - o) — 3 sin[toy(a® ).
The exact solution of this problem is known. It is
t
w(t, z,y) = gey(@® = 1)1 - %),
Consider the classical difference equation for (46), (47)

Sotm) _ L emitima) [ gm0 ]
4 h
L omi—tms) | (m1) 0 |
+ ZZ s1 1 , 112 1 _ 2x my1)_"Y +

+ iz(nml,mﬁl) 1_|_2y(m2)_0 +

+ %Z(T,m17m2—1) 1—2ym2) 01 4

+ % sin [A“vm)} — dho2(rm) 4 po flrm) (48)

where 0 < r < Ny, =N < m < N, N = (Ny,Nz), m = (mq,mz), and the initial boundary
condition

Srm) — o for (t(7)7 x(ml)’ y(mQ)) € EopU OoEp, (49)
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where

Alrm) — . (m1) (Z(r,m1+1,m2) _ Z(r,mlfl,m2)> (th)*l _

gl (st ) _ emma ) (o1,) 1,

Denote by Z;, : E;, — R the solution of (48), (49).
Now we construct the generalized Euler method for problem (46), (47). Let us denote by
(z,u,v) unknown functions of the variables (£, z(m1) y(m2)) Write

1.
F(tax7y7p7 Q17QQ) = Iqi + Yq2 + 5 Sln(CCQ1 - yCI2> - 4p + f(tawvy)

and

plrm) _ <t<r> Lp(ma) g (ma) (rm) - (rm) v(r,m>> .
Consider the system of difference equations
z(r+1,m) _ Z(r,m) + hoF (P(r,m)> +

+ hody F (P<’“’m>) (51;;(””) - u(“m)> +

oty F (PO (00— gfem).
and

ur M) — o (v ped, F <P(T’m)> + hoOpF (P(T’m)> w4
+ hodg, F <P(’"7m)) 516 1 hody, F (P(“”)> Syumm)
p(rttm) — g (rm) 4 g F (PW’”)) + hod F (P(T”m)) wrm)

o (PO 10 4 2 (PO )
with the initial boundary conditions

Z(r,m) — 0 on E()’h U 80Eh7
wOm) — ,(O0m) _ o on Eon
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and

w(rmi,Ne) (rym1,—N2) _ 0,

= U

p(mN1,m2)

T"*N 1N J—
=l Lm2) = 0,

u(T7N17m2) — u(TﬁNl,mz) — t(T)y(m2) [1 _ (y(m2))2:| 7

DM Ne) _(rmaN) () () [(x<m1>)2 _ 1} ,
where 0 < r < Ny, —N < m < N. The difference operators
(512(7‘,771)’ 622(T’m)) 5
(51u(“m), 62u(r’m)) , (611}(“’"), 521)(7"’7”))

are defined according to our theory.

Let us denote by (zp,un,vy) : B — R? the solution of the above difference problem. We
give the following information on the errors of the methods. Write

f]ér) = max{|w(r’m) —2](:7m)|: -N<m< N}7
o = max{]w(r’m) _m) N <m < N}, 0<r< N,

and

N
(1) — 1 (rym) _ z(rm)
“h T 2Ny + D)(2Ns + 1) 2. ‘w “h ’ ’

m=—

N

N
1
(rim) _
(2N; + 1)(2N5 + 1) m;N ‘w 2,

The numbers 17,(;) and 17}(:) are the maximal errors with fixed ¢("). The numbers ég) and 55:) are

the arithmetical mean of the errors with fixed ¢("). The values of the functions Ths Mhy ER, ER ATE
listed in the tables.
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Table of errors for hg = 1073, hy = hy = 1072

4 (75 ™) (&)™)

0,4 1-1073%;2-107* 1-1073;1-1074
0,5 2.1073;3-1074 1-1073;1-10~4
0,6 3-1073:4-107% 1-1073;2-1074
0,7 3.1073;5-107* 1-1073;2.107%
0,8 4-1073:6-107% 2-1073;2.107¢
0,9 5-1073;7-107% 2.1073;2-107%
1,0 5-1073;8-1074 2-1073;3.107¢

Table of errors for hy = 107* hy = hy = 5-1073

4 (75 ™) (&)™)

0,4 3-1073;1-1074 1-1073;5-107°
0,5 5-1073%;1-10* 2.-1073;7-107°
0,6 6-1073;2-107* 2.1073;9-107°
0,7 8.1073:2.107* 3-1073;9.107°
0,8 9.1073;3-107* 4.1073;1-107*
0,9 1-107%,3.107¢ 4-1073;1-107¢
1,0 1-107%,4-107* 5-1073%;1-1074

Note that n,(f) < 77,(;) and sg) < ég) for all the values of ¢(").

We give also the following information on the errors of the methods. Write

i :max{f]}(f): 1<r < NO},

= max{r]}(f): 1<r< No}

and

No

No

.o 1 A(r) _ 1 (r)
Eh_ﬁﬂzgh’ gh_ﬁozgh .

r=1

The values of the errors (7, n;,) and (€5, €p,) are listed in the following table.
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Table of global errors
(ho,h1 = h2) (773 1) (€nsen)
1073;5-1072 0,050628; 0,000425 0,010604; 0,000679
1073;1072 0,005727; 0,000890 0,001063; 0,000147
5-10741072 0,010666 ; 0,000890 0,001979 ; 0,000147
104,102 0,034160 ; 0,000810 0,006635 ; 0,000147
107451073 0,012884; 0,000447 0,002387; 0,000074

Note that 1, < 7, and (g, < &3) for all the values h.

Thus we see that the errors of the classical difference method are larger than the errors
of the generalized Euler method. This is due to the fact that the approximation of the spatial
derivatives of z in the new method is better than the respective approximation of 0,z in the
classical case. Methods described in Theorems 2 and 3 have the potential for applications in the
numerical solving of first order nonlinear differential equations.
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