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We study exponential dichotomy for a linear quasiperiodic system with impulses. The piecewise smooth-
ness of separatriz manifolds is proved. For nonlinear quasiperiodic impulsive system with linearized

system that posseses the property of exponential dichotomy, the conditions for the existence of discon-
tinuous quasiperiodic solutions are obtained.

Buewaembesa excnonenyiaabHo QuromomiuHa ainitina Kea3inepioduyuna imnyabena cucmema. Ompu-
MAHO YMOBU KYCKOBOT HENEPEPBHOCMI MA KYCKOB0I 24a0KOCTNI CENAPAMPUCHUT MHONUCUH. [lad caab-
KOMEAIHITHOT IMNYAbCHOT K8A3INEPIoOUNHOT CUCTREMU 3 EKCTIOHENYIAAbHO QUTOTMOMINHOI0 ATHITHOW0 4a-
cmuno010 008€0eHO ICHYBAHHA PO3PUSHUT KEA3INEPIOOUNHUT PO38 A3KI6.

Introduction. We will consider an impulsive system of the form

do

E =w, (1)

& Al pETa\D, Q

Azl = B(g)z, 3)
pel

where 2 € R", ¢ € T,,, T,, is an m-dimensional torus, I' is a smooth compact submanifold
of Ty, of codimension 1, and w = (wy,..., wy,) is a constant vector with rationaly independent
coordinates. Az stands for the jump of the functions z at the point ¢ obtained during the
motion along the trajectory of equation (1). Suppose that det (I 4+ B(p)) = 0 (I is the identity
matrix) for some or all ¢ € I'. Therefore, solutions of system (1) — (3) cannot be continued on
the negative semi-axis ¢ < 0 or can be continued ambiguously.

In this paper, we introduce the concept of exponential dichotomy for the system (1) —
(3) and investigate analytic properties of separatrix manifolds. For a nonlinear quasiperiodic
impusive system with linearized system (1) — (3) that possesses the property of exponential
dichotomy, sufficient conditions for the existence of invariant set are obtained. Trajectories
on the invariant set are quasi-periodic with the first-order discontinuities. We continue the
investigations of [1-7]. Piecewise smooth quasiperiodic impulsive systems were studied in [5,
6] under the assumption that det (I + B(p)) # 0 for all p € T'.

* Partially supported by INTAS Grant 96-0915 and Ukrainian Ministry on Science and Technology Grant
1.4/269.
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1. Linear system. Denote by C*(T,,) the space of s times continuously differentiable
functions or matrices on T,,. For f(¢) € C*(T,,), we denote the norm

_ li1 j
If(P)ls = Orsr;;té%sel}nlg 10 f(¢) /047,

where j = (j1, .+, Jm), @ = (@}..c0i®), |5l = j1+ ...+ jm, and ||-|| is the norm in R” or in the
space of matrices.

Equation (1) has solutions o(t,¢) = ¢ -t = wt + . Suppose that solutions ¢ -t intersect
the manifold T" transversally. We denote by t;(¢), j € Z, the sequence of points ¢t where ¢-t
intersects the manifold T'.

For fixed ¢, system (1) — (3) has the following form:

LAz t4) (4)
Aol = Boi(@)s, (5)

t=t;(p)

where 0;(¢) = o(ti(¢), ¢). Let z(t, ¢, zo) be the solution of the initial-value problem for (4),
(5) with initial value (0, ¢, o) = zo. The solution (¢, ¢, zo) is piecewise continuous and has
discontinuities in ¢ where solution ¢ - ¢ intersects the manifold I'. Denote by X (¢,¢), t > 0,
the fundamental solution for the system (4), (5), X (0, ¢) = I. We assume that z(t, ¢, o) and
X (t, ) are left-side continuous.

- Lemma 1. The sequence {tx(p),k € Z} has equipotentially almost periodic differences
ti(¢) = teyj(®) — te(p), i.e., for an arbitrary € > 0 there exists a relatively dense set of
e-almost periods that are common to all sequences tj,.

Proof. 1) Let ©, be the set of real numbers w for which there exists an integer h, such
that

|tk‘" — wl = Itk+hw -t — w| <e forall ke€Z.

By Lemma 25 [3], the sequences {t; (), k € Z} are equipotentially almost periodic if and
only if the set ©, is relatively dense for every € > 0. We prove that ©, is relatively dense in
our case.

2) Denote V(@) = {¢1 € T : p(¢1,¢) < 8}, where p(-,) is a metric on the torus T,,. By
Kronecker’s theorem [8], for any € > 0, there exists a relatively dense set of numbers 7, such
that p(¢ - 7e, ) < € for all ¢ € Ty,.

3) By assumption, the trajectory ¢ - ¢ intersects the compact manifold I' transversally;
therefore, for € > 0, there exists § = §(¢) > 0 such that

P(Qov (»bl) <g, IA((Pla()bl)l <§g,

for all ¢ € T', @1 € Vs(p). Here, @1 is the point nearest to ¢; at which the trajectory ¢ -t
intersects the manifold I'. The number A(¢y, ¢;) is defined by the equality ¢y - A1, 1) = ¢1.
4) By 2), there exists a relatively dense set of numbers 75 such that

p((p-tj)-15,p-t;) <6 forall jeZ
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By 3), for fixed j, there exists a point ¢ - t;4; € T' such that

plo-tiso-t;) <&, |Alp-tip, (p-t;) - s)| <e.
We prove that the number [ is the same for all j € Z. For the point (¢ - t;+1) - 75, there exists
a point ¢ -t;114m € I' such that
p(@  tigsram, 0 tix1) <&  |A(@ tiprem, (0 tiy1) - 75)| < e
We get
|A(# - it - tiram)| S |A(@ - tigt, - (8 + 75)) |+
HA(p - (& +78) 0+ (Eiar + T+ 1A (41 +76), - tjgiam)| <
<etitjp—tite. (6)
Therefore, m = 1.
5) Using [A(¢ - tj+i, (¢ - t;) - 75)| < €, we get
|tjv1 —t; — 75| < € forall je€Z. (7)
The numbers 75 satisfying (7) form a relatively dense set. The lemma is proved.
Definition 1. System (1) - (3) is said to be exponentially dichotomous if, for all ¢ € Ty,

the space R™ can be represented in the form of the direct sum of the subspaces U(yp) and S(yp)
so that

1) any solution of system (4), (5) with o € S(p) satisfies the inequality

o t, @, 20)ll < K exp(=a(t = )lle(r, @,ao)ll, ¢ >7 > 0; ®)
2) any solution with xo € U(yp) satisfies the inequality

llz(t, ¢, z0)|| > Kiexp(a(t —1))||z(r, ¢, 20)||, t>T2>0; 9)

where positive constants a, K, K1 are independent of ¢, xo;

5) X(L@)S(@) C Slp-t), X(t,PU(p)CUp-1), t>0;

4) projectors P(p) and Q(p) = I — P(p) corresponding to S(¢) and U(p) are uniformly
bounded

sup |[P(p)|l+ sup [|Q(¢)l| < oo.
‘PeTm ‘PeTm

Theorem 1. Assume that system (1) — (3) is exponentially dichotomous and the functions
A(yp), B(¢) are continuous on Ty,. Then the projector P(p) is continuous on the set T, \ T’
and has discontinuities of the first kind on the set I' and, moreover,

P(o+0)(I + B(¢)) = (I + B(#))P(¢ - 0).

For this case, (¢ — 0) and (¢ + 0) are defined during the motion along the trajectory ¢ -t of
equation (1) for increasing t. v

Proof. Fix ¢ and consider system (4), (5). By Lemma 1, the sequence {t;(¢), j € Z}
has equipotentially almost periodic differences. By Lemma 30 [3], the sequence {B(0;(¢)),
J € Z} is almost periodic. By Theorem 2 [9], system (4), (5) is exponential dichotomous
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on the axis ¢ € R and dimensionalities of stable S(¢ -t) and unstable U(y - t) manifolds do
not depend on t. Limiting systems of system (4), (5) are exponentially dichotomous and the
dimensionalities of stable and unstable manifolds for limiting systems remain the same. Hence,
the dimensionalities of stable S(¢) and unstable U(¢) manifolds of system (1) — (3) are the
same for all ¢ € T,,.

Now we prove that the projectors P(¢) and Q(¢) are piecewise continuous. We first prove
that S(¢) is closed (U(¢) is considered similarly). Let zx € S(pk), ||zk]| = 1,0k — @, Tk —
— Z, k — oo. Assume that @ ¢ I'. In order to show that Z € S(@), let us consider system
(4), (5) for ¢ = ¢k, k = 1,2,.... Using the uniqueness of solutions for system (4) and the
transversality of intersections o(t, ¢) with I', we conclude that the theorem about continuous
dependence on parameters [3] is valid for the impulsive system (4), (5). Hence, for T > 0 and
for € > 0, there exists N = N(T,¢) such that the inequality j > N implies

2t zj, ;) — 2(t, 2, @) <€ (10)

for t € [0,T] satisfying |t — t;(@)| > €. The sequence {z} is bounded. By (8), there exists a
compact set K C R™ x Ty, such that z(t,z;, ;) € K for t > 0. By (10), one has z(t, Z, ¢) € K
for t > 0. If the solution z(t, Z, ¢) of the exponential dichotomous system (4), (5) is bounded
for t > 0, then it belongs to S(@). Hence, Z € S(@).

If € ', we consider left-side and right-side sequences ¢, — @ and prove similarly that
S(@) is closed in @ — 0 and @ + 0.

Analogously to the proof of Lemma 7 [10], one can prove that the projector P(y) is
continuous for ¢ ¢ I'. This completes the proof of the theorem.

It follows from Theorem 1 that the subspace U(y) has a unique negative continuation such
that

lz(t, ¢, zo)|| < K2exp(at)||zoll, ¢ € Tm, 2o € U(e), t <O.

Hence, X (t,¢)Q(¢) is well defined for all ¢ < 0, and we can define the Green function for
system (1) — (3)
X(t—T,gD'T)P((,D'T), t 2>,

G(t, T ‘P) = { (11)
X{t-1,p-1)Q(p-7), TR,

For t # 7, the Green function G(t, T, ¢) satisfies system (4), (5):

CELD _ Ap-0G(t ), t#() (12)
AG(t, T, 90) == B(Ui (?))G(ti(so)a T, 90)' (13)
t=ti(¢)

If system (1) — (3) has exponential dichotomy, then the Green function G(¢, 7, ¢) is bounded
by an exponent: '

G, 7, 9)|| < Ksexp(—al|t —7|), t,7€R, Ksza>0. (14)

The linear inhomogeneous system
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X Alp- Dz + 1), A1),

Azl =Boi(@)e+g

t=ti(¢)

has the following unique bounded solution:

ut,) = [ Gt r)f(n)dr+ 3 Gl tle), P)a(oi(e)). (15)
—00 i€

Theorem 2. Suppose that

1) the manifold T is smooth of class C®;

2) A(¢), B(¢) € C*(Tn);

3) solutions of equation (1) intersect the manifold T' transversally;
4) system (4), (5) is ezponentially dichotomous.

Then the projector P(p) has continuous partial derivatives of order s with respect to ¢ on
the set T, \ T.

Proof. Let Ap; be an increment of the i-th coordinate of ¢ and ¢ + Ap; = (¢1, ...

oy @i + A@iy ..., @n). Let us consider the difference R = G(t, 7,90 + Api)— G(t, T, @), where
¢ € T, \T. It satisfies the following system:

‘fi_f = A(o(t, )R+ (A(0(t, o+ Apy)) — A(0(t, 9))G(t, T, 0+ Awi),

AR| = B(e})R - B(e))G(th, 7,0+ Awy),

—il
t—tj

AR = B(a]?)G(t?,r,c,o+ Agp;),

—42
t._tJ-

where t} = t;(p), 1} = tj(p + Api), 0] = a(tj(¢), ), 07 = o(tj(¢ + Api), ¢+ Ap;). By (15),

one has

o0

GO, 7,0+ 8p) =GO, 7, 9) = [ G(0,5,0)(A(0(s, 0+ Api)) -

—A(0(s,9)))G(s, 7,0+ Api)ds+

+ 3 G(0,t5,9)(B(0?) — B(a)))G(t], T, o+ Api)+
Ji€Z

+ Y (G(0,t3,90) — G(0,t},9)) B(0))G (t}, 7, 0+ Api)+
Y/

+ > G(0,82,0)B(a})(G(t;, 7, 0+ Api) — G2, 7, 0+ Bgy)). (16)
Y/
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Intersections of solutions o (¢, ¢) with the compact manifold I' are transversal. Therefore,

ti+1(p) —ti(p) 26 >0,
lti(@ls <C, jEZ,

where 6 and C' are positive constants independent of j € Z, ¢ € T,,.
Now we compute limits. Let t;(¢) > 7,t;(¢ + Ap;) > 7. Then

Ag?—l—m Ag; (G(tj((p + A‘Pi)a T, ¢+ AS":‘) - (G(tj (30)’ T, ¢+ A%‘)) =
= Ag?—lro A_— (X(tj(‘P + A‘Pt) - T, U(T, P+ A‘Pz))_

— aX(tJ((P) gtT’U(T’ (P))P(O'(T, 90)) =

9t;(e)
dpi

= A(0;)G(ti(#), Ty )

The case tj(¢) < 7,t;(¢+ Ap) < 7 in (19) is considered analogously.
We consider the next limit for ¢;(¢) > t;(¢+ Api) > 0:

1 _
Alg;,n—lm A_Soz (G(O, t](‘P + A‘Pt)a So) - G(O’ t (‘P)v (P))—

. L(X(—tj(so),a(tj(so),so))@(a(tmo),so))—

Api;—0 AQOz

—X(-tj(e+ Api), a(tj(e+ Api), 0))Q(o(ti(p + Awi), w)))=

= Jlim X (~45(),0(15(6), P t5(¢). 9)) X

X (I - X (ti(p) — ti(p + Awi), o(ti(p + Api), w)))=

= ~G(0,15(p), ) Aloe) T2,

Here, we have used the fact that X (¢, 9)Q(¢) = Q(¢ - t) X (¢, ¢) and

.1 _
Aly_rgozg(X(At, ®) — 1)— A(p), ¢€Tm\T.
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With the use of the definition of the function G(t, 7, ), the cases ¢;(¢ + Ag;) > t;(¢) >0
and t;(¢) <0, t;(¢ + Ag;) < 0 in (20) are considered similarly.
Taking into account (19) and (20), we get

0G(0,7,¢) _ /G(O’S’(P)(?A(a(s,go))aa(s, <p)G

aCPi do 8SOz (8, T, So)d8+

£ 3 G0, 1), ) 22N %) gy () 1 )

iz do dp;
Y _ B(0:)A(0))G(t; 0t(e)
+ > G(0,t5(¢), ) (A(05) B(0;) — B(9;)A(0))G(t(), 7, ) doi (21)
JEZ ¢

The matrix (0A(o(t,¢))/00) (0o (s, ¢)/0¢;) has the elements

i daki(a(s, ¢)) do;(s, ¢)
do; dp;

J=1

where A(p) = {ar}, 0 = (01,..cy0m).
The derivative dG(0, 7, ¢)/d¢; exists if the integral and series in (21) are convergent. Using
(14) and (18), we estimate

(o]

/

—00

60,5, 2GRN (5,17,

ds <

< / I{gMe—a|s|—a|'r—s|ds < I(§M<$ + |T|>e—a|s|,
where [|A(@)|ls < M, [|B(p)|ls < M, and ||90(s, 0)/d¢il| = ||0(wt + ¢) /il = 1.

By (14), (17) and (18), we get

0B(a(tj, ) 9o (ti(¥), ¥) o
J%% G(Oatj(9°))99) 9o aﬂoi =

(ti(p), Ty 0)|I<

< Ig'gMC(#M + |;|) eI,

The last sum in (21) is estimated similarly.
Therefore,

) dG(0,1,¢)

dp;
where @; = a —¢, € is an arbitrarity small positive value, and K4, K5, K¢ = Kg(c) are positive
constants independent of ¢ € T,,.

< (K4 + Ks|r))e~oVl < Kgem 7], (22)
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Now we consider the second derivative

9*G(0,m¢) _ [ 0 dA(o(s,¢))
8cpk8<,01 __Zo a_SDk G(0’37§0)8—(’01G(3a77¢) ds+

n Z( (0.5,0) aA(g(s, D (s SO)) 95(¢) _
ieZ H s=t,(¢)+0

9A(a(s,9)) i (%)
_Z( (0,s,¢ 3—gozG(s 'rcp)) o +

Y/ s=t;(¢)-0
Za —|e0s0.0( 22610,
+(B(0)A(0j) — A(0;)B(05))G (i (), 7, ) %%jo—))} : (23)

The integrand in (23) is estimated by the exponent exp(—ay|s| — a|T — s|), and the j-terms
in all series are estimated by exp(—a|t;| — @|7 —t;|). Hence, repeating estimates for 0G /9y,
we get

G0, 7 9)|

Kqpe—lrl 24
8gok8<p1 iy ( )

where oy = a@ — g, > 0, and K7 = K7(¢). For 7 = 0, we get the second derivative of the
projector P(y).

To estimate higher-order derivatives of G(0,7,¢) and P(¢) (up to the s-th order), we
continue the above approach. By successive differentiation of (23) and by the estimates for
the i-th derivative of the integrand by exp(—a;|s| — a|T — s|), and for the j-th terms in all
series by exp(—au|t;| — |7 —t;|), we conclude that the integral and all series are convergent.
Thus, we prove the existence of derivatives (up to the s-th order) of the projector P(¢) and
the Green function G(t, 7, ). The theorem is proved.

2. Invariant sets of nonlinear systems. Let us consider a nonlinear impulsive system

de

& _,, (25)

d

Az| = B(p)z+9(p, ), (27)
el

where z € R*, ¢ € Ty, T,, is m-dimensional torus, and I is a smooth compact submanifold
of T,, of codimension 1. The functions f(¢, ), g(p,z) are supposed to be periodic in ¢; and
piecewise smooth in (¢, z).
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We consider the problem of existence of a piecewise continuous (piecewise smooth) invariant
set of system (25) — (27), i.e., a function z = u(p) continuous (smooth) in T, \ I' with
discontinuities of the first kind on I' such that z(t,¢) = u(¢ - t) is a solution of system (25) -
(27). Using the piecewise smoothness of the projector P(¢) and the Green function G(t, 7, ¢),
analogously to Theorem 2 [5], we can prove the following theorem:

Theorem 3. Assume that system (1) - (3) is exponentially dichotomous and the following
inequalities hold:

|lf((fo1 0)”0 S MOv Hg(@’ 0)“0 S MO,

lf (e, 2) = flo2, v)llo+ llg (e, 2) — g(@, y)llo < Nllz - yll,

where Mg > 0 and the constant N > 0 satisfies the inequality

(1 1
2NI(3<E + 1——6’0‘9-)< j

Then system (25) - (27) has an invariant set = = u(p),p € Tn, where the function u(yp)
is continuous for ¢ € T, \ T’ and has discontinuities of the first kind on the set ¢ € I'. The
trajectories on the invariant set ¢ = u(yp) are quasi-periodic with the first-order discontinuities.

Assume that the functions A(¢), B(y), f(e, ), g(¢,y) have continuous partial derivatives
with respect to o, x up to the s-th order inclusively and we have the inequality

f (@, 2) = Flo, 0)lls + llg (@, 2) = g(e, Y)lls £ Nz — yl|, (28)

1 (2,0)|ls < Mo, |lg(,0)|ls < Mo (29)

with a sufficiently small constant N. Then the function u(p) has continuous partial derivatives
with respect to ¢ up to the s-th order for ¢ € T, \ T.
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