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A study of spectral and differential-geometric properties of Delsarte transmutation operators is given. Their
differential geometrical and topological structure in multidimension is analyzed, the relationships with the
generalized De Rham – Hodge theory of generalized differential complexes are stated. Some applications
to integrable dynamical systems in multidimension are presented.

Вивчено спектральнi та диференцiально-геометричнi властивостi трансмутацiйних операто-
рiв Дельсарта. Проведено аналiз їх диференцiально-геометричної та топологiчної структур у
багатовимiрному випадку. Встановлено зв’язок з узагальненою теорiєю Де Рама – Ходжа уза-
гальнених диференцiальних комплексiв. Наведено деякi застосування до теорiї iнтегровних ди-
намiчних систем у багатовимiрному випадку.

1. Introduction.Consider the Hilbert spaceH = L2(Rm;CN ), m,N ∈ Z+, with the scalar semi-
linear form onH∗ ×H,

(ϕ,ψ) :=

∫
Rm

ϕ(x)>ψ(x)dx (1.1)

for any pair (ϕ,ψ) ∈ H∗ × H, where H∗ ' H, the sign ”>”is the usual matrix transposition.
Take also H0 and H̃0 to be some two closed subspaces of H and, correspondingly, two linear
operators L and L̃ acting fromH intoH.

Definition 1.1 (J. Delsarte and J. Lions [1]). A linear invertible operator Ω defined on the
whole H and acting from H0 onto H̃0 is called a Delsarte transmutation operator for a pair of
linear operators L̃ and L : H → H if the following two conditions hold:

the operator Ω and its inverse Ω−1 are continuos inH;
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the operator identity

L̃Ω = ΩL̃ (1.2)

is satisfied.
Such transmutation operators were introduced for the first time in [1, 2] for the case of one-

dimensional second order differential operators. In particular, for the Sturm – Liouville and
Dirac operators, the complete structure of the corresponding Delsarte transmutation operators
was described in [3, 4], where extensive applications to spectral theory were also given.

It become apparent just recently, that some special cases of the Delsarte transmutation
operators were constructed long before by Darboux and Crum (see [5]). A special generali-
zation of the Delsarte-operators for the two-dimensional Dirac operators was done for the first
time in [6], where its applications to the inverse spectral theory and a solution of some nonlinear
two-dimensional evolution equations were also presented.

Recently some progress in this direction was made in [7 – 9] due to analyzing a special
operator structure of Darboux type transformations which appeared in [5].

In this work we give, in some sense, a complete description of multidimensional Delsarte
transmutation operators based on a natural generalization of the differential-geometric appro-
ach originated in [8, 9], and discuss how one can apply these operators to a study of spectral
properties of linear multidimensional differential operators.

2. The differential-geometric structure of the generalized Lagrangian identity. Let a multi-
dimensional linear differential operator L : H → H of order n(L) ∈ Z+ be of the form

L(x|∂) :=

n(L)∑
|α|=0

aα(x)
∂|α|

∂xα
, (2.1)

and defined on a dense domain D(L) ⊂ H, where, as usual, α ∈ Zm+ is a multiindex, x ∈ Rm,
and for brevity one assumes that the coefficients aα ∈ S(Rm; EndCN ), α ∈ Zm+ . Consider
the following easily derivable generalized Lagrangian identity for the differential expression
(2.1):

< L∗ϕ,ψ > − < ϕ,Lψ >=
m∑
i=1

(−1)i+1 ∂

∂xi
Zi[ϕ,ψ], (2.2)

where (ϕ,ψ) ∈ H∗ ×H, the mappings Zi : H∗ ×H → C, i = 1,m, are semilinear due to the
construction and L∗ : H∗ → H∗ is the corresponding differential expression formally conjugate
to (2.1), that is,

L∗(x|∂) :=

n(L)∑
|α|=0

(−1)|α|
∂|α|

∂xα
· āᵀα(x).

Multiplying identity (2.2) by the usual oriented Lebesgue measure dx = ∧
j=
−−→
1,m

dxj , we get that

< L∗ϕ,ψ > dx− < ϕ,Lψ > dx = dZ(m−1)[ϕ,ψ] (2.3)
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for all (ϕ,ψ) ∈ H∗ ×H, where

Z(m−1)[ϕ,ψ] :=

m∑
i=1

dx1 ∧ dx2 ∧ . . . ∧ dxi−1 ∧ Zi[ϕ,ψ]dxi+1 ∧ . . . ∧ dxm (2.4)

is an (m− 1)-differential form on Rm.
Consider now all pairs (ϕ(λ), ψ(µ)) ∈ H∗0 ×H0 ⊂ H− ×H−, λ, µ ∈ Σ, where

D(L) ⊂ H+ ⊂ H ⊂ H− (2.5)

is the usual Gelfand triple of Hilbert spaces [10, 11] related with our Hilbert – Schmidt rigged
Hilbert spaceH, Σ ∈ Cp, p ∈ Z+, is some fixed measurable space of parameters endowed with
a finite Borel measure ρ, such that the differential form (2.4) is exact, that is, there exists a set
of (m − 2)-differential forms Ω(m−2)[ϕ(λ), ψ(µ)] ∈ Λm−2(Rm;C), λ, µ ∈ Σ, on Rm satisfying
the condition

Z(m−1)[ϕ(λ), ψ(µ)] = dΩ(m−2)[ϕ(λ), ψ(µ)]. (2.6)

A way to realize this condition is to take some closed subspaces H∗0 and H0 ⊂ H− as solutions
to the corresponding linear differential equations under some boundary conditions,

H0 := {ψ(λ) ∈ H− : Lψ(λ) = 0, ψ(λ)|x∈Γ = 0, λ ∈ Σ},

H∗0 := {ϕ(λ) ∈ H∗− : L∗ϕ(λ) = 0, ϕ(λ)|x∈Γ = 0, λ ∈ Σ}.

The triple (2.5) allows, in a natural way, to properly determine a set of generalized eigenfuncti-
ons for the extended operators L,L∗ : H− → H−, if Γ ⊂ Rm is taken as some (n − 1)-
dimensional piece-wise smooth hypersurface imbedded into the configuration space Rm. There
can exist, evidently, situations [4] when boundary conditions are not necessary.

Let now S±(σ
(m−2)
x , σ

(m−2)
x0 ) ∈ Hm−1(M ;C) denote some two nonintersecting (m − 1)-

dimensional piece-wise smooth hypersurfaces from the homology group Hm−1(M ;C) of some
topological compactification M := R̄m, such that their boundaries are the same, that is,
∂S±(σ

(m−2)
x , σ

(m−2)
x0 ) = σ

(m−2)
x − σ(m−2)

x0 and, additionally, ∂
(
S+(σ

(m−2)
x , σ

(m−2)
x0 ) ∪ S−(σ

(m−2)
x ,

σ
(m−2)
x0 )

)
= ∅, where σ

(m−2)
x and σ

(m−2)
x0 ∈ Cm−2(Rm;C) are some (m − 2)-dimensional

homological cycles from a suitable chain complex K(M) parametrized formally by means of
two points x, x0 ∈ M and related in some way with the chosen above hypersurface Γ ⊂ M .
Then from (2.6) based on the general Stokes theorem [12, 13] one correspondingly gets easily
that ∫

S±(σ
(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(λ), ψ(µ)] =

∫
∂S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Ω(m−2)[ϕ(λ), ψ(µ)] =

=

∫
σ
(m−2)
x

Ω(m−2)[ϕ(λ), ψ(µ)]−
∫

σ
(m−2)
x0

Ω(m−2)[ϕ(λ), ψ(µ)] :=

:= Ωx(λ, µ)− Ωx0(λ, µ),

(2.7)
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S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z (m−1),ᵀ[ϕ(λ), ψ(µ)] =

∫
∂S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Ω (m−2),ᵀ[ϕ(λ), ψ(µ)] =

=

∫
σ
(m−2)
x

Ω (m−2),ᵀ[ϕ(λ), ψ(µ)]−
∫

σ
(m−2)
x0

Ω (m−2),ᵀ[ϕ(λ), ψ(µ)] :=

:= Ω~x (λ, µ)− Ω~x0(λ, µ)

for the set of functions (ϕ(λ), ψ(µ)) ∈ H∗0 ×H0, λ, µ ∈ Σ, with the operator kernels Ωx(λ, µ),
Ω~x (λ, µ) and Ωx0(λ, µ), Ω~x (λ, µ), λ, µ ∈ Σ, acting naturally in the Hilbert space L(ρ)

2 (Σ;C).
These kernels are assumed further to be nondegenerate inL(ρ)

2 (Σ;C) and satisfying the homotopy
conditions

lim
x→x0

Ωx(λ, µ) = Ωx0(λ, µ), lim
x→x0

Ω~x (λ, µ) = Ω~x0(λ, µ).

Define now actions of the following two linear Delsarte permutations operators Ω± : H → H
and Ω~± : H∗ → H∗ still upon a fixed set of functions (ϕ(λ), ψ(µ)) ∈ H∗0 ×H0, λ, µ ∈ Σ,

ψ̃(λ) = Ω±(ψ(λ)) :=

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ψ(η)Ω−1
x (η, µ)Ωx0(µ, λ),

(2.8)

ϕ̃(λ) = Ω~±(ϕ(λ)) :=

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ϕ(η)Ω~,−1
x (µ, η)Ω~x0(λ, µ).

Making use of the expressions (2.8), based on arbitrariness of the chosen set of functions
(ϕ(λ), ψ(µ)) ∈ H∗0 ×H0, λ, µ ∈ Σ, we can easily retrieve the corresponding operator expressi-
ons for the operators Ω± and Ω~± : H−→ H−, forcing the kernels Ωx0(λ, µ) and Ω~x0(λ, µ),
λ, µ ∈ Σ, to variate:

ψ̃(λ) =

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ψ(η)Ωx(η, µ)Ω−1
x (µ, λ)−

−
∫
Σ

dρ(η)

∫
Σ
dρ(µ)ψ(η)Ω−1

x (η, µ)]

∫
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(µ), ψ(λ)]) =

= ψ(λ)−
∫
Σ

dρ(η)

∫
Σ

dρ(µ)

∫
Σ

dρ(ν)

∫
Σ

dρ(ξ)ψ(η)Ω−1
x (η, ν)×
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× Ωx0(ν, ξ)]Ω−1
x0 (ξ, µ)

∫
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(µ), ψ(λ)] =

= ψ(λ)−
∫
Σ

dρ(η)

∫
Σ

dρ(µ)ψ̃(η)Ω−1
x0 (η, µ)]

∫
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(µ), ψ(λ)] =

=

(
1−

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ψ̃(η)Ω−1
x0 (η, µ)×

×
∫

S±(σ
(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(µ), (·)]

)
ψ(λ) := Ω± · ψ(λ),

ϕ̃(λ) =

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ϕ(η)Ω~,−1
x (µ, η)Ω~x (λ, µ)−

−
∫
Σ

dρ(η)

∫
Σ

dρ(µ)ϕ(η)Ω~,−1
x (µ, η)

∫
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z
(m−1),ᵀ

[ϕ(λ), ψ(µ)] =

= ϕ(λ)−
∫
Σ

dρ(η)

∫
Σ

dρ(ν)

∫
Σ

dρ(ξ)

∫
Σ

dρ(µ)ϕ(η)Ω~,−1
x (ξ, η)×

× Ω~x0
(ν, ξ)Ω~,−1

x0 (µ, ν)

∫
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z
(m−1),ᵀ

[ϕ(λ), ψ(µ)] =

=

(
1−

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ϕ̃(η)Ω~,−1
x0 (µ, η)×

×
∫

S±(σ
(m−2)
x ,σ

(m−2)
x0

)

Z
(m−1),ᵀ

[(·), ψ(µ)]

)
ϕ(λ) := Ω~± · ϕ(λ),

where, by definition,

Ω± := 1−
∫
Σ

dρ(η)

∫
Σ

dρ(µ)ψ̃(η)Ω−1
x0 (η, µ)

∫
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ(µ), (·)],

(2.9)

Ω~± := 1−
∫
Σ

dρ(η)

∫
Σ

dρ(µ)ϕ̃(η)Ω~,−1
x0

(µ, η)

∫
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z
(m−1),ᵀ

[(·), ψ(µ)]

ISSN 1562-3076. Нелiнiйнi коливання, 2004, т . 7, N◦ 4



THE GENERALIZED DE RHAM – HODGE THEORY OF DELSARTE TRANSMUTATION OPERATORS . . . 521

are multidimensional integral operators of Volterra type. It is to be noted here that the elements
(ϕ(λ), ψ(µ)) ∈ H∗0 ×H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H∗0 × H̃0, λ, µ ∈ Σ, in the expressions (2.9) of the
operators are not arbitrary but now fixed. Therefore, the operators (2.9) realize an extension of
their actions (2.8) defined on a fixed pair of functions (ϕ(λ), ψ(µ)) ∈ H∗0 ×H0, λ, µ ∈ Σ, to the
whole functional spaceH∗ ×H.

Due to the symmetry of expressions (2.8) and (2.9) with respect to two sets of functions
(ϕ(λ), ψ(µ)) ∈ H∗0 × H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H∗0 × H̃0, λ, µ ∈ Σ, it is very easy to state the
following lemma.

Lemma 2.1. Operators (2.9) are bounded and invertible expressions on H∗ × H of Volterra
type, whose inverses are given as follows:

Ω−1
± := 1−

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ψ(η)Ω̃−1
x0 (η, µ)

∫
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z(m−1)[ϕ̃(µ), (·)],

(2.10)

Ω~,−1
± := 1−

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ϕ(η)Ω~,−1
x0

(µ, η)

∫
S±(σ

(m−2)
x ,σ

(m−2)
x0

)

Z
(m−1),ᵀ

[(·), ψ̃(µ)],

where the two sets of functions (ϕ(λ), ψ(µ)) ∈ H∗0 ×H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H̃∗0 × H̃0, λ, µ ∈ Σ,
are taken arbitrary but fixed.

For the expressions (2.10) to be compatible with mappings (2.8), we must have the follo-
wing:

ψ(λ) = Ω−1
± · ψ̃(λ) =

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ψ̃(η)Ω̃−1
x (η, µ)]Ω̃x0(µ, λ),

ϕ(λ) = Ω~,−1
± · ϕ̃(λ) =

∫
Σ

dρ(η)

∫
Σ

dρ(µ)ϕ̃(η)Ω̃~,−1
x (µ, η)Ω̃~x0(λ, µ),

where for any two sets of functions (ϕ(λ), ψ(µ)) ∈ H∗0 × H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H̃∗0 × H̃0,
λ, µ ∈ Σ, the next relationship is satisfied:

(< L̃∗ϕ̃(λ), ψ̃(µ) > − < ϕ̃(λ), L̃ψ̃(µ) >)dx = d(Z̃(m−1)[ϕ̃(λ), ψ̃(µ)]),

Z̃(m−1)[ϕ̃(λ), ψ̃(µ)] = dΩ̃(m−2)[ϕ̃(λ), ψ̃(µ)],

when

L̃ := Ω±LΩ−1
± , L̃∗ := Ω~±L∗Ω~,−1

± .

Moreover, the expressions above for L : H → H and L̃∗ : H∗ → H∗ don’t depend on the
choice of the indexes below of operators Ω+ or Ω− and are in the result differential. Since
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the last condition properly determines the Delsarte transmutation operators (2.10), we need to
state the following theorem.

Theorem 2.1. The pair (L̃, L̃∗) of the operator expressions L̃ := Ω±LΩ−1
± and L̃∗ :=

:= Ω~±L∗Ω~,−1
± acting on the spaceH×H∗ is purely differential for any suitably chosen hypersur-

faces S±(σ
(m−2)
x , σ

(m−2)
x0 ) ∈ Hm−1(M ;C) from the homology group Hm−1(M ;C).

Proof. For proving the theorem it is necessary to show that the formal pseudodifferential
expressions corresponding to the operators L̃ and L̃∗ contain no integral elements. Making use
of an idea devised in [6, 8], one can formulate the following lemma.

Lemma 2.2. A pseudodifferential operator L : H → H is purely differential iff the equality(
h,

(
L
∂|α|

∂xα

)
+

f

)
=

(
h,L+

∂|α|

∂xα
f

)
(2.11)

holds for any |α| ∈ Z+ and all (h, f) ∈ H∗ × H, that is, the condition (2.11) is equivalent to
the equality L+ = L, where, as usual, the sign ”(. . .)+” means the purely differential part of the
corresponding expression inside the bracket.

Based now on this lemma and exact expressions of operators (2.9), similarly to calculations
done in [8], one shows right away that the operators L̃ and L̃∗, which depend, correspondingly,
only on both the homological cycles σ(m−2)

x , σ
(m−2)
x0 ∈ Cm−2(M ;C) from a simplicial chain

complex K(M), marked by points x, x0 ∈ Rm, and on two sets of functions (ϕ(λ), ψ(µ)) ∈
∈ H∗0 ×H0 and (ϕ̃(λ), ψ̃(µ)) ∈ H̃∗0 × H̃0, λ, µ ∈ Σ, are purely differential thereby finishing the
proof.

The differential-geometric construction suggested above can be nontrivially generalized for
the case of m ∈ Z+ commuting with each other differential operators on a Hilbert space H
giving rise to a new look at theory of Delsarte transmutation operators based on differential-
geometric and topological de Rham – Hodge techniques. These aspects will be discussed in
detail in the next chapter below.

3. The general differential-geometric and topological structure of Delsarte transmutation
operators. Let M := R̄m denote, as before, a suitably compactified metric space of dimension
m = dimM ∈ Z+ (without boundary) and define some finite set L of smooth commuting with
each other linear differential operators

Lj(x|∂) :=

n(Lj)∑
|α|=0

a(j)
α (x)∂|α|/∂xα (3.1)

with respect to x ∈ M , having Schwatrz coefficients a(j)
α ∈ S(M ; EndCN ), |α| = 0, n(Lj),

n(Lj) ∈ Z+, j = 1,m, and acting on the Hilbert space H := L2(M ;CN ). It is also assumed
that the domains D(Lj) := D(L) ⊂ H, j = 1,m, are dense inH.

Consider now a generalized external antidifferentiation operator dL : Λ(M ;H) → Λ(M ;H)
acting in the Grassmann algebra Λ(M ;H) as follows: for any β(k) ∈ Λk(M ;H), k = 0,m,

dLβ
(k) :=

m∑
j=1

dxj ∧ Lj(x; ∂)β(k) ∈ Λk+1(M ;H). (3.2)
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It is easy to see that the operation (3.2) in the case where Lj(x; ∂) := ∂/∂xj , j = 1,m, coincides
exactly with the standard external differentiation d =

∑m
j=1 dxj ∧ ∂/∂xj on the Grassmann

algebra Λ(M ;H). Making use of the operation (3.2) on Λ(M ;H), one can construct the follo-
wing generalized de Rham co-chain complex:

H → Λ0(M ;H)
dL→ Λ1(M ;H)

dL→ . . .
dL→ Λm(M ;H)

dL→ 0. (3.3)

The following important property concerning the complex (3.3) holds.

Lemma 3.1. The co-chain complex (3.3) is exact.

Proof. It follows easily from the equality dLdL = 0 that holds true due to commutativity of
operators (3.1).

Below we will follow the ideas developed in [14]. A differential form β ∈ Λ(M ;H) will be
called dL-closed if dLβ = 0, and a form γ ∈ Λ(M ;H) will be called dL-homological to zero if
there exists a form ω ∈ Λ(M ;H) on M such that γ = dLω.

Consider now the standard algebraic Hodge star-operation

? : Λk(M ;H) →Λm−k(M ;H), k = 0,m,

defined as follows [15]: if β ∈ Λk(M ;H), then the form ?β ∈ Λm−k(M ;H) is such that:
i) the (m − k)-dimensional volume | ? β| of the form ?β equals the k-dimensional volume

|β| of the form β;
ii) the m-dimensional measure β̄ᵀ ∧ ?β > 0 for a fixed orientation on M .
Define also, on the space Λ(M ;H), the following natural scalar product: for any β, γ ∈

∈ Λk(M ;H), k = 0,m,

(β, γ) :=

∫
M

β̄ᵀ ∧ ?γ. (3.4)

Using the scalar product (3.4) we can naturally construct the corresponding Hilbert space,

HΛ(M) :=
m
⊕
k=0
HkΛ(M),

well suitable for our further consideration. Notice also here that the Hodge star ?-operation
satisfies the following easily checked property: for any β, γ ∈ HkΛ(M), k = 0,m,

(β, γ) = (?β, ?γ),

that is the Hodge operation ? : HΛ(M)→ HΛ(M) is an isometry and its standard adjoint with
respect to the scalar product (3.4) satisfies the condition (?)′ = (?)−1.

Denote by d′L the formally adjoint expression to the external weak differential operation
dL : HΛ(M)→ HΛ(M) in the Hilbert space HΛ(M). Making now use of the operations d′L
and dL inHΛ(M) one can naturally define [15] the generalized Laplace – Hodge operator ∆L :
HΛ(M) → HΛ(M) as

∆L := d′LdL + dLd
′
L. (3.5)
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Take a form β ∈ HΛ(M) satisfying the equality

∆Lβ = 0.

Such a form is called harmonic. One can also verify that a harmonic form β ∈ HΛ(M) satisfies
simultaneously the following two adjoint conditions:

d′Lβ = 0, dLβ = 0, (3.6)

easily deducible from (3.5) and (3.6).
It is not hard to check that the following differential operation inHΛ(M):

d∗L := ?d′L(?)−1

also defines the usual [12, 13] external antidifferential operation inHΛ(M). The corresponding
co-chain complex dual to (3.3),

H → Λ0(M ;H)
d∗L→ Λ1(M ;H)

d∗L→ . . .
d∗L→ Λm(M ;H)

d∗L→ 0,

is evidently exact too, since the property d∗Ld
∗
L = 0 holds due to the definition (3.5).

Denote further by HkΛ(L)(M), k = 0,m, the cohomology groups of dL-closed and by

HkΛ(L∗)(M), k = 0,m, the cohomology groups of d∗L-closed differential forms, correspondi-

ngly, and by HkΛ(L∗L)(M), k = 0,m, the abelian groups of harmonic differential forms from

the Hilbert subspaces HkΛ(M), k = 0,m. Before formulating next results, define the standard
Hilbert – Schmidt rigged chain [10] of positive and negative Hilbert spaces of differential forms,

HkΛ,+(M) ⊂ HkΛ(M) ⊂ HkΛ,−(M)

and the corresponding rigged chains of Hilbert subspaces of harmonic forms,

HkΛ(L∗L),+(M) ⊂ HkΛ(L∗L)(M) ⊂ HkΛ(L∗L),−(M),

and the cohomology groups

HkΛ(L),+(M) ⊂ HkΛ(L)(M) ⊂ HkΛ(L),−(M),

(3.7)

HkΛ(L∗),+(M) ⊂ HkΛ(L∗)(M) ⊂ HkΛ(L∗),−(M),

for any k = 0,m. Assume also that the Laplace – Hodge type operator (3.5) is elliptic in
H0

Λ(M). Now by reasonings similar to those in [13, 15] one can formulate the following a li-
ttle generalized de Rham – Hodge theorem.

Theorem 3.1. The groups of harmonic forms HkΛ(L∗L),−(M), k = 0,m, are, correspondi-

ngly, isomorphic to the cohomology groups (Hk(M ;C))Σ, k = 0,m, where Hk(M ;C) is the
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k-th cohomology group of the manifold M with complex coefficients, Σ ⊂ Cp is a set of sui-
table ”spectral” parameters marking the linear space of independent d∗L-closed 0-forms from
H0

Λ(L),−(M) and, moreover, the following direct sum decompositions hold for any k = 0,m:

HkΛ(L∗L),−(M)⊕∆LHk−(M) = HkΛ,−(M) = HkΛ(L∗L),−(M)⊕ dLHk−1
Λ,−(M)⊕ d′LHk+1

Λ,−(M).

Another variant of the statement similar to the one above was formulated in [14] and reads
as the following generalized de Rham – Hodge theorem.

Theorem 3.2 [14]. The generalized cohomology groupsHkΛ(L),−(M), k = 0,m, are isomorphic,

correspondingly, to the cohomology groups (Hk(M ;C))Σ, k = 0,m.

A proof of this theorem is based on some special sequence [14] of differential Lagrange type
identities. Define the following closed subspace:

H∗0 := {ϕ(0)(λ) ∈ H0
Λ(L∗),−(M) : d∗Lϕ

(0)(λ) = 0, ϕ(0)(λ)|Γ = 0, λ ∈ Σ} (3.8)

for some smooth (m − 1)-dimensional hypersurface Γ ⊂ M and Σ ⊂ (σ(L) ∩ σ̄(L∗)) ×
×Σσ ⊂ Cp, where H0

Λ(L∗),−(M) is, as above, a suitable Hilbert – Schmidt rigged [10, 11] zero-
order cohomology group Hilbert space from the chain given by (3.7), σ(L) and σ(L∗) are,
correspondingly, mutual spectra of the sets of operators L and L∗. Thereby, the dimension
dimH∗0 = card Σ is assumed to be known.

The next lemma stated by I.V. Skrypnik holds and is fundamental for the proof.

Lemma 3.2 [14, 16 – 18]. There exists a set of differential (k+1)-formsZ(k+1)[ϕ(0)(λ), dLψ
(k)]∈

∈ Λk+1(M ;H), k = 0,m, and a set of k-forms Z(k)[ϕ(0)(λ), ψ(k)] ∈ Λk(M ;H), k = 0,m,
parametrized by a set Σ 3 λ and semilinear in (ϕ(0)(λ), ψ(k)) ∈ H∗0 ×HkΛ,−(M), such that

Z(k+1)[ϕ(0)(λ), dLψ
(k)] = dZ(k)[ϕ(0)(λ), ψ(k)]

for all k = 0,m and λ ∈ Σ.

Proof. A proof is based on the following generalized Lagrange type identity that holds for
any pair (ϕ(0)(λ), ψ(k)) ∈ H∗0 ×HkΛ,−(M):

0 = < d∗Lϕ
(0)(λ), ?(ψ(k) ∧ γ) > :=

:= < ?d′L(?)−1ϕ(0)(λ), ?(ψ(k) ∧ γ̄) > =

= < d′L(?)−1ϕ(0)(λ), ψ(k) ∧ γ̄ > = < (?)−1ϕ(0)(λ), dLψ
(k) ∧ γ̄ > +

+ Z(k+1)[ϕ(0)(λ), dLψ
(k)] ∧ γ̄ =

= < (?)−1ϕ(0)(λ), dLψ
(k) ∧ γ̄ > + dZ(k)[ϕ(0)(λ), ψ(k)] ∧ γ̄, (3.9)

where Z(k+1)[ϕ(0)(λ), dLψ
(k)] ∈ Λk+1(M ;C), k = 0,m, and Z(k)[ϕ(0)(λ), ψ(k)] ∈ Λk−1(M ;C),

k = 0,m, are some semilinear differential forms parametrized by a parameter λ ∈ Σ, and
γ̄ ∈ Λm−k−1(M ;C) is an arbitrary constant (m−k−1)-form. Thereby, the semilinear differential
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k-forms Z(k+1)[ϕ(0)(λ), dLψ
(k)] ∈ Λk+1(M ;C), k = 0,m, and the k-forms Z(k)[ϕ(0)(λ), ψ(k)] ∈

∈ Λk(M ;C), k = 0,m, λ ∈ Σ, constructed above exactly constitute those searched for in the
lemma.

Based now on Lemma 3.2 one can construct the cohomology group isomorphism claimed
in Theorem 3.1 formulated above. Namely, following [14, 16, 19], let us take some simplicial
[13] partition K(M) of the manifold M and introduce linear mappings B(k)

λ : HkΛ,−(M) →
→ Ck(M ;C)), k = 0,m, λ ∈ Σ, where Ck(M ;C), k = 0,m, are, as before, free abelian groups
over the field C generated, correspondingly, by all k-chains of simplexes S(k) ∈ Ck(M ;C),
k = 0,m, from the simplicial complex K(M) as follows:

B
(k)
λ (ψ(k)) :=

∑
S(k)∈Ck(M ;C))

S(k)

∫
S(k)

Z(k)
[
ϕ(0)(λ), ψ(k)

]
(3.10)

with ψ(k) ∈ HkΛ(M), k = 0,m. We have the following theorem.

Theorem 3. 3 [14, 16 – 18]. The set of operations (3.10) parametrized by λ ∈ Σ realizes the
cohomology groups isomorphism formulated in the Theorem 3.2.

Proof. A proof of this theorem can be obtained by passing in (3.10) to the correspon-
ding cohomology, and homology groups of M, HkΛ(L),−(M) and Hk(M ;C), for every k = 0,m.

By taking an element ψ(k) := ψ(k)(µ) ∈ HkΛ(L),−(M), k = 0,m, and solving the equation

dLψ
(k)(µ) = 0, where µ ∈ Σk is some set of the related "spectral"parameters marking elements

of the subspaceHkΛ(L),−(M), one easily finds from (3.10) and the identity (3.9) that

dZ(k)[ϕ(0)(λ), ψ(k)(µ)] = 0

for all pairs (λ, µ) ∈ Σ×Σk, k = 0,m. This, in particular, means due to the Poincare lemma [12,
13] that there exist differential (k − 1)-forms Ω(k−1)[ϕ(0)(λ), ψ(µ)] ∈ Λk−1(M ;C), k = 0,m,
such that

Z(k)[ϕ(0)(λ), ψ(µ)] = dΩ(k−1)[ϕ(0)(λ), ψ(µ)]

for all pairs (ϕ(0)(λ), ψ(k)(µ)) ∈ H∗0×HkΛ(L),−(M) parametrized by (λ, µ) ∈ Σ×Σk, k = 0,m.
As a result of passing in the right-hand side of (3.10) to the homology groups Hk(M ;C), k =
= 0,m, one gets, due to the standard Stokes theorem [12], that the mappings

B̂
(k)
λ : HkΛ(L),−(M) � Hk(M ;C)

are isomorphisms for every λ ∈ Σ. Making further use of the Poincare duality [13] between
the homology groups Hk(M ;C), k = 0,m, and the cohomology groups Hk(M ;C), k = 0,m,
correspondingly, one finally obtains the statement claimed in Theorem 3. 3, that is,

HkΛ(L),−(M) ' (Hk(M ;C))Σ.

Assume now that M := Tr × R̄s, dimM = s + r ∈ Z+, and H := L2(Tr;L2(Rs;CN )),

where Tr :=
r
×
j=1

Tj , Tj := [0, Tj) ⊂ R+, j = 1, r, and put

dL :=

2∑
j=1

dtj ∧ Lj , Lj(t;x|∂) := ∂/∂tj − Lj(t;x|∂),
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where

Lj(t;x|∂) =

n(Lj)∑
|α|=0

a(j)
α (t;x)∂|α|/∂xα, j = 1, r,

are differential operations parametrically dependent on t ∈ Tr and defined on dense subspaces
D(Lj) = D(L) ⊂ L2(Rs;CN ), j = 1, r. It is also assumed that the operators Lj : H → H,
j = 1, r, commute with each other.

Take now a fixed pair (ϕ(0)(λ), ψ(0)(µ)dx) ∈ H∗0 × HsΛ(L),−(M), parametrized by elements
(λ, µ) ∈ Σ×Σ, such that Theorem 3. 3 and the Stokes theorem [12, 13] would imply the equality

B
(s)
λ (ψ(0)(µ)dx) = S

(s)
t;x

∫
∂S

(s)
t;x

Ω(s−1)[ϕ(0)(λ), ψ(0)(µ)dx], (3.11)

where S
(s)
t;x ∈ Hs(M ;C) is some arbitrary but fixed element parametrized by an arbitrarily

chosen point (t;x) ∈ M ∩ S(s)
t;x . Consider the next integral expressions

Ω(t;x)(λ, µ) :=

∫
∂S

(s)
t;x

Ω(s−1)[ϕ(0)(λ), ψ(0)(µ)dx],

Ω(t0;x0)(λ, µ) :=

∫
∂S

(s)
t0;x0

Ω(s−1)[ϕ(0)(λ), ψ(0)(µ)dx],

where the point (t0;x0) ∈ M ∩ S(s)
t0;x0

is taken fixed, λ, µ ∈ Σ, and interpret them as the
corresponding kernels [10] of the integral invertible operators of Hilbert – Schmidt type, Ω(t;x),

Ω(t0;x0) : L
(ρ)
2 (Σ;C) → L

(ρ)
2 (Σ;C), where ρ is some Borel measure on the parameter sets Σ. It

is also assumed above that the boundaries ∂S(s)
t;x := σ

(s−1)
t;x and ∂S(s)

t0;x0
:= σ

(s−1)
t0;x0

are taken to
be homological to each other as (t;x) → (t0;x0) ∈ M . Define now the expressions

Ω± : ψ(0)(η) → ψ̃(0)(η)

for ψ(0)(η)dx ∈ HsΛ(L),−(M) and some ψ̃(0)(η)dx ∈ HsΛ,−(M), where, by definition,

ψ̃(0)(η) := ψ(0)(η) · Ω−1
(t;x)Ω(t0;x0) =

=

∫
Σ

dρ(µ)

∫
Σ

dρ(ξ)ψ(0)(µ)Ω−1
(t;x)(µ, ξ)Ω(t0;x0)(ξ, η) (3.12)

for any η ∈ Σ, which is motivated by the expression (3.11). Suppose now that the elements
(3.12) are the ones that are related to some another Delsarte transformed cohomology group
Hs

Λ(L̃),−(M), that is, we have the condition

dL̃ψ̃
(0)(η)dx = 0 (3.13)
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for ψ̃(0)(η)dx ∈ Hs
Λ(L̃),−(M), η ∈ Σ, and some new external antidifferentiation operation in

HΛ,−(M),

dL̃ :=
m∑
j=1

dxj ∧ L̃j(t;x|∂), L̃j(t;x|∂) := ∂/∂tj − L̃j(t;x|∂),

where the expressions

L̃j(t;x|∂) =

n(Lj)∑
|α|=0

ã(j)
α (t;x)∂|α|/∂xα, j = 1, r,

are differential operations in L2(Rs;CN ) parametrically dependent on t ∈ Tr. Suppose now
that

L̃j := Ω±LjΩ
−1
± (3.14)

for each j = 1, r, where Ω± : H →H are the corresponding Delsarte transmutation operators
generated by some elements S±(σ

(s−1)
x;t , σ

(s−1)
x0;t0

) ∈ Cs(M ;C) related naturally with the boundari-

es ∂S(s)
x;t = σ

(s−1)
x;t and ∂S

(s)
x0;t0

= σ
(s−1)
x0;t0

homological to each other. Since all of the operators
Lj : H →H, j = 1, r, commute, the same property also holds for the transformed operators
(3.14), that is, [L̃j , L̃k] = 0, k, j = 0,m. The latter, due to (3.14), is evidently equivalent to the
following general expression:

dL̃ = Ω±dLΩ
−1
± . (3.15)

For the condition (3.15) and (3.13) to be satisfied, let us consider the expressions

B̃
(s)
λ (ψ̃(0)(η)dx) = S

(s)
t;x Ω̃(t;x)(λ, η),

corresponding to (3.11) and related to the corresponding external differentiation (3.15), where
S

(s)
t;x ∈ Cs(M ;C) and (λ, η) ∈ Σ× Σ. Assume further that there are also mappings

Ω~± : ϕ(0)(λ) → ϕ̃(0)(λ),

where Ω~± : H∗→ H∗ are some operators associated (but not necessary adjoint!) to the corres-
ponding Delsarte transmutation operators Ω± : H → H and satisfying the standard relati-
onships L̃∗j := Ω~±L∗jΩ

~,−1
± , j = 1, r. The proper Delsarte type operators Ω± : H0

Λ(L),−(M) →
→ H0

Λ(L),−(M) are related to two different realizations of the action (3.12) if the necessary
conditions

dLψ̃
(0)(η)dx = 0, d∗Lϕ̃

(0)(λ) = 0, (3.16)

are satisfied and mean, evidently, that the embeddings ϕ̃(0)(λ) ∈ H0
Λ(L∗),−(M), λ ∈ Σ, and

ψ̃(0)(η)dx ∈ HsΛ(L),−(M), η ∈ Σ, hold. Now we need to formulate a lemma that is important
for the conditions (3.16) to hold.
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Lemma 3.3. The invariance property

Z̃(s) = Ω(t0;x0)Ω
−1
(t;x)Z

(s)Ω−1
(t;x)Ω(t0;x0) (3.17)

holds for any (t;x) and (t0;x0) ∈ M .

As a result of (3.17) and the symmetry invariance between the cohomology spaces
H0

Λ(L),−(M) andH0
Λ(L),−(M), one obtains the following pairs of related mappings:

ψ(0) = ψ̃(0)Ω̃−1
(t;x)Ω̃(t0;x0), ϕ

(0) = ϕ̃(0)Ω̃~,−1
(t;x) Ω̃~(t0;x0),

(3.18)

ψ̃(0) = ψ(0)Ω−1
(t;x)Ω(t0;x0), ϕ̃

(0) = ϕ(0)Ω~,−1
(t;x) Ω~(t0;x0),

where the integral operator kernels in L(ρ)
2 (Σ;C)⊗ L(ρ)

2 (Σ;C) are defined by

Ω̃(t;x)(λ, µ) :=

∫
σ
(s)
t;x

Ω̃(s−2)[ϕ̃(0)(λ), ψ̃(0)(µ)dx],

Ω̃~(t;x)(λ, µ) :=

∫
σ
(s)
t;x

_

Ω̃
(s−2),ᵀ

[ϕ̃(0)(λ), ψ̃(0)(µ)dx].

for all (λ, µ) ∈ Σ×Σ. This allows to find proper Delsarte transmutation operators ensuring the
pure differential nature of the transformed expressions (3.14).

Note also that here, due to (3.17) and (3.18), we have

Ω(t0;x0)Ω
−1
(t;x)Ω(t0;x0) + Ω̃(t0;x0)Ω

−1
(t;x)Ω(t0;x0) = 0 (3.19)

for any (t0;x0) and (t;x) ∈ M , which means that Ω̃(t0;x0) = −Ω(t0;x0).
One can now define, similarly to (3.8), three additional subspaces

H0 := {ψ(0)(µ) ∈ H0
Λ(L),−(M) : dLψ

(0)(µ) = 0, ψ(0)(µ)|Γ = 0, µ ∈ Σ},

H̃0 := {ψ̃(0)(µ) ∈ H0
Λ(L̃),−(M) : d

L̃
ψ̃(0)(µ) = 0, ψ̃(0)(µ)|Γ̃ = 0, µ ∈ Σ}, (3.20)

H̃∗0 := {ϕ̃(0)(η) ∈ H0
Λ(L∗),−(M) : d∗

L̃
ψ̃(0)(η) = 0, ϕ̃(0)(η)|Γ̃ = 0, η ∈ Σ},

that are closed and dense inH0
Λ,−(M), where Γ and Γ̃ ⊂ M are some smooth (s−1)-dimensional

hypersurfaces. Construct the actions

Ω± : ψ(0) → ψ̃(0) := ψ(0)Ω−1
(t;x)Ω(t;x), Ω~± : ϕ(0) → ϕ̃(0) := ϕ(0)Ω~,−1

(t;x) Ω~(t0;x0) (3.21)

on arbitrary but fixed pairs of elements (ϕ(0)(λ), ψ(0(µ)) ∈ H∗0 × H0, parametrized by the set
Σ, where, by the definition, it is necessary that all obtained pairs (ϕ̃(0)(λ), ψ̃(0)(µ)dx), λ, µ ∈ Σ,
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would belong toH0
Λ(L∗),−(M)×HsΛ(L),−(M). Note also that the related operator property (3.19)

can be compactly written as follows:

Ω̃(t;x) = Ω̃(t0;x0)Ω
−1
(t;x)Ω(t0;x0) = −Ω(t0;x0)Ω

−1
(t;x)Ω(t0;x0).

Construct now from the expressions (3.21) the following operator kernels in the Hilbert space
L

(ρ)
2 (Σ;C)⊗ L(ρ)

2 (Σ;C):

Ω(t;x)(λ, µ)− Ω(t0;x0)(λ, µ) =

∫
∂S

(s)
t;x

Ω(s−1)[ϕ(0)(λ), ψ(0)(µ)dx]−

−
∫
∂S

(s)
t0;x0

Ω(s−1)[ϕ(0)(λ), ψ(0)(µ)dx] =

=

∫
S
(s)
± (σ

(s−1)
t;x ,σ

(s−1)
t0;x0

)

dΩ(s−1)[ϕ(0)(λ), ψ(0)(µ)dx] =

=

∫
S
(s)
± (σ

(s−1)
t;x ,σ

(s−1)
t0;x0

)

Z(s)[ϕ(0)(λ), ψ(0)(µ)dx],

and, similarly,

Ω~(t;x)(λ, µ)− Ω~(t0;x0)(λ, µ) =

∫
∂S

(s)
t;x

Ω̄(s−1),ᵀ[ϕ(0)(λ), ψ(0)(µ)dx]−

−
∫

∂S
(s)
t0;x0

Ω̄(s−1),ᵀ[ϕ(0)(λ), ψ(0)(µ)dx] =

=

∫
S
(s)
± (σ

(s−1)
t;x ,σ

(s−1)
t0;x0

)

dΩ̄(s−1),ᵀ[ϕ(0)(λ), ψ(0)(µ)dx] =

=

∫
S
(s)
± (σ

(s−1)
t;x ,σ

(s−1)
t0;x0

)

Z̄(s−1),ᵀ[ϕ(0)(λ), ψ(0)(µ)dx], (3.22)

where λ, µ ∈ Σ, and, by the definition, the s-dimensional surfaces S(s)
+ (σ

(s−1)
t;x , σ

(s−1)
t0;x0

)) and

S
(s)
− (σ

(s−1)
t;x , σ

(s−1)
t0;x0

) ⊂ M are spanned smoothly without self-intersection between two homologi-

cal cycles σ(s−1)
t;x = ∂S

(s)
t;x and σ

(s−1)
t0;x0

:= ∂S
(s)
t0;x0

∈ Cs−1(M ;C) in such a way that the boundary

∂(S
(s)
+ (σ

(s−1)
t;x , σ

(s−1)
t0;x0

)∪S(s)
− (σ

(s−1)
t;x , σ

(s−1)
t0;x0

)) =∅. Since the integral operator expressions Ω(t0;x0),

Ω~(t0;x0) : L
(ρ)
2 (Σ;C) → L

(ρ)
2 (Σ;C) are, evidently, constant and assumed to be invertible, for a

fixed point (t0;x0) ∈ M in order to extend the actions given by (3.21) to the whole Hilbert
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spaceH×H∗, one can apply the classical approach of variation of constants, making use of the
expressions (3.22). As a result, we easily obtain the following Delsarte transmutation integral
operator expressions for fixed pairs (ϕ(0)(ξ), ψ(0)(η)) ∈ H∗0 × H0 and (ϕ̃(0)(λ), ψ̃(0)(µ)) ∈
∈ H̃∗0 × H̃0, λ, µ ∈ Σ:

Ω± = 1−
∫

Σ×Σ

dρ(ξ)dρ(η)ψ̃(x; ξ)Ω−1
(t0;x0)(ξ, η)

∫
S
(s)
± (σ

(s−1)
t;x ,σ

(s−1)
t0;x0

)

Z(s)[ϕ(0)(η), ·],

(3.23)

Ω~± = 1−
∫

Σ×Σ

dρ(ξ)dρ(η)ϕ̃(x; η)Ω~,−1
(t0;x0)(ξ, η)

∫
S
(s)
± (σ

(s−1)
t;x ,σ

(s−1)
t0;x0

)

Z̄(s),ᵀ[·, ψ(0)(ξ)dx],

which are bounded invertible integral operators of Volterra type on the whole space H ×
×H∗. Applying the same arguments as in Section 1, one can also show that the correspondingly
transformed sets of operators L̃j := Ω±LjΩ

−1
± , j = 1, r, and L̃∗k := Ω~±L∗kΩ

~,−1
± , k = 1, r, are

also purely differential. Thereby, one can formulate the following final theorem.

Theorem 3.4. The expressions (3.23) are bounded invertible Delsarte transmutation integral
operators of Volterra type ontoH×H∗, transforming, correspondingly, given commuting sets of
operators Lj , j = 1, r, and their formally adjoint L∗k, k = 1, r, into the pure differential sets of
operators L̃j := Ω±LjΩ

−1
± , j = 1, r, and L̃∗k := Ω~±L∗kΩ

~,−1
± , k = 1, r. Moreover, the suitably

constructed closed subspaces H0 ⊂ H and H̃0 ⊂ H such that Ω : H0 � H̃0, strongly depend
on the topological structure of the generalized cohomology groupsH0

Λ(L),−(M) andH0
Λ(L̃),−(M)

that are parametrized by elements S(s)
± (σ

(s−1)
t;x , σ

(s−1)
t0;x0

) ∈ Cs(M ;C).

Suppose now that all of the differential operators Lj := Lj(x|∂), j = 1, r, considered above
don’t depend on the variable t ∈ Tr ⊂ Rr+. Then, evidently, one can take

H0 := {ψ(0)
µ (ξ) ∈ L2,−(Rs;CN ) : Ljψ

(0)
µ (ξ) = µjψ

(0)
µ (ξ), j = 1, r,

ψ(0)
µ (ξ)|Γ = 0, µ := (µ1, ..., µr) ∈ (σ(L̃) ∩ σ̄(L∗)), ξ ∈ Σσ},

H̃0 := {ψ̃(0)
µ (ξ) ∈ L2,−(Rs;CN ) : L̃jψ̃

(0)
µ (ξ) = µjψ̃

(0)
µ (ξ), j = 1, r,

ψ̃(0)
µ (ξ)|Γ̃ = 0, µ := (µ1, ..., µr) ∈ σ(L̃) ∩ σ̄(L∗), ξ ∈ Σσ},

H∗0 := {ϕ(0)
λ (η) ∈ L2,−(Rs;CN ) : Ljϕ

(0)
λ (η) = λ̄jϕ

(0)
λ (η), j = 1, r,

ϕ
(0)
λ (η)|Γ = 0, λ := (λ1, ..., λr) ∈ σ(L̃) ∩ σ̄(L∗), η ∈ Σσ},

H̃∗0 := {ϕ̃(0)
λ (η) ∈ L2,−(Rs;CN ) : L̃jϕ̃

(0)
λ (η) = λ̄jϕ̃

(0)
λ (η), j = 1, r,

ϕ̃
(0)
λ (η)|Γ̃ = 0, λ := (λ1, . . . , λr) ∈ σ(L̃) ∩ σ̄(L∗), η ∈ Σσ}
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and construct the corresponding Delsarte transmutation operators

Ω± = 1−
∫

σ(L̃)∩σ̄(L∗)

dρσ(λ)

∫
Σσ×Σσ

dρΣσ(ξ)dρΣσ(η)×

×
∫
dx

S
(s)
± (σ

(s−1)
x ,σ

(s−1)
x0

)

ψ̃
(0)
λ (ξ)Ω−1

(x0)(λ; ξ, η)ϕ̄
(0),ᵀ
λ (η)(·)

and

Ω~± = 1−
∫

σ(L̃)∩σ̄(L∗)

dρσ(λ)

∫
Σσ×Σσ

dρΣσ(ξ)dρΣσ(η)×

×
∫
dx

S
(s)
± (σ

(s−1)
x ,σ

(s−1)
x0

)

ϕ̃
(0)
λ (ξ)Ω̄ᵀ,−1

(x0) (λ; ξ, η)× ψ̄(0),ᵀ
λ (η)(·), (3.24)

acting already on the Hilbert space L2(Rs;CN ), where, for any (λ; ξ, η) ∈ (σ(L̃)∩ σ̄(L∗))×Σ2
σ,

kernels

Ω(x0)(λ; ξ, η) :=

∫
σ
(s−1)
x0

Ω(s−1)[ϕ
(0)
λ (ξ), ψ

(0)
λ (η)dx],

Ω~(x0)(λ; ξ, η) :=

∫
σ
(s−1)
x0

Ω̄(s−1),ᵀ[ϕ
(0)
λ (ξ), ψ

(0)
λ (η)dx]

belong to Lρ2(⊀σ;C) × Lρ2(⊀σ;C) for every λ ∈ σ(L̃) ∩ σ̄(L∗) considered as a parameter.
Moreover, since ∂Ω±/∂tj = 0, j = 1, r, one easily gets a set of differential expressions,
since

R(L̃) := {L̃j(x|∂) := Ω±Lj(x|∂)Ω−1
± : j = 1, r},

which is a ring of differential operators that commute with each other and act in L2(Rs;CN ),
generated by the corresponding initial ringR(L).

Thus we have described above the ring R(L̃) of multidimensional differential operators
that commute with each other, which is generated by the initial ring R(L). This problem in the
one-dimensional case was treated in detail before and effectively solved in [20, 21] by means
of algebraic-geometric methods and inverse spectral transform techniques. Our approach gives
another approach to this problem in multidimension and is of special interest due to its clear
and explicit dependence on dimension of the differential operators.

4. A special case: soliton theory aspect. 4.1. Consider our generalized de Rham – Hodge
theory of a commuting set L of differential operators on a Hilbert space H := L2(T2;H),
H := L2(Rs;CN ), for the special case when M := T2 × R̄s and

L := {Lj := ∂/∂tj − Lj(t;x|∂) : t ∈ T2 := T1 × T2, tj ∈ Tj := [0, Tj) ⊂ R+, j = 1, 2},
(4.1)
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where, by definition,

Lj(t;x|∂) :=

n(Lj)∑
|α|=0

a(j)
α (t;x)∂|α|/∂xα,

with the coefficients a(j)
α ∈ C1(T2;S(Rs; EndCN )), α ∈ Zs+, |α| = 0, n(Lj), j = 1, 2. The

corresponding scalar product is given now by

(ϕ,ψ) :=

∫
T2

dt

∫
Rs

dx < ϕ,ψ >

for any pair (ϕ,ψ) ∈ H∗ ×H. The corresponding external differential is

dL :=
2∑
j=1

dtj ∧ Lj +
s∑
i=1

dxj ∧ cj1,

where one assumes that for all t ∈ T2 and x ∈ Rs the commutator

[L1,L2] = 0.

This means, obviously, that the corresponding generalized de Rham – Hodge co-chain complexes

H → Λ0(M ;H)
dL→ Λ1(M ;H)

dL→ ...
dL→ Λm(M ;H)

dL→ 0,

H → Λ0(M ;H)
d∗L→ Λ1(M ;H)

d∗L→ ...
d∗L→ Λm(M ;H)

d∗L→ 0

are exact. Define now, due to (3.8) and (3.20), the closed subspaces H~0 and H0 ⊂ H− as
follows:

H0 := {ψ(0)(λ; η) ∈ H0
Λ(L),−(M) : ∂ψ(0)(λ; η)/∂tj =

= Lj(t;x|∂)ψ(0)(λ; η), j = 1, 2,

ψ(0)(λ; η)|t=t0 = ψλ(η) ∈ H−, ψ(0)(λ; η)|Γ = 0,

(λ; η) ∈ Σ ⊂ (σ(L) ∩ σ̄(L∗))× Σσ},

(4.2)

H∗0 := {ϕ(0)(λ; η) ∈ H0
Λ(L),−(M) : −∂ϕ(0)(λ; η)/∂tj =

= Lj(t;x|∂)ϕ(0)(λ; η), j = 1, 2,

ϕ(0)(λ; η)|t=t0 = ϕλ(η) ∈ H−, ϕ(0)(λ; η)|Γ = 0,

(λ; η) ∈ Σ ⊂ (σ(L) ∩ σ̄(L∗))× Σσ}
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for some hypersurface Γ ⊂ M and a "spectral"degeneration set Σσ ∈ Cp−1. By means of
subspaces (4.2) one can now proceed to the construction of Delsarte transmutation operators
Ω± : H → H in the general form like (3.24) with the kernels Ω(t0;x0)(λ; ξ, η) ∈ Lρ2(Σσ;C) ⊗
⊗Lρ2(Σσ;C) for every λ ∈ σ(L) ∩ σ̄(L∗). The are defined by

Ω(t0;x0)(λ; ξ, η) :=

∫
σ
(s−1)
t0;x0

Ω(s−1)[ϕ(0)(λ; ξ), ψ(0)(λ; η)dx],

Ω~(t0;x0)(λ; ξ, η) :=

∫
σ
(s−1)
t0;x0

Ω̄(s−1),ᵀ[ϕ(0)(λ; ξ), ψ(0)(λ; η)dx]

for all (λ; ξ, η) ∈ (σ(L) ∩ σ̄(L∗)) × Σ2
σ. As a result one gets for ρ := ρσ � ρΣ2

σ
the integral

expressions

Ω± = 1−
∫

σ(L̃)∩σ̄(L∗)

dρσ(λ)

∫
Σσ×Σσ

dρΣσ(ξ)dρΣσ(η)×

×
∫
dx

S
(s)
± (σ

(s−1)
t0;x

,σ
(s−1)
t0;x0

)

ψ̃(0)(λ; ξ)Ω−1
(t0;x0)(λ; ξ, η)ϕ̄(0),ᵀ(λ; η)(·),

(4.3)

Ω~± = 1−
∫

σ(L̃)∩σ̄(L∗)

dρσ(λ)

∫
Σσ×Σσ

dρΣσ(ξ)dρΣσ(η)×

×
∫
dx

S
(s)
± (σ

(s−1)
t0;x

,σ
(s−1)
t0;x0

)

ϕ̃
(0)
λ (ξ)Ω̄ᵀ,−1

(t0;x0)(λ; ξ, η)× ψ̄(0),ᵀ(λ; η)(·),

where S
(s)
+ (σ

(s−1)
t0;x , σ

(s−1)
t0;x0

) ∈ Cs(M ;C) is some smooth s-dimensional surface between two

homological cycles σ(s−1)
t0;x and σ

(s−1)
t0;x0

∈ K(M) and S
(s)
− (σ

(s−1)
t0;x , σ

(s−1)
t0;x0

) ∈ Cs(M ;C) is its

smooth counterpart such that ∂(S
(s)
+ (σ

(s−1)
t0;x , σ

(s−1)
t0;x0

) ∪ S(s)
− (σ

(s−1)
t0;x , σ

(s−1)
t0;x0

)) = ∅. Following the
results of Section 3 one can construct from (4.3) the corresponding factorized Fredholm opera-
tors Ω and Ω~ : H → H, H = L2(R;CN ) as follows:

Ω := Ω−1
+ Ω−, Ω~:= Ω~−1

+ Ω~−.

It is also important to notice here that the kernels K̂±(Ω) and K̂±(Ω~) ∈ H− ⊗ H− satisfy
exactly the generalized [10] determining equations in the following tensor form:

(L̃ ⊗ 1)K̂±(Ω)(1⊗L∗)K̂±(Ω),

(L̃∗ ⊗ 1)K̂±(Ω~) = (1⊗L)K̂±(Ω~).
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Since, evidently, supp K̂+(Ω)∩ supp K̂−(Ω) = ∅ and supp K̂+(Ω~)∪ supp K̂−(Ω~) = ∅, one
deduces from the results in [22, 23] that the corresponding Gelfand – Levitan – Marchenko type
equations

K̂+(Ω) + Φ̂(Ω)+K̂+(Ω) ∗ Φ̂(Ω)=K̂−(Ω),

K̂+(Ω~) + Φ̂(Ω~)+K̂+(Ω~) ∗ Φ̂(Ω~)=K̂−(Ω~),

where, by definition, Ω : = 1 + Φ̂(Ω), Ω~ := 1 + Φ̂(Ω~), can be solved [22] in the space
B±∞(H) for the kernels K̂±(Ω) and K̂±(Ω~) ∈ H−⊗H− that depend parametrically on t ∈ T2.
Thereby, the Delsarte transformed differential operators L̃j : H → H, j = 1, 2, will, evidently,
commute with each other too, satisfying the following operator relations:

L̃j = ∂/∂tj −Ω±LjΩ
−1
± − (∂Ω±/∂tj)Ω

−1
± := ∂/∂tj − L̃j , (4.4)

where the operator expressions for L̃j : H → H, j = 1, 2, are purely differential. The latter
property makes it possible to construct some nonlinear, in general, partial differential equati-
ons for the coefficients of differential operators (4.4) and solve them by means of standard
procedures either using the inverse spectral transform [3, 20] or the Darboux – Backlund [5]
transformation, producing a wide class of exact soliton like solutions. Another not simple and
very interesting aspect of the approach suggested in this paper concerns regular algorithms of
treating differential operator expressions depending on a "spectral"parameter λ ∈ C, which
was just very recently discussed in [23].

5. Conclusion. Consider a differential operator L : H → H in the form (2.1) assume that
its spectrum is known. By means of the general form of the Delsarte transmutation operators
(3.23) one can construct a more complicated transformed differential operator L̃ := Ω±LΩ−1

±
on H with a different spectrum. These Delsarte transformed operators can be effectively used
for both studying spectral properties of differential operators [3, 4, 10, 11, 24] and constructing
a wide class of nontrivial differential operators with a prescribed spectrum as it was done [3, 20]
in one dimension.

As was shown before in [6, 24] for the two-dimensional Dirac and three-dimensional per-
turbed Laplace operators, the kernels of the corresponding Delsarte transmutation operator
satisfy some special linear integral equations of Fredholm type, called the Gelfand – Levitan –
Marchenko equations, which are very important for solving the corresponding inverse spectral
problem and have many applications in modern mathematical physics. Such equations can be
naturally constructed for our multidimensional case too, thereby making it possible to pose the
corresponding inverse spectral problem for describing a wide class of multidimensional opera-
tors with a priori given spectral characteristics. The mentioned problem appears (see [10]) to be
strongly related to that of a spectral representation of kernels commuting in some sense with a
given pair of differential operators. Also, similar to [6, 25], one can use such results for studying
the so-called completely integrable nonlinear evolution equations, especially for constructing
by means of special Darboux type transformations [5, 7] their exact solutions like solitons and
many others. Such an activity is now in progress and the corresponding results will be published
later.
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