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The existence, uniqueness and asymptotic stability is shown for the integrodifferential system of the
viscoelasticity. Moteover a domain of dependence theorem is proved by using the properties of the free
energy related with such a system. This theorem provides a finite signal speed and then the hyperbolicity
of the integrodifferential system.
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1. Introduction. It was shown in [1] that the thermodynamic restrictions imposed on the
constitutive equation of the linear viscoelasticity:

T(z,t) = Go(z)Vulz, ) + /G'(m, 8)Vu(z,t — s)ds (1)
0

imply existence and uniqueness for the evolutive problem of the linear viscoelasticity subject
to boundary Dirichlet conditions. It was also demonstrated that the null solution is attractive
under the same restrictions.

Our aim is to present a domain of dependence inequality for solutions to the dynamic
equations of linear viscoelasticity. Some results of this topic have been diven in [2, 3], but a
general result for viscoelastic motions has not yet proved, because in those papers the maximum
propagation speed of disturbances depends on time. In the present paper a different method of
approach is adopted, in fact our result relies the properties of Helmholtz free energy potential.
These potentials for materials with memory have been deeply studied in [4] and a main result
is an explicit expression of the maximal Helmholtz free energy only under the assumption
that the constitutive equation (1) obeys to the requirements following by the Second Law of
thermodynamics. For this reason, the maximal free energy is used here to prove the domain of
dependence inequality, which provides the minimal speed with which energy propagates in Q.

* Research performed under the auspices of G.N.F.M.-C.N.R. and partially supported by Italian M.U.R.S.T.
through the 40% project “Mathematical methods in mechanics of continuous systems”.
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Other free energies are also exhibited, but under additional assumptions on the constitutive
equation (1).

Our method can be extended to any free energy potential, and used to study non-linear
problems in viscoelasticity. Our results show that the hyperbolicity of the dynamic equations
of linear viscoelasticity is closely connected with the existence of a free energy.

In this paper we consider the evolutive problem subject to boundary conditions of elastic
type and the existence, uniqueness and stability theorems presented in the first part extend the
corresponding results of [1]. They are obtained by using the Fourier time-transform method,
which implies an information about the solution of the evolution problem in the space time-
domain 2 X R from time-harmonic solutions with fixed frequency.

2. Formulation of the problem. The dynamical problem for a continuous linear
viscoelastic solid in a smooth bounded domain Q C R3, with elastic boundary conditions, is

i(z,t) = VT (z,t) + f(z,t), x€Q, t>0,
T(o,t)n(o) + a(o)u(o,t) =0, o€ I, t>0, (2)
u(z, 1) = u0(z, —7), zeQ, 7<0,

where u denotes the displacement vector, T the stress tensor, f the body force, u'(z,s) =
= u(x, t — s) the history of the displacement vector, u® the initial history, n the outward
normal on 99 and the scalar function a € L2(9Q)N L*°(9N) satisfies

a(o) > a, >0 ae. in 0Q. (3)

The stress-strain relation of the linear viscoelasticity (1) is characterized by the instanta-
neous elastic modulus G and the Boltzmann G’. We assume that Gy and G’ are symmetric
fourth-order tensors*, G € C'(2) and

G' e L} RY; Q)N LERY; Q). (4)

The relaxation function
t
G(z,t) = Go(z) + /G’(z,s)ds
0
is continuous in  x R*, differentiable in © x R** and is well-defined along with

Guolz) = Jim G(z,1) = Go(2) +/G'(z,s)ds.
0

The body is a solid, so we require that C is uniformly positive definite in €, i.e.

0 < oo || Al < igg AGo(z)A, A € Sym\{0}. (5)

*Throughout this paper Lin is the set of all second-order tensor, Sym the subset of the symmetric second;
order tensor and sym denotes the symmetric part of a tensor. A fourth-order tensor G is symmetric if GA = GA
and A-GB = B-GA A, B € Lin.
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Let f € L?(R), we denote by f the Fourier transform: f(w) = [exp(—iws)f(s)ds. For
R

causal functions, i. e. functions defined on R*, identified with functions on R which vanish on
(=00, 0), f = f. — ifs, where f. and f; are the half range Fourier sine and cosine transforms:

/f ) coswsds, fs(w /f ) sinwsds.

A consequence of the second law of thermodynamics for cyclic processes [5] is that -G’ (z,w)
is uniformly positive definite in Q for any w > 0, i. e., there exists a continuous function g,,:
R** — R** such that:

gm(@)[AIP < - inf AG}(z,0)A, A € Sym. (6)
Inequality (6) gives as a consequence that G'(z,0) = li_)m wG’ (z,w) is uniformly negative
w—r00

semidefinite in . We require the more restrictive property of definetess, i.e. there exists
g5 > 0 such that:

Moreover thermodynamic requirements assure that Go — G and thus, Gy are uniformly
positive definite, i.e.

0 < gon | A" < inf AGo(2)4, A € Sym\{0}. (8)

At least Go, G and G’%(-,w) are uniformly bounded in Q, i.e. for every A € Sym

SugGo(w)AA < gou A%, SugGoo(fL‘)AA < goon I All%,
T€ €

316186' t(z,w)AA < gp(w)||A?

with go,,, oo, and gy (w) < oo.
Taking in account the constitutive equation (1) we can rewrite system (2) in the form

(&,t) = V[Go(z)Vu(z,t) + [G' * Vu](z,t) + VTo(z,t)] + f(z,t), 2€Q, t>0,
[Go(a)Vu(o,t) + [G' * Vu](o,t) + To(o,t)]n(o) + a(o)u(o,t) =0, o€ I, t >0, (10)
u(z,0) = uo(z), v(z,0)=vo(z), z€Q,

where [G' * Vu](z,t) = f¢G'(z,s)Vu!(z,s)ds, and

uo(z) = u¥(z,0), wvo(z) = —%uo(z,s)h:o, To(z,t) = /G'(U, s)Vu®(o, s — t)ds.

System (10) is an integro-differential mixed problem with radiation boundary condition (10)s.
In order to give a variational formulation of problem (10) we introduce the space

H(Q,RT) = H'(RY,L3(Q))n LER*, H(Q))
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which is a Hilbert space with the inner product

el = [ [{Ver(@,0Ves(a,t) + ¢1(a ) pa(a, )} da dot
R+ Q

+ / /cpl(z,a)wg(m,t)dadt. (11)
R+ 8Q
This one is equivalent to the usual inner product
| [1901@.09 0@, + e1(2,00¢2(2,0) + $a(, O2a(e, 1)} o dt
Rt Q

since the following estimate holds for functions f € H!(Q2) with Q bounded, regular open
subset of R3 [6]:

I1£11& < K1V £ll& + Kol fl3q, (12)

where K; and K, are constants depending on €.

Definition 1. A function u € H(Q,R") is a weak solution of the initial boundary-value
problem (10) with data f, V -To € L*(R*,L? (Q)), uwo € H () and vy € L%(Q), if u(z,0) =
= ug(z) almost everywhere in Q and

//{[G0($)VU (=2 +/G' (z,s) Vu (2, s)ds]V¢(x £)=

R+ Q

—i(z,t)d(z,t) }d:cdt+ / / o)u(o,t)p(o,t)dodt =

Rt 9Q
:/vg(x)¢>(:c,0)dz+//[f(x,t)¢(z,t)——To(z,t)VqS(x,t)]d:cdt (13)
Q R+ Q

for all € H(Q,RT).

In the next section we prove the following theorem:

Theorem 1. For any linear viscoelastic solid obeying to (1), with relazation function G
satisfying the consitutive assumptions (4) — (9), the evolutive problem (10), with satisfing (3),
feL? (RYL? (Q)), To € H} (R*,H} (Q)), and initial data equal to zero, has one and only
one weak solution y € H(,RY).

3. Transform problem. Let Hx (2, R) be the space of the Fourier transforms of functions
of H(Q,R*). For causal time functions we have

b€ (R, H'Q), iwp - € IAR,IX®)), with po(z) = lim, o(z,1)
-—)

Plancherel’s theorem for the Fourier transform applied to (11) defines naturally the following
inner product on Hr(Q2,R):
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b1 ol = 5 [ [1961(2,0)V83(2,0) + liwg(2,0) — 1, ()] x
R Q

o " 1 x -
Xliwpa(e,w) = e @ adt+ 5 [ [ p1(0,0)¢5(0,w0)do do,
R 9Q

where @* denotes complex conjugate of ¢, and a natural isomorphism is defined between
H (QRY) and Hr (Q,R) [7]. Let a be the following sesquilinear form on Hr (Q,R):

a(t, ) = 2%//— iwi(z,w) — u(z,0)][iwd(z,w) — ¢(z,0)]"dz dw+
QL//[GO )+ G'(z,w)Vii(z,w) V*(z,w)de dwt

R Q
// . /ﬂ(x,O)c,p(x,O)dz. (14)
R o

Q

Plancherel’s theorem applied to (13) gives:
A A 1 ; ~x - ~ %
a(d, @) = E//[f(z,w)cp (z,w) — To(z,w)V*(z,w)]dz dw, (15)
R Q

and Hx (2, R) is the natural space in which one must find the Fourier transform of the weak
solution for the problem (10). Therefore we are able to prove the following lemma:

Lemma 1. A function @ € Hx(Q2,R) is the Fourier transform of a weak solution of the
initial boundary-value problem (10) in the sense of Definition 1 if and only if equality (15)
holds for all $ € Hx(2,R) .

Due to the properties of causal time functions, the following equalities hold:

5(2,0)= = / [iw@(z,w) — (z,0))dw,

e o

and the sesquilinear form a becomes

=§Ir—‘

a(t, @) = > //w w(z,w) + u(z,0) + wu(z,0)]@*(z,w)dz dw+

o //[GO + G'(z,w)]Vi(z,w)VE*(z,w)ds dwt

zﬁ//au (o,w)¢*(0,w)do dw. (16)

R 8Q
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Substituing (16) in (15) and taking ¢(z,w) = @1(z)p2(w), with ¢; € H! (Q) and ¢, €
€ L?(R), by the arbitrariness choice of ¢, it follows that, for almost all w € R, the following
identity holds:

/ [P0z, w) + ig(2) + iwrig(e)]BL(e) dot
Q

+ [ [Gol@) + G'(a,)Vit(z, ) Vi () da+
Q

+ [ ai(o,0)pi(0)do = [ |Fe,0)¢t(z) - Tofa,w) Vi) da, (17)
N Q

for every ¢; € H'(Q2). But identity (17) means that 4(-,w) is a generalized solution in H!(Q)
for the elliptic problem

—w?i(z,w) — V{ [Go(a:) + é'(z,w)]w(z,w)} =
= io(z) + wuo(z) + f(z,w) + VIo(z,w), z€Q, (18)
[Go(a) + 8o, w)]w(a, w)nla) 4 ooyl = ~Tal,winla], o & B
Under the hypotheses of Theorem 1 on initial data, problem (18) becomes

—wli(z,w) — V{ [Go(x) + G"(x,w)] Vd(a:,w)} = f(z,w) + VIo(z,w), z€Q,

[G()(O') + G"(a,w)] Vi(o,w)n(o) + a(o)i(o,w) =0, o€ . (19)

Remark 1. The hypotheses of boundeness and positive definetess for G, and G’ (-,w)
give

Im (W) ||Va(w)]|® < - /G;(x,w)va(x,w)va*(x,w)dz < gu(W)||Vaw)|?, w >0,
Q

9oon VO < [ GouVit(2,0)V8(2,0)ds < gy V2O, =0,
Q

so that problem (19) is Fredholm solvable in H!(Q2) for every source in L?(f2) (see Theorem
4.1 (16, p. 186]) and, as a consequence of Fredholm’s Theorems, the existence theorem follows
from the uniqueness theorem.

Theorem 2 (uniqueness). For everyw € R problem (19) has almost one solution 4(-,w) €
€ H(Q).

Proof. To prove the uniqueness is equivalent to prove that for every w € R the problem

—wli(z,w) - v{ [Go(z) + G"(x,w)]Vﬁ(x,w)} =0, z€Q,
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[G’o(a) + G'(o,w)|Vi(o,w)n(o) + a(o)i(o,w) =0, o€ I,
has only the trivial solution. In this case (17) becomes

J1?i(e,0)¢"(@) - [Gol@) + G'(a, )| Vit(e, ) V" (2, 0) da+
Q

+/ oYl w)a*(e)de = 0. (20)

If w=0, then (20) for ¢ = (-, 0) gives

/G z)Vi(z,0)Vi*(z, 0d:z:+/ ) |4(a, 0)|*do = 0.
a0

The symmetry and positive definetess of G, with the positivity of «, yield
[sym Va(-,0)|| =0, |la(-,0)[low = 0.

Then a(-,0) € H3(R2) and Korn’s inequality [8] yields ||a(-,0)|| = 0.
If w# 0, for ¢ = @(-,0), the immaginary part of (20) gives

/G’s(z:,w)V{L(x,w)Vﬁ*(x,w)dz' — 0.

Then assumption (6) ensures ||sym Vi(-,w)|| = 0. Hence, for f = 0 and To = 0, (20) gives

/w2u(x W) (a)dz =0 Yy € CO(R),
Q
and this is equivalent to |[4(-,w)|[ = 0.

Remark 2. Theorem 1 and Remark 1 assure that the differential operator 7 (w) defined
by system (19) is an isomorphism of H!(2) onto L?(f). Since 7 (w) is a continuous function
of w, then the inverse operator 7~!(w) is a continuous function of w (see Lemma 44.1 of [7]).

The previous remark leads to

Theorem 3. For everyw € R problem (19) has one and only one solution i(-,w) € H(Q).
Besides, the following inequality holds

iz (@) + liwi() | + la(@)llaa < AW) [IF)+ leTo@)] (21)

with A € L*(R).
Proof. If 4 is a solution of problem (19), then the following equality holds:
/{—|wﬁ (z,w)|®+ [G’o(z) + G"(x,w)] Vﬂ(x,w)Vﬁ*(z,w)} dz+

+/ ) (o, w) 2da—/{f(:c w)i*(z,w) — To(z,w)Vi*(z,w) }d:c (22)
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The proof is divided in three parts: as first wq consider w close to 0.
Since Go(z) + G’(z, ) is a continuous function of w and

lim {Go(z) + G'(z,w)} = lim {Go(z) + Gi(z,w)} = Guo(2),
there exists w; such that if |w| < wy
. I~ . -~ l
inf [|Go(2) + G'(z,w)|| 2 inf [|Go(z) + Ge(z, W)l 2 59c0m > 0. (23)

Moreover, if we recall (12), it is possibile to find w, such that if |w| < wy < wy, then

5 . 1 1 .
loa(@)I* < w3 [KillVa@)|? + Kalla(@)l3q] < J900n V@) + Sanlli@)lBa. (24)
Then, if |w| < w;, the real part of (22), (23) and (24) yield
1

1900 IV + Samlli@)Ba < [[Go(e) + Gile, )V ile, &) Vi (z,w)de+
Q

+/ ) li(o,w)*do — P ||2l? < If @)l @)l + |1 To@) I Vaw) ]| <

< [KaF @)+ IBo)] IVl + Kol @)l ), (25)
and, with straightforward calculations, (25) leads to

IVa@)ll + l[a@)llon < MIf@)Il + 11 Toll] Viw| < w2, (26)

where A depends on g, am, K; and K.
Inequality (21), for |w| < wy, follows from (26) and from the classical inequality [16]

lall3q < IVill? + Kalldl|?, (27)

with the constant K3 depending on €2, which holds for functions of @ € H!(2), with  bounded
and regular domain.
Now we consider w close to co. The immaginary and real parts of (22) give

Im @) IVAW)II < I @) [a@)l + I To@)Il IV a@)]l, -
lwa()l? < BIVaW)II? + amllaw)li3q + I @I 1) + 1T IVaw)l,

with

ay =esssupa(o), and f= sup |Go(z)+Glz,w)| < oo,
g€90 (z,w)EQXR

where |-| denotes a norm in the finite dimensional space Lin{Sym, Sym}. Inequalities (27),
(28) give

IVa@)lI* < = IF @l ww@)ll+ == To@)l Va@)ll,

() ()
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ap +IB+gm(w)

il
i) < LS

S lou@) 1+ 1ol IV a() ]+ (29)

+ony Ks|a(w)||?

and, for w? > 2apr K3, (29); yields

apr + ﬁ + gm (w)
Im(w)

and, with straightforward calculations, inequalities (29) and (30) lead to

Sl < [SIF @ a1+ o) 1V a1 (30)

2ap + 2,6 I ng(w)

) +10. - -
Via(w)|| + [lwa(w)]] < 2 W) || + ||wTo(w)]|. 31
Vi) + i)l < o 1)+ leTo(@) (31)
The positive definetess of G{, assures that for |w| > w3 > /2ap K3
2 2 20m 2 2
g 20 + B+ 2g (w)+1<4aM+ B+3 (32)

WGm (w) g(l)

and, for |w| > w3, (21) follows from (31), (32) and (27).

At last, the continuity of the inverse operator 7~1(w), assures that inequality (21) holds
in the compact set: wy < |w| < ws.

Proof [Theorem 1]. Theorem 3 and the hypotheses on the data give

JWaa (@)1 + w1 + e Balde < [ A2@IF@) + lloTo(w) IPdw < oo,
R R

then @ € #r(w; R), and the isomorphism between H(Q; R*) and Hx(Q2; R*) guarantees that
1 is the Fourier transform of the solution u € H (©; R*) of problem (10).

4. Thermodynamic restrictions and domain of dependence inequality. In this
section we recall some recent results [4] on thermodynamic potentials which allow us to define
the maximal free energy potential as consequences of the requirements on the constitutive
equation (1). Subsequently we prove that the energy propagates through the space with finite
speed, showing a priori domain of dependence inequality for the evolution problem (2), with
initial past history u® which has finite maximal free energy.

First we recall further properties of the relaxation function: reguirements (4), (8) and (6)
assure that wG’, (z,-) € L°(R) and G'(z,-) belong to L'(R) N L%(R) for every z € Q (see
[9], theorem 6.5d), and Fourier inversion formula gives

’
Goole) = Golo) = = [ S22y, (33)

w
R+

then the boundedness of the left-hand side of (33) and (6) yield

Gi(z,w)

w

e LY(R) VzeQ.

In the standart constitutive equation of linear viscoelasticity the stress tensor is a functional
of the strain history E* = sym Vu! and the symmetry of the relaxation function allows one to
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replace E' with Vu in (1);. In this section we define thermodynamic potentials as functionals
of F.
It is natural to call an admissible history of the deformation gradient, any history for which
the stress tensor T is bounded. The constitutive equation (1) allows us to give the following.
Definition 2. A measurable function E'(z,-): Rt — Sym is an admissible history if

‘/G’(x,s)Et(x,s)ds < 0. (34)
R+

We observe that any admissible history may be considerer as a linear continuous function
on the space

F={V:R* 5 Lin(Sym,Sym); V=0oG' +W, a€R, WeCLR"M},

where W has values in Lin (Sym, Sym). We can take the set of admissible histories as large
as possible by letting this set equal to F’ (space of all continuous functionals on F). After
a straightforward calculation F’ turns out to be the set of histories E* € D’ (dual space of
C§° (R1)) such that (34) holds.

It is possible to give a definition of the Fourier transform of arbitrary distributions in D’
with the use of the Parseval’s identity, just as it was for the tempered distributions [10].

Let Z be space of testing function of rapid decreasing whose Fourier transform are in
C§° (R7Y), and a distribution f belongs to D', then we call the Fourier transform of the
distribution f € 2’ (dual of 2) so that < f, ¢ >=< f, > for every ¢ € Z, where < -, - >
denotes the duality bracket.

This definition extends merely the definition of ordinary Fourier transform, in the sense
that the Fourier transform of functions belonging to L! or L? is a special case of the generalized
Fourier transform.

Let ,F' denote the admissible set of all past-histories ,E!(z,-) which are obtained from
histories E*(z,-) € F' by restriction to R**. As a consequence we have: F' =Symx ,F’ and
E'(z,') = (E(=z,t),.E'(z,")).

Definition 3. A free energy, relative to the constitutive equation (1) is a functional VU :
G C Symx,F" — R* endowed with the following properties:

(i) the set G C F' of admissible histories is such that if E§ € G, then each history E'**,
s > 0, for which E**S (s+ 1) = E{(7), is an element of G;

(i) ¥ is continuous and differentiable with respect to the first argument and

T(z,t) = Op(z,) Y (E (=, t).E'(z,"));

(iii) for each E* € G and s > 0, such that %E(t + s) is continuous, ¥(E'"* (z,)) is
differentiable with respect to s and satisfies the inequality

9 t+s t+s a "
EE‘I’(E * (:L‘,-)) < T(E * (xv -))gE(t-i-s),

(iv) ¥ is minimal on constant histories i.e. V(E') < W(E'), where E' is the history
E'(z,s) = E(z,t), and ¥(E'(z, -)) = %Gw(z) E(z,t)- E(z,t), if and only if E* = ET.
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Let Go = {F' : Rt — L%(Q); ||E'(-)|| € L*(R*)}. Since G'(z,-) and G’,(z,") belong to
LY(R*) N L? (RY), for every E! € Gy, by use of the Plancherel’s theorem, the constitutive
equation for the stress tensor may be written as

@ dw (35)

T(2,t) = Goo(x)E(:z:,t)-}-% /G;(z,w) [E;(z,w) -
R+

and the thermodynamic requirements of the constitutive equation allow one to give the fol-
lowing (see [4]).

Theorem 4. If the relazation function G satisfies the constitutive assumptions, then for
every history E* € Gy, the functional

U (El(z, ) = %Goo(m)E(z,t)E(z,t)—

1 / t E(:L‘,t)][ t E(xvt) -
- /wGs(x,w) [Es(x,w) - 22 Bl @,0) - =22
Rt
is a free energy density.
Proposition 1. ¥, defines a norm, namely
def
|E*(2,)3r = 29m(E"(2, ")) (36)

and the space Hpr, obtained as completion of Gy relative to this norm, is a Banach space.
Moreover the stress tensor T is well-defined and is continuous on Hpy, in the sense that

IT(z,)]* < [IGo(2) — Goo(2)| + |Goo ()] |E*(, ) [3s- (37)

Proof. As introduction, we remember that for any symmetric and positive definite tensor
A, we can define the symmetric and positive definite tensor v/A4, so that vA VA = A and

VA = VIAL.

Since G, and wG” are positive definite, expression (35) of the stress tensor yields
s p p

/ _Gs(z,w)dw
+

IT(2, D) < (1 4+ @)|Goo(2) | E(2, 1) Goo (2) E (2, 1) - (1 * 32 "

s

w

x% / WG (z,w) [Eﬁ(:v,w) - %’t)] [E;(a:,w) - M] *dw.

w
R+

|Go(z) — Geo(2)]

|Goo ()]
Remark 3. For every history E' € Hpy, a straightforward calculation yields (see [4])

Choosing a = , (33) and (36) give (37).

Uy (E'(e,)) = T(z,t) E(z, ). (38)

We call total maximal mechanical energy at time ¢, related to the maximal free energy Wy,
the function

em(t) = / [% li(z,t)|2 4+ Upr(Vul(z, ))] dz + % / a(o) |u(o,t)|*do.
Q N
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Proposition 2. For any history ul, such that E* € Hpz, a positive constant k exists, such
that,

Ia@I + IVu@II + [u@)l* < keamr(?). (39)

Proof. The properties of definetess of G, and G’ assure that Wy satisfies

/\IJM (E'(z,-))dz > —goom||sym Vu(t )H2

so that
N%(8)]I? + Goom llsym Vu(t)||* + am ||u(t)]3g < 2erm(t). (40)

Finally, the Korn’s inequality applied to (40) yields (39).
In order to define the class of solutions of the evolutive problem in linear viscoelasticity
- which saticfies the domain of dependence inequality, we give the following definition:
Definition 4. A function u € H(,0,7) is a weak solution of the initial boundary-value
problem (2) in the space time domain  x (0, 1) with initial history u° so that sym Vu°® € &
and f € L?(Q,0,7) if u(z,0) = uo(z,0) almost everywhere in Q and

]/{[Go(x)Vu(x,t)+7G/(z,s)ut(x,s)ds]V¢(x,t)_
00 4
—u(z, t)P( zt}dwdt—{-// o,t)dodt =

0 9Q

:/vo(z)¢(z,0)dw+]/f(x,t)d)(z,t)dzdt
Q 0 Q

for every ¢(z,t) € H(,0,7), where vo = —-(%uo(w,s)lgo.
Proposition 3. Let u € H(2,0,7) be a weak solution of (2), then

symVu(s,t —s) if t>s;
E'(z,s) = {

symVul(s,t —s) if t<s

belongs to @9 and

R i CX)L )]
(@n)eax(or) [a(z,1)|? + [(E(z, W

Proof. A classical algebric inequality and (37) heads to

) € /1Go — Gool +Gool. (41)
2T (2, t)i(z, 1)] < %nco(z) — Goo(®)| + |Goo () | |(EX(, )31 + Blic(z, 1) 2, (42)
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with 8 > 0. If we choose 32 = |Go(z) — Goo(2)| + |Goo ()], (42) gives (41).
Theorem 5. (Domain of dependence inequality). Any weak solution of (2) satisfies

(i, )P+ (B (@, e+ [ a(@)lu(e,r) o <

QnsS- (.Z‘o) 90QNSy(zo)
< [ liOP+IEGRe+ [ a@lu0)fdo+
QnSr+.,r (1‘0) 8905,.,.7,(1:0)
+2 / flz, Dafe, duedt, (43)

Qr'\'Sr-i-'y(r—t) (z0)

where S,(z0) = {2 : |z — xo| < r} and v is defined in (41).
Proof. Let u: [0,7] = H!(Q) be a weak solution of (2), and ¢ a scalar function such that
¢ € C(R3 x R). We introduce

est) = [ [%|u(x,t)|2+\I!M(Et(x,-)]gb(z Fidi 2/ e, P de
Q

The first derivative of 4 and (38) give, after the integration by parts

O eolt) = / li(z, 1) - VT(E'(z, iz, 1) $(z, t) dot

+/{[ la(z, t)|? + Upr (Bl (z, )| Pz, t) _T(Et(l’a')ﬂ(w,t)v¢(x,t)}dm+

- / oo, B[R (o, Hds. (44)
N

The function ¢ is now specialised to have the form
d(z,t) = ¢s(|lz — x| = r —y(T = t))
where v is defined by (42), ¢5s € C*°(R) and

1 if s<-¢
¢5<s):{ 0<¢s(s) <1; @h(s) <O, VseR,
0 if s>4;

so that
le(.’l), t) = Vlz - $0|¢f§a '(,D($, t) = 7‘]5{9
Recalling that » is a solution of (2), with this choice of 1, (44) becomes

%e(i,(t) — /f(x,t)zl(a:, t)ps(lz — x| — r — y(T — t))da+
Q

+/{ [ iz, ) + Uag (E'(2, ) _T(Et(z.’.)it(x,t)V(h—730])} X
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x¢s(|lz — zo| —r — y(r — t))dz+

2/ ?)li(o, )50 = ol = 7 = 7(r = 1))do <

< [ 1@ tyita, Os(jo = a0l - r = 7(7 - ))do, (45)
Q
and a time integration of (45) gives
eg(r) — e4(t) < //f(z, B, gl — arg] — v — rylr — D) il (46)
0 Q

Finally, since ¢s tends boundedly to the characteristic function for S, (,_¢)(z0) as § — 0, the
passage to the limit in (46) gives (43).

The free energy Wjps exists for any relaxation function satisfying the minimal set of pro-
perties which have been required to have agreement with thermodynamic principles. On
the other hand, in the class of linear viscoelastic materials there is not a unique free energy
functional, and for relaxation functions G with further properties is possible to give an explicit
representation of other free energy functionals as shown in the following examples.

Example 1. The relaxation function G is compatible with thermodynamic principles,
moreover G’ is negative definite and G” is positive semidefinite. Under these hypothesis the
functional

Uo(EY(, ) = %Gm(x)Et(x,t)  E'(z, )
= / G'(z,8)[E'(z, s) — E(,1)]- [E'(x, s) — E(z, 1)]ds

in the “Graffi — Volterra” free energy density [18].

Proposition 4. WUg defines a norm, namely |E'(z,-)|% = 4 2¢g(E%(z,-)) and the space

Hg, obtained as a completion of Gy relative to this norm, is a Banach space. Moreover the
stress tensor T is well-defined and is continuous on Hq, in the sense that

IT(2,1)|” < [IGo(2) = Goo(@)| + |Goo (@) 1| (2, ) |- (47)

Proof. Since G, and —G’ are positive definite, (1) yields

1 !
IT(z,t)]2 < (14 8)|Goo(2)|E(2,t)Goo(2) E(z,t) — (1 + E) ‘R[ -G'(z, s)ds|x

X / G'(z, 5)[E!(z,5) — E(z,)][E'(z, s) — E(a,t)]ds, (48)

with g > 0. If we choose 8 = G 48) gives (47).
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Inequality (47) leads to the domain of dependence inequality for weak solutions of (2) with
initial history u° € Hg.

In the next example an unidimensional relaxation function is considered:

Example 2. The relaxation function G is given by a sum of exponential functions:

G(z,s) = Geolz) + Z Ap(z)e™?

with ax, £ = 1,2,..., N, positive constants, G, and Ag, k = 1,2,..., N positive functions
belonging to C(Q2N C(Q)).

Viscoelastic materials with relaxation functions of this kind have been studied in [12] and
[13] (with a defferent approach) and the following free energy functional is defined ‘

Uo(E(z, ) = 5Goo(a) B(a, ) E(z, 1)+

1
3 [ [ 6@ s+ (B @,51) - B, 0] @, ) - B(z, )dsads.
R+t R+t
Proposition 5. ¥, defines a norm, namely |E(z,-)|? = &of 2¢.(E*(z,-)) and the space H.,
obtained as a completion of Gy relative to this norm, is a Banach space. Moreover the stress
tensor T' ts well-defined and is continuous on H., in the sense that

T (2, t)|* < Go(2)| E'(=z, ) I2. (49)

Proof. The constitutive equation (1) for the stress tensor can be rewritten

Tz, #) = Gla, ) B, 1) +ZakAk YER(2,1);
k=1

where Eg(z,t) = [ e %S5[E'(z, sq) — E(z,t)]ds, and the following inequality holds
R

IT(z,t)]? < ( z) + ZAk )( (z)E*(z,t) + ZakAk )E,i(x,t)), (50)

k=1

and (49) is a consequence of (50) and of the following relations:
z)+ Y Ap(e) = Z o} Ay (z)exe1t52) = G (2, 51 + 5y).

Remark 4. For the unidimensional models of linear viscoelasticity
1Go(z) = Goo(2)] + |Goo (7)]| = Go()
and (37), (47) becomes
IT(2,8)|* < Go(@) |1E'(z, )3 IT(2,8)I” < Gole) |E (2, )&

The spaces Hg and H. are larger than Hps because they include, for example, bounded
periodic histories which are not in s, so that for relaxation functions defined in Examples 1
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and 2, the domain of dependence inequality for the evolutive problem (2) can be proved for a
lager class of initial data. However it is important to observe that for initial histories belonging
to Go, the best estimate of the speed of propagation is given by defined in (41), because ¥y

is the maximal free energy.
o . B CR IO
5. Hyperbolicity. Inequality (41) assures that the ratio — is
|i(e, )2+ |(E* (=, )3,
bounded by the constant \/|Go — G| + |G| Which depends neither on the time ¢ nor on
the solution u. This property gives the domain of dependence inequality (Theorem 5) and
sufficient conditions for hyperbolicity of problem (2). In order to prove the last assertion, we

recall the definition of hyperbolicity for differential operators of type:

Lu(z,t)=0 in Q x (0,70),
(51)
u(z,0) = ug(z) in Q.

Definition 5. The operator L is hyperbolic if for every smooth initial data ug satisfying
ug(z) =0 for z € Q\ Sy (z¢), problem (51) has a unique smooth solution u(z,t) having finite
signal speed, i.e. there exists a positive scalar constant ¢ such that u at time t vanishes outside
the set Syyct N (see [14] and [15]).

The above definition can be extended to an 1ntegr0d1fferent1al system by substituting the
initial data uo with the history of u at time t = 0, u*=%(z,s) = u®(z,s).

Theorem 6. Under the hypotheses of Theorem 5 problem (2), with source f = 0 in
Q x (0,70) and initial history u®(z,s) =0 in Q\ S,(z0), has a unique solution u which at time
t vanishes outside the set QN Syt (z0), with ¢ = \/|Go — Goo| + |G ool-

Proof. Let u be a weak solution of (2) and z € Q\ (Szr4ct(z0) N Q). The conditions on
the source and the initial history with (43) lead to

| i P +IE @R+ [ el oltdo =o. (52)
QNSy(z) QNS (z)

By virtue of (39), the equality (52) assures that u(z,t) = 0in QN S, (Z).

Since Z is an arbitrary point of the set Q\ (S2,4ct(z0) N2), we can conclude that u(z,t) =0
outside the set S,y (zg) N K.

Remark 5. Theorem 6 emphasizes the importance of the existence of an upper bound
for the propagation speed of the disturbances. In fact without this upper bound we cannot
obtain the hyperbolicity of the integro differential problem as a consequence of the domain of
dependence inequality.
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