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The existence, uniqueness and asymptotic stability is shown for the integrodifferential system of the
viscoelasticity. Moteover a domain of dependence theorem is proved by using the properties of the free
energy related with such a system. This theorem provides a finite signal speed and then the hyperbolicity
of the integrodifferential system.

Присвячена питанням існування, єдиності та асимптотичної стійкості розв’язків в ’язкоелас-
тичної системи.

1. Introduction. It was shown in [1] that the thermodynamic restrictions imposed on the
constitutive equation of the linear viscoelasticity:

T (x ,t) = Go{x)Vu(x,t) + J G'(x, s )V u (x ,t - s)ds (1)

о

imply existence and uniqueness for the evolutive problem of the linear viscoelasticity subject
to boundary Dirichlet conditions. It was also demonstrated that the null solution is attractive
under the same restrictions.

Our aim is to present a domain of dependence inequality for solutions to the dynamic
equations of linear viscoelasticity. Some results of this topic have been diven in [2, 3], but a 
general result for viscoelastic motions has not yet proved, because in those papers the maximum
propagation speed of disturbances depends on time. In the present paper a different method of 
approach is adopted, in fact our result relies the properties of Helmholtz free energy potential.
These potentials for materials with memory have been deeply studied in [4] and a main result
is an explicit expression of the maximal Helmholtz free energy only under the assumption
that the constitutive equation (1) obeys to the requirements following by the Second Law of
thermodynamics. For this reason, the maximal free energy is used here to prove the domain of
dependence inequality, which provides the minimal speed with which energy propagates in Ω.
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Other free energies are also exhibited, but under additional assumptions on the constitutive
equation (1).

Our method can be extended to any free energy potential, and used to study non-linear
problems in viscoelasticity. Our results show that the hyperbolicity of the dynamic equations
of linear viscoelasticity is closely connected with the existence of a free energy.

In this paper we consider the evolutive problem subject to boundary conditions of elastic 
type and the existence, uniqueness and stability theorems presented in the first part extend the
corresponding results of [1]. They are obtained by using the Fourier time-transform method, 
which implies an information about the solution of the evolution problem in the space time- 
domain Ω X R from time-harmonic solutions with fixed frequency.

2. Formulation of the problem. The dynamical problem for a continuous linear 
viscoelastic solid in a smooth bounded domain Ω C R3, with elastic boundary conditions, is

ü(x, t) = VT(x, t) + f (x ,  t), ϊ £Ω , t > 0,

Τ(σ, ί)η(σ) + α(σ)η(σ, t) = 0, σ Є 9Ω, t > 0, (2)

u (x ,r) = u ° (x ,- r ) , XЄ Ω, т < 0,

where и denotes the displacement vector, T the stress tensor, / the body force, и*(х,5) =
= u(x, t —s) the history of the displacement vector, u° the initial history, n the outward
normal on ΘΩ and the scalar function а Є Ζ/2(9Ω)Π £°°(9Ω) satisfies

α (σ) > am > 0 a.e. in дО,. (3)

The stress-strain relation of the linear viscoelasticity (1) is characterized by the instanta
neous elastic modulus Go and the Boltzmann G'. We assume that Go and G' are symmetric
fourth-order tensors*, Go Є C ^ ) and

G ' e f 1(R+ ; Ω) П L2(R+; Ω). (4)

The relaxation function

G (x,i) = Go(x) + J G'{x,s)ds
о

is continuous in Ω X R + , differentiable in Ω x R ++ and is well-defined along with

Goo(x) = Hm G(x,i) = G0(i) + J G'{x,s)ds.
о

The body is a solid, so we require that Goo is uniformly positive definite in Ω, i.e.

o < ffooJH I2 < inf AGoo{x)A, А Є Sym\{0}. (5)

‘Throughout this paper Lin is the set of all second-order tensor, Sym the subset of the symmetric second-
order tensor and sym denotes the symmetric part of a tensor. A fourth-order tensor G is symmetric if GA = GA
and A ■GB = B G A А, В Є Lin.
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Let / Є L2(R), we denote by / the Fourier transform: f(u>) = f exp(—ius)f(s)ds. For
R

causal functions, i. e. functions defined on R+, identified with functions on R which vanish on
(—00, 0), f — f c —i f si where f c and f s are the half range Fourier sine and cosine transforms:

f c(ω) = J f(s)cosu>sds, f s{u) = J f(s ) sin usds.

R+ R+

A consequence of the second law of thermodynamics for cyclic processes [5] is that —G '(x,ω)
is uniformly positive definite in Ω for any ω > 0, і. e., there exists a continuous function gm:
R ++ —>R ++ such that:

gm{uj)\\A\\2 < - mf AG'S{x ,oj)A, А Є Sym. (6)

Inequality (6) gives as a consequence that G'(x, 0) = lim a)G'S (χ,ω) is uniformly negative

semidefinite in Ω. We require the more restrictive property of definetess, i.e. there exists 
<70> 0 such that:

<70ІИ|2 < - inf AG'(x, 0)A, А Є Sym. (7)
χ£Ω

Moreover thermodynamic requirements assure that Go —Goo and thus, Go are uniformly 
positive definite, i.e.

0 < 5om||A||2 < inf AG0(x)A, A € Sym\{0}. (8)

At least Go, Goo and G's(-,u;) are uniformly bounded in Ω, i.e. for every А Є Sym

supG0(x)A A < 5ом |И ||2, supGoo(x)A A < ffooM|H |2,
χ£Ω χ€Ω

(9)
supG ;(ï,w )A A < gM{u)\\A\\2
χ£Ω

with goM, gooм and дм (ω) < оо.
Taking in account the constitutive equation (1) we can rewrite system (2) in the form 

(x, t) = V [Go(ж)Vu (я, t) + [G' * Vii](i, t) + VT0(i,f)] + /(x , t), x Є Ω, t > 0,

[Go(ct)Vu(a, t) + [Gr * Vu](<t, t) + ϊο(σ, ί)]η(σ) + α(σ)υ,(σ, t) = 0, σ Є 5Ω, t > 0, (10) 

u(x,0) = u0(x), u(x, 0) = u0(x), x Є Ω,

where [G' * Vu](x,f) = fç)G,(x,s)'Vut(x,s)ds, and

tto(x) = «°(*, 0), u0(x) = - jU ° (x ,  s )|s=0, T0(x, t) = J G > ,  s)Vu°(a, s - t)ds.

System (10) is an integro-differential mixed problem with radiation boundary condition (10)2.
In order to give a variational formulation of problem (10) we introduce the space

%(Ω, R +) = F ' f R + . ^ f ^ J n ^ f R + F ' t ^ )
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which is a Hilbert space with the inner product

W>i,4>?\= J f {V<pi(x,t)V<p2(x,t) + <pi(x,t)tp2(x,t)}dxdt+
R+ Ω

+ 1 1 * ( * ,* )< * ( * ,№ * . (11)
r + an

This one is equivalent to the usual inner product

J j {Vv>i(*,i)Vy>2(*,i) + <pi(x,t)ip2(x,t) + <pi(x,t)(p2{x,t)}dxdt,
R+ Ω

since the following estimate holds for functions / € Η ι (Ω) with Ω bounded, regular open
subset of R 3 [6]:

ll/llä < Ä'illV/lfö + ЛГаІІ/llln , (12)

where Κ ι and Κ ι are constants depending on Ω.
Definition 1. A function и Є Ή(Ω, R +) is a weak solution of the initial boundary-value

problem (10) with data f , V · Г0 Є T2(R+,L2 (Ω)), u0 Є # Χ(Ω) and v0 Є Τ2(Ω), i fu (x , 0) =
= uo(z) almost everywhere in Ω and

J J | [ G o ( i ) V t t ( * >t ) +j G'(x, s ) d s j V<^>(a:,t) —
R+ Ω 0

—ΰ(ι, ί)φ(χ, i ) |d x dt + J J α(σ)η(σ, ί)φ(σ, t)dodt —

r + an

= J υο(χ)φ{χ, 0)dz + J j [ї{х,і)ф (х,і) - Ta(x,t)V(j)(x,t)]dx dt (13)

n r + n

for all φ € Ή(Ω, R +).
In the next section we prove the following theorem:
Theorem 1. For any linear viscoelastic solid obeying to (1), with relaxation function G

satisfying the consitutive assumptions (4) - (9), the evolutive problem (10), with satisfing (3),
f Є L2 (R+ ,L2 (Ω)), T0 Є Hq (R+,Rq (Ω)), and initial data equal to zero, has one and only
one weak solution у Є 7ί(Ω,ΙΙ+).

3. Transform problem. Let 7ίρ(Ω, R) be the space of the Fourier transforms of functions
of Ή(Ω,ΈΙ+). For causal time functions we have

<pЄ L2(R, Η 1(Ω,)), ΐωφ - ψ2 Є T2(R, Τ2(Ω)), with </?о(я) = lim+<^(x,i).

PlancherePs theorem for the Fourier transform applied to (11) defines naturally the following
inner product on Ή?(Ω, R):
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[Φι ,Ψί]γ = ^ J f{V<Pi(*,b>)V<p2 (x,u/) + [ίωφι(χ,ω) -у>і0(*)]х
R Ω

χ[ίω<£2(ζ,ω) - (̂ 20(a:)]*}tix d t+ ^ f J Φ>\(σ,ω)φΙ(σ,ω)άσ du,
R 9Ω

where ф* denotes complex conjugate of φ, and a natural isomorphism is defined between
H (D,R+) and T-Ljr (D,R) [7]. Let a be the following sesquilinear form on Ή.? (0,R):

“(*’*)= έ / f ~1·ίωΰ(χ 'ω) - - Φ ,  0)]*dxdu+
R Ω

+γ - J j [Go(x) + ό'(χ,ω )]νΰ(χ,ω )'νφ*(χ,ω )άχ du+
R Ω

J J αΰ(σ, ω)φ*(σ, ω)άσάω - J ù(x,0)<p(x,0)dx. (14)

R 9Ω Ω

Plancherel’s theorem applied to (13) gives:

а(«,<р) = ^ : У' J [ f( x ,b >)φ*(χ,ω )-Τ0{χ,ω)νφ*(χ,ω)]άχ(1ω, (15)
R Ω

and ?£f (Q,R) is the natural space in which one must find the Fourier transform of the weak 
solution for the problem (10). Therefore we are able to prove the following lemma:

Lemma 1. A function û Є Ή.ρ(Ω, R) is the Fourier transform of a weak solution of the
initial boundary-value problem (10) in the sense of Definition 1 if and only if equality (15)
holds for all ф Є %jf(Œ,R) .

Due to the properties of causal time functions, the following equalities hold:

ф(х, 0) = —J (ϊωφ(χ,ω) —ip(x, 0)]du>,
R

φ(χ, 0) = —J φ(χ, ω) άω,
R

and the sesquilinear form a becomes

a(û, φ) = ^ J J [ω^ΰ(χ, ω) + ù(x , 0) + ium(x, 0)]<£*(χ, u)dx du>+

R Ω

+ ^ / / [Go(χ) + 0 ,(χ,ω)]’νΰ(χ,ω )νφ*(χ,ω )άχάω+

R Ω

+h J J αΰ(σ,ω)φ*(σ,ω)άσ du. (16)
r an
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Substituing (16) in (15) and taking φ{χ,ω) = φ ι(χ)φ2(ω), with ψ\ Є Я 1 (Ω) and φ2 Є
Є L2(R), by the arbitrariness choice of <p2 it follows that, for almost all ω Є R, the following
identity holds:

J [ω2ΰ(χ,ω) + ώ0(χ) + ιωη0{χ)]φ\{χ)άχ+
Ω

+ J  [G0(x) + G'(x,u)]Vû(x,u;)V<pï(x)dx+
Ω

+ J αΰ(σ,ω)φ*1(σ)άσ = J [/(x,w)y>;(x) - f 0{x,u)V(pl(x)\dx, (17)

9Ω Ω

for every ψ\ Ç Я 1(Ω). But identity (17) means that ΰ(·,ω) is a generalized solution in Η 1(Ω)
for the elliptic problem

-ω 2ΰ(χ, ω) —V j [g0(x) + G'(x, u;)] Vû(x, ω) } =

= ii0(x) + іши0{х) + f{x,u>)+ S7T0{x,u>), X Є Ω, (18)

^(?ο(σ) + <5'(σ, ω)| νΰ(σ,ω)π(σ) + α(σ)ΰ(σ,ω) = -Το(σ,ω )η(σ), σ Є 0Ω.

Under the hypotheses of Theorem 1 on initial data, problem (18) becomes

-ω 2ΰ{χ,ω) - v j [Go(z) + G'(x,u;)] Vû(x,u;)} = /(χ ,ω ) + V f0(x,u>), x Є Ω,

|βο(σ) + <5'(σ,ω)| νΰ(σ ,ω )η(σ) + α(σ)ΰ(σ,ω) = 0, σ Є 0Ω. (19)

R em ark 1. The hypotheses of boundeness and positive definetess for GM and G's (·,ω)
give

9m(w)||Vû(u;)||2 < - J G'(x,u;)Vû(x,u>)Vû*(x,u;)dx < 5m M ||V û(u;)||2, ω > 0,
Ω

ffooJ|VÛ(0)||2 < | G ooVÛ (x ,0 )V r(x ,0 )d x< 5oOM||Vû(0)||2, ω = 0,

Ω

so that problem (19) is Fredholm solvable in Η ι (Ω) for every source in Τ2(Ω) (see Theorem
4.1 [16, p. 186]) and, as a consequence of Fredholm’s Theorems, the existence theorem follows 
from the uniqueness theorem.

Theorem 2 (uniqueness). For every ω Є R problem (19) has almost one solution ΰ(·,ω) Є
Є ^ (Ω ) .

Proof. То prove the uniqueness is equivalent to prove that for every ω Є R the problem

-u>2û(x,u>) - V j ^Go(æ) + G'(x,u;)j Vû(x,cj) | = 0, x Є Ω,

122 Нелінійні коливання, 1998, №-1



|Go(ct) + G'(a, u;)j νΰ(σ , ω)η(σ) + α(σ)ΰ(σ, ω) = Ο, σ Є 5Ω,

has only the trivial solution. In this case (17) becomes

J {u2Û{x,u>)ψ*(χ) - [G0{x) + G'{x,u)]VÛ(x,u)V<p*{x,u)}dx+

Ω

+ J α(σ)ΰ(σ,ω)φ*(σ)άσ = 0. (20)

9Ω

If ω —0, then (20) for <p= w(·, 0) gives

J Goo(x)S7û(x,0)Vû*{x,0)dx+ J α(σ) |ΰ(σ, 0) |2da = 0.

Ω 9Ω

The symmetry and positive definetess of Goo, with the positivity of a, yield

||sym V û(·, 0)|| = 0, ||û(-,0)||aw = о.

Then û(-,0) Є Яo(Ω) and Korn’s inequality [8] yields ||û(-,0)|| = 0.
If ω ф 0, for φ = ΰ ( ·, 0), the immaginary part of (20) gives

J G's(x,u>)¥û(x,u)Vû*(x,Lj)dx = 0.

Ω

Then assumption (6) ensures ||sym Vû(· ,ω)|| = 0. Hence, for / = 0 and To = 0, (20) gives

J ω2ΰ(χ,ω)φ*(χ)άχ = 0 Vip Є C£°^),

Ω

and this is equivalent to ||ΰ(· ,ω)|| = 0.
Rem ark 2. Theorem 1 and Remark 1 assure that the differential operator T(u>) defined 

by system (19) is an isomorphism of # Χ(Ω) onto Τ2(Ω). Since Τ(ω) is a continuous function
of ω, then the inverse operator T - 1(w) is a continuous function of ω (see Lemma 44.1 of [7]). 

The previous remark leads to
Theorem 3. For every ω Є R problem (19) has one and only one solution û(· ,u>) Є ^ (Ω ).

Besides, the following inequality holds

lli.M II + ΙΙώβΜΙΙ + РМІІИІ <л и [ll/MII + Ik ftM Il]. (21)

with А Є T°°(R).
Proof. If û is a solution of problem (19), then the following equality holds:

J j —|ωώ(ζ,ω)|2 + [Go(z) + <$'(χ,ω)] V û{x , lj)S7û*(x , u;)} dx+

+ J α(σ) \ΰ(σ,ω)\2άσ = J {/(χ,ω )ύ*(χ,ω) - Το(χ,ω)νΰ*(χ,ω)} dx. (22)

9Ω ш

Нелінійні коливання, 1998, №-l 123



The proof is divided in three parts: as first wq consider ω close to 0.
Since Go(x) + G'(x, ·) is a continuous function of ω and

lim (Go(x) + G '{x,u)} = lim {G0(z) + G'c(x ,u )} = G ^ x ) ,
ω-l·0 ω-ϊΟ

there exists u>i such that if |ω| < uq

mf ||G ° (* )+ 0 '( i ,« ) | | > inf ||G„(*) +  0 'e(* ,« )|| > k o „ > 0. (23)
χξ,Ω χξ,Ω λ

Moreover, if we recall (12), it is possibile to find ω2 such that if |ω| < ω2 < uq, then

ІИ И Ц 2 < ωΙ [a'xIIVûH H 2+ Κ2ЦмИІІІп] < ^oom||Vû(o;)||2 + \ am\\û(u)\\lQ. (24)

Then, if |ω| < W2, the real part of (22), (23) and (24) yield

^ 0Om||VÛ(a;)||2 + ^ m||ü(a;)||li î < J[G 0(x) + G'c(x,w)]VÛ(x,u)VÛ*(x,u,)dx+

Ω

+ J α(σ) \ΰ(σ,ω)\2άσ - u;2||û||2 < ||/M || \\ΰ(ω)\\ + ||Γ0(ω)|| ||ν«(ω)|| <
9Ω

< [ίί.ΙΙ/Μ ΙΙ + ГоМН ] IIVÜMII + K j II/MH ||« И | |« 1, (25)

and, with straightforward calculations, (25) leads to

l|V«(w)|| + ||û(w)||an < λ[||/(« ) || + ||f 0||] V M < «a, (26)

where λ depends on 5oom) &m, К і and I<2.
Inequality (21), for |ω| < ω2, follows from (26) and from the classical inequality [16]

Ι|ώ||1Ω < | |ν ΰ ||2 + / ί 3||ώ||2, (27)

with the constant A'3 depending on Ω, which holds for functions of û Є Η ι (Ω), with Ω bounded
and regular domain.

Now we consider ω close to oo. The immaginary and real parts of (22) give

9mM ||V «M ||2 < ||/(u,)|| ||û(u,)|| + ||f0M || ||VÛ(«)||,
(28)

І И М И 2 < / 3 | |V û (w ) | |2 + « Μ ||ώ (α ;)||2Ω + Ц / М І І Ц й Н І І + l l f o M I I I I V Ü M I I ,

with

ам = esssupa(a), and β = sup |(70(ζ) + G'c(χ,ω)| < oo, 
σ€9Ω Μ ίΩ χ Β

where |·| denotes a norm in the finite dimensional space Lin{Sym, Sym}. Inequalities (27), 
(28) give
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+α„Α ·3||ΰ(ω)||2

and, for ω2 > 2амКз, (29)2 yields

| | И М ||2 < ||ω„ Μ || + ||Τ0(ω)|| ||V «M ||] (ЗО)

and, with straightforward calculations, inequalities (29) and (30) lead to

l|v«HH + ІИ М ІІ < 22ομ + 2̂ Η M + 1 ["/ M " + ll" foMI1· (31)

The positive definetess of G'0 assures that for |ω| > и>з > \/2амК з

q2qm + 2β + 2gm(u>) + 1 ^ ^2ам + 2β + З

ид-т (ω) д'о

and, for |ω| > ω3, (21) follows from (31), (32) and (27).
At last, the continuity of the inverse operator Τ - 1(ω), assures that inequality (21) holds 

in the compact set: ω2 < |ω| <
P roo f [Theorem 1]. Theorem 3 and the hypotheses on the data give

/ П ІЗН ІЇ2 + Ц ін н і ї 2 + IISHIIIa)«^ < / Λ2Μ [ΙΙ/Μ Ι| + |M b H ||] 2<iu, < 00,
R R

then û Є R), and the isomorphism between %(Ω; R +) and Ή_^(Ω; R+) guarantees that
û is the Fourier transform of the solution и Є Ή (Ω; R+) of problem (10).

4. Thermodynamic restrictions and domain of dependence inequality. In this
section we recall some recent results [4] on thermodynamic potentials which allow us to define 
the maximal free energy potential as consequences of the requirements on the constitutive
equation (1). Subsequently we prove that the energy propagates through the space with finite 
speed, showing a priori domain of dependence inequality for the evolution problem (2), with 
initial past history u° which has finite maximal free energy.

First we recall further properties of the relaxation function: reguirements (4), (8) and (6)
assure that иjG's (x , ·) € L°°(R) and G's(x, ·) belong to /^ (R ) Π Z,2(R) for every 1 6 Ω (see
[9], theorem 6.5d), and Fourier inversion formula gives

<3οο(ζ) - Gq(x) = ^ J ° '3^ ω)άω (33)

R+

then the boundedness of the left-hand side of (33) and (6) yield 

Є £ i(R ) ν ζ € Ω .

In the standart constitutive equation of linear viscoelasticity the stress tensor is a functional
of the strain history E *= sym Vu* and the symmetry of the relaxation function allows one to

lk»M II2 < [ jj lI /M I I ІМ ч іІ І + І |Г оИ ||||v ü h u ]+ (29)
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replace E with Vu in (1)2. In this section we define thermodynamic potentials as functionals
of E.

It is natural to call an admissible history of the deformation gradient, any history for which
the stress tensor T is bounded. The constitutive equation (1) allows us to give the following.

Definition 2. A measurable function Е*(х,·): R+ —¥ Sym is an admissible history if

IJ G'{x, s )E \x ,  s)ds| < 00. (34)

R+

We observe that any admissible history may be considérer as a linear continuous function 
on the space

T = {V : R + Lin(Sym,Sym); V = aG' + W, а Є R, W Є C'£°(R+)},

where W has values in Lin (Sym, Sym). We can take the set of admissible histories as large 
as possible by letting this set equal to Τ ' (space of all continuous functionals on T ). After 
a straightforward calculation Τ ' turns out to be the set of histories E 1 Є V (dual space of 
C ff (R+)) such that (34) holds.

It is possible to give a definition of the Fourier transform of arbitrary distributions in V
with the use of the Parseval’s identity, just as it was for the tempered distributions [10].

Let Z be space of testing function of rapid decreasing whose Fourier transform are in
Cq° (R+), and a distribution / belongs to V , then we call the Fourier transform of the
distribution / Є Z ' (dual of Z) so that < f , ф >=< / , ф> for every ф € Z , where < · , · >
denotes the duality bracket.

This definition extends merely the definition of ordinary Fourier transform, in the sense 
that the Fourier transform of functions belonging to L1or L2 is a special case of the generalized 
Fourier transform.

Let rT ' denote the admissible set of all past-histories гЕ ь(х,·) which are obtained from 
histories E '(x , ·) Є Τ ' by restriction to R ++. As a consequence we have: Τ ' =Symx rT ' and 

Е*(х ,.) = (Е(хЛ гЕ*(х ,·)).
Definition 3. A free energy, relative to the constitutive equation (1) is a functional Ψ :

G C SymXrJ-' —>R + endowed with the following properties:
(i) the set G С Τ ' of admissible histories is such that if Eq Є G, then each history E t+S,

s > 0, for which E t+S (s + r) = Eq(t), is an element of G\
(ii) Ψ is continuous and differentiable with respect to the first argument and

T (x ,t) = dE{x>t)4 '(E (x ,t)rE t(x ,.))]

(iii) for each E* £ G and s > 0, such that -Ц-E(t + s) is continuous, Ф(E t+S (a:,·)) is

differentiable with respect to s and satisfies the inequality

§ - * (E t+s(x, ·)) < T (E t+°(x, - ) ) ^ E ( t  + s);

(iv) Ψ is minimal on constant histories i.e. Ф(Е^) < Ф(E*), where E^ is the history

Е г{х,з) = E{x,t), and Ф(E*(x, ·)) = ^ « . ( z ) E(x, t)· E (x, t), if and only if E l = ЕУ
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Let Go = {E* : R+ -»■ Τ2(Ω); ||£*(·)|| Є L2(R+)}. Since G'{x, ·) and G'a{x,·) belong to
L1(R+) П L2 (R+), for every E * £ Go, by use of the Plancherel’s theorem, the constitutive
equation for the stress tensor may be written as

T(x, t) = Goo(x)E(x, 0 + ~ (35)

R+

and the thermodynamic requirements of the constitutive equation allow one to give the fol
lowing (see [4]).

Theorem 4. I f the relaxation function G satisfies the constitutive assumptions, then for
every history E* £ Go, the functional

% № , ' ) ) = ^ ? „ ( χ )Ε (χ ,Ι )Ε ( χ , ί) -

R+

is a free energy density.
Proposition 1. Φμ defines a norm, namely

\Ε \χ ,·) \2Μ = 2ψΜ(Ε \χ ,· ) ) (36)

and the space Им, obtained as completion of Go relative to this norm, is a Banach space.
Moreover the stress tensor T is well-defined and is continuous on Им, In the sense that

\T(x, t) I2 < [ |Go(x) - GooOOl + |Goo(*)|] IE \x , OIL. (37)

Proof. As introduction, we remember that for any symmetric and positive definite tensor
A, we can define the symmetric and positive definite tensor y/~Ä, so that y/Ä y/Ä = A and
|VÄ| = Λ

Since Goo and uG's are positive definite, expression (35) of the stress tensor yields

\T (x ,t)\2 < (l + a)\Goo(x)\E(x,t)Goo(x)E(x,t)- ( l + i ) £ | J _ g ^ ^ |x

R+

x i J u G i ( i , w ) [ £ i ( i , w ) - ^ ] ^Εΐ{χ,ω) - du.

R+

Choosing a = —G/” (X)1, (33) and (36) give (37).
IĜ ooî )!

Rem ark 3. For every history E l £ И м , a straightforward calculation yields (see [4])

Ч!м {Е*(х,-)) = Т {х ,і)Е (х ,і) . (38)

We call total maximal mechanical energy at time t, related to the maximal free energy Фм,
the function

eM(t) =  I [ |Ν * , ί ) | 2+ Φ Μ ( ν « * ( * ,0 ) ]ώ + ^ /α(σ)\η(σ,ή\2άσ.
Ω дії
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P roposition 2. For any history и1, such that E 4Є Н м , a positive constant к exists, such
that,

N O II2+ ||v«(i)||2 + H * ) ||2 < keM{t). (39)

Proof. The properties of definetess of G<x> and G's assure that Фд/ satisfies

J ^ M{Et(x,-))dx > ^fifooJIsym Vu(i)||2

Ω

so that

||«(0І|2 +  5оот ||8у тУ и (0 | |2+ а т ||и (0 |||п < 2eM(t). (40)

Finally, the Korn’s inequality applied to (40) yields (39).
In order to define the class of solutions of the evolutive problem in linear viscoelasticity

which saticfies the domain of dependence inequality, we give the following definition:
Definition 4. A function и € 7ί(Ω ,0,τ) is a weak solution of the initial boundary-value

problem (2) in the space time domain Ω X (0,r) with initial history u° so that sym Vu° Є Фо
and f € L2(fi,0,r) if u{x,0) = «0(2,0) almost everywhere in Ω and

j J j |g 0(z)Vu(x, î) + J g ' ( x , s )u\ x , s)ds]v<£(x,i)-
0 Ω ^ 0

—ii{x, І)ф(х, і) \dxdt + J J α(σ)η(σ , і)ф(а, t)dadt =

' 0 9Ω

=J ν0(χ)φ(χ,0)dx+J J f{x,t̂ {x,t)dxdt
Ω 0 Ω

for everyφ(χ,ί)Є 77(Ω,0,τ), where Vo = -■^-u°(x,s)\s=o.

Proposition 3. Let и Є %(Ω,0, r) be a weak solution of (2), then

{
symV«(s, t —s) if t > s;

symVu°(s, t - s) if t < s

belongs to Фо and

esssup = T(r) - V |G° ~ G” 1+ |G~ |- (41)(ι,ί)εΩχ(ο,τ) |“ (*,i)| + \(Ег(х, ·)\Μ

Proof. A classical algebric inequality and (37) heads to

2|T(x, 1 M M I < д[|Со(х) - G „(x )| + IGooWO |(E '(x , -)Im + № (* . 0 P. (42)
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with ß > 0. If we choose ß2 = |<7ο(ζ) - Goo(a:)| + |Goo(*)|j (42) gives (41).
Theorem 5. (Domain of dependence inequality). Any weak solution of (2) satisfies

J [|“(*i т)|2+ \{Er(x, ·)\%[]άχ + J α{σ)\η(σ ,τ)\2άσ <
Ωη5Γ(α7ο) ЭД2п £ г (фо)

< J [\ù(x,0)\2+ \(E°(x,-)\2M]dx + J α(σ)\η(σ,0)\2άσ+

Ωπ5Γ+ 7Γ (ατο) 9Ωη5 Γ+-γΓ(®ο)

+2 J f (x ,t)ù (x ,t)d x  dt, (43)

nnSr+7(r_t)(zo)

where Sr(xo) = {x \ \x —xq\ < r} and 7 is defined in (41)·
P roo f Let и : [0, г] —>Η 1(Ω) be a weak solution of (2), and φ a scalar function such that

Φ€ Cq°(R3 X R). We introduce

еФІг) - J ^~\û{x,t)\2+ ΨΜ{Εί(χ,·)^φ (χ,ήάχ + α(σ)\ΰ(σ,ί)\2άσ.
Ω 9Ω

The first derivative of еф and (38) give, after the integration by parts

^ е ф(t) = J [u{x,t) - V T {E \x , ·)]ΰ(χ,ί)φ (χ,ή dx+

Ω

+ j ^ \ ù ( x , t ) \ 2+ ^ Μ( Ε \ χ , ^ φ ( χ ,ή - Τ \Ε \χ ,. ) ΰ ( χ ,ή ν φ (χ ,ή ^ ά χ+

Ω

+\ J α{σ)\ύ(σ ,ή \2φ(σ,ί)άσ. (44)
9Ω

The function φ is now specialised to have the form

ф(х, і) = ф8(\х - æ0| - г - 7 (г - і))

where 7 is defined by (42), ф&ЄC°°(R) and

{
1 if s < -δ;

0 < фі(з) < 1; (P's(s) < 0 , Vs € R,

0 if s > δ·,

so that

νψ {χ ,ή = V\x - x0\φ$, Ψ {χ,ή = ί Φ'3.

Recalling that и is a solution of (2), with this choice of φ, (44) becomes

^ 4 (t) = J f(x ,  t)u(x, ї)фь{ \x - x 0\ - r - 7 (r - t))dx+

Ω

+ / { ї ^ О М ^ + Ф м ^ , · ) ) ] - Γ ( ^ ( ® , · ) * ( * , i ) V ( | * - * o | ) } x
Ω
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хф'6(\х —ж0| —Г—7 (т - t))dx+

+ \ / α (σ)Ιώ(σ’ ΟΙ2705(Ισ —æo| —г —у(т —i))da <
9Ω

< J  f i x , t)û(x, і)ф6(\х - x o \ - r - 7 (T - t))dx, (45)
Ω

and a time integration of (45) gives

Єф(т) - еф{і) < J j f(x ,t) ii(x , {)фв(\х - x o \ - г - η ( τ - t ) )d x  dt. (46)
0 Ω

Finally, since фв tends boundedly to the characteristic function for 5г+7(т_*)(жо) as δ —>0, the
passage to the limit in (46) gives (43).

The free energy Φμ exists for any relaxation function satisfying the minimal set of pro
perties which have been required to have agreement with thermodynamic principles. On
the other hand, in the class of linear viscoelastic materials there is not a unique free energy 
functional, and for relaxation functions G with further properties is possible to give an explicit 
representation of other free energy functionals as shown in the following examples.

Exam ple 1. The relaxation function G is compatible with thermodynamic principles, 
moreover G' is negative definite and G" is positive semidefinite. Under these hypothesis the 
functional

Φσ (^ (* ,· ) ) = \G oo{x )E \x , t ) ■E \x , t ) ~

J С (х ,8 )[Е г{х ,8) - Ε (χ ,ή ] ·[Ε *{χ ,8) - E(x,t)]ds

R+

in the “GrafR - Volterra” free energy density [18].

P roposition 4. Φσ defines a norm, namely \Ε*(χ, ·)|^ 1= 2ψα{Ε*(χ, ■)) and the space
Hg, obtained as a completion of Go relative to this norm, is a Banach space. Moreover the
stress tensor T is well-defined and is continuous on B g , in the sense that

\T (x ,t)\2 < [|G0(x) - Gco(x)| + |Соо(х)Ш^(х, ·)Ισ· (47)

Proof. Since Goo and —G' are positive definite, (1) yields 

\T (x ,t)\2 < (l + ß)\G00(x)\E (x,t)G00( x )E ( x ,t ) - ( l + i ) | J -G'(*,e)<fc|x

R+

X J G '(x , s fiE ^x , s) - E (x, t)][E \x, s) - E(x, t)]ds, (48)

R+

with ß > 0. If we choose ß = —^°°(Ж)І, (48) gives (47).
|Goo(®)|
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Inequality (47) leads to the domain of dependence inequality for weak solutions of (2) with
initial history u° Є Hg-

In the next example an unidimensional relaxation function is considered:
Example 2. The relaxation function G is given by a sum of exponential functions:

k=1

with ак, к = 1 ,2 ,... , N , positive constants, G and Ak, к = 1 , 2 , . . N positive functions
belonging to (7(ΩΠθ1(Ω)).

Viscoelastic materials with relaxation functions of this kind have been studied in [12] and
[13] (with a defferent approach) and the following free energy functional is defined

Φe{E \x , ·)) = ^G 00(x)E (x ,t)E (x ,t)+

+ \ J J G"{x,si + s2)[ß i (a:,s1) - Ε(χ,ή][Ε*(χ, s2) - E(x,t)]dsids2.

R+ R+

Proposition 5. Фе defines a norm, namely \Et{x, -)|g =f 2tpe(E t(x, ·)) and the space He,
obtained as a completion of Go relative to this norm, is a Banach space. Moreover the stress
tensor T is well-defined and is continuous on B e, in the sense that

\T{x,t)\2 < G o {x ) \E \x ,.) \l (49)

Proof. The constitutive equation (1) for the stress tensor can be rewritten

T (x ,t) = Goo(x,t)E(x,t) + Σ akAk{x)Ek(x,t),
к= і

where Ek(x,t) = f  е~акЯ[Е*(х,82) —E(x,t)]ds, and the following inequality holds
R

\T (x,t)\2 < ÎG00(x) + Y ^ A k(x ) ] (G 00(x)E2(x,t) + Y ^ a 2kAk( x )E l ( x , t ) \ (50)
v k= 1 J v k= 1 '

and (49) is a consequence of (50) and of the following relations:

GocOr) + Σ Ak(x) = Go(x); Σ (УІАк(х)еак^ +^ = G"(x, Sl + s2).
k= 1 k=1

R em ark 4. For the unidimensional models of linear viscoelasticity

I G o ^ - G o o C r ) ! + |G 00( a:) | = G o ( z )

and (37), (47) becomes

|Г (М )Р < G „w |Я ‘(*,-)І2М; |Г (і , і ) |2 < G„(x) |Β*(*,·)||,.

The spaces Ίία and He are larger than Тім because they include, for example, bounded
periodic histories which are not in R mi so that for relaxation functions defined in Examples 1
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and 2, the domain of dependence inequality for the evolutive problem (2) can be proved for a 
lager class of initial data. However it is important to observe that for initial histories belonging 
to Go, the best estimate of the speed of propagation is given by defined in (41), because Фд̂
is the maximal free energy.

5. Hyperbolicity. Inequality (41) assures that the ratio . ,9 is
|u(x ,t)| + K-E· (æ>')\m

bounded by the constant \f\Go —Gool + |Goo| which depends neither on the time t nor on
the solution u. This property gives the domain of dependence inequality (Theorem 5) and 
sufficient conditions for hyperbolicity of problem (2). In order to prove the last assertion, we
recall the definition of hyperbolicity for differential operators of type:

Lu(x,t) = 0 in Ωχ(Ο ,το),
(51)

u(x, 0) = uo(x) in Ω.

Definition 5. The operator L is hyperbolic if for every smooth initial data щ satisfying
Uq(x ) — 0 for X Є Ω \5 Γ(*ο), problem (51) has a unique smooth solution u (x,t) having finite
signal speed, i.e. there exists a positive scalar constant c such that и at time t vanishes outside
the set Sr+ct П Ω (see [14] and [15]).

The above definition can be extended to an integrodifferential system by substituting the 
initial data u0 with the history of и at time t = 0, ut=0(x,s) = u°(x,s).

Theorem 6. Under the hypotheses of Theorem 5 problem (2), with source f = 0 in
Ω X (Ο,το) and initial history u°(x,s) = 0 in Ω \5 Γ(ϊο), has a unique solution и which at time
t vanishes outside the set ΩПSr+Ct (^o), with c = \J\Gq—Gqo| + |Goo|·

Proof. Let и be a weak solution of (2) and x Є Ω \ (S^r+ct^o) ^ ^ ). The conditions on
the source and the initial history with (43) lead to

J [WM)|1234+|(SV, ·)Ιϋ,]* + / (52)
ttnsr(ï) annsr(s)

By virtue of (39), the equality (52) assures that u(x,t) = 0 in ΩΠ Sr(x).
Since x is an arbitrary point of the set Ω\ (S^r+ci (^o)ΠΩ), we can conclude that u(x, t) = 0

outside the set Sr+ct (®o) ΠΩ.
R em a rk 5. Theorem 6 emphasizes the importance of the existence of an upper bound 

for the propagation speed of the disturbances. In fact without this upper bound we cannot
obtain the hyperbolicity of the integro differential problem as a consequence of the domain of 
dependence inequality.
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