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This paper deals with a new optimal existence theory for single and multiple positive periodic solutions
to functional differential equations by employing a fixed point theorem in cones. We illustrate our theory
by examining several biomathematical models. The paper improves and extends previous results in the
literature.

3 BUKOPUCMAHHAM MeopemU NPO HEPYXOMY MOUKY 8 KOHYCAX PO3RAAHYIMO ONMUMAABbHY MeOPiio iCHY-
BAHMA €OUHO?20 | KPAMHUX 000AMHUX NePIOOUHHUX PO36°A3KI8 (PYHKUIOHAALHO-OUDepeHUIANbHUX DiG-
HAHb. Teopito npoinlocmposano NPUKAAOAMU KIAbKOX MAMEMAMUYHUX MOO0enell, U0 BUKOPUCTOBY-
romucsa 6 6iona02il. OMpUMAaHi pe3yabmamu NOKPAUYIOmMb i y3a2aabHIOIOMb HONEPEOHi Pe3y.Abmami.

1. Introduction. The purpose of the present paper is to present optimal existence conditions for
single and multiple positive periodic solutions for the general functional differential equation

Y (t) = —a(t)y(t) + g(t, y(t — 7(1))) (11)

where a(t) € C(R, (0,00)), 7(t) € C(R,R), g € C(R x [0,00),[0,00)), and a(t), 7(t), g(t,y)
are all w-periodic functions; here w > 0 is a constant.

It is well known that the functional differential equation (1.1) includes many mathematical
ecological equations. For example, see the Hematopoiesis model [1 -3]

Y (1) = —a(t)y(t) + b{t)e OV, (12)
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and the more general model of blood cell production [1, 3-5]
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Y (t) = —a(t)y(t) + bt) n >0, (1.3)
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—a(t)y(t) + b(t) n > 0; (1.4)

and also the more general Nicholson’s blowflies model [1, 3, 6 —8]

Y (t) = —a(t)y(t) + b(t)y(t — 7(t))e POYE-T®), (15)

To our knowledge, there are only a few papers on the existence of positive periodic solutions
for Eq. (1.1), even for (1.2) — (1.5). The systems (1.2), (1.3) and (1.5) have been investigated in [2,
4, 6]. In these papers estimates of solutions are obtained and also it is shown that the solutions
are uniformly bounded and uniformly-ultimately bounded. In addition a group of conditions
are given to guarantee the existence of one positive w-periodic solution for Eq. (1.2), (1.3) and
(1.5) by applying the Yoshizawa theorem [9].

Very recently, the authors in [3] have considered the existence of one positive periodic
solution for the general functional differential equation

Y (t) = —a(t)y(t) + b(t) f(t,y(t — 7(t))) (16)

where a(t), b(t) € C(R,(0,)), 7(t) € C(R,R), f € C(Rx][0,00),[0,00)),and a(t),b(t), (t),
f(t,y) are all w-periodic functions; here w > 0 is a constant. The main results in [3] are as
follows.

Theorem A. Egq. (1.6) has at least one w-periodic positive solution, provided the following
condition holds:

lim min f(tw) =00 and lim max ftw)
ul0 te[0,w] u utoo te[0,w] U

=0 (sublinear).

Theorem B. Assume that

By) minyejo. {b(t) — a(t)} > 0

By) there exists a g > 0 such that f(t,u) is increasing in 0 < u < eg. Then Eq. (1.6) has at
least one w-periodic positive solution, provided the following condition holds:

t t
lim min (t, u) =1 and lim max AGED)
ul0 te[0,w] u utoo te[0,w] U

= 0.

The proofs of Theorems A and B are based on an application of the norm-type compression
theorem in cones due to Krasnoselskii (see [10, 11]).
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Motivated by the work above, in this paper we shall present a new optimal existence theory
for single and multiple positive periodic solutions of Eq. (1.1).
Let

O = ¢€

o—g

a(§)dg
. (1.7)

In this paper, we have the following hypotheses:
t
gt w) > a

t

H;) liminf, 9t w) > a(t) and lim inf J (t);
u uToo u
t t

Hs) limsup, g 9t ) < a(t) and limsup g(t.u) < a(t);
u utoo u

Hj) thereis a p > 0 such that op < u < p implies
g(t,u) < a(t)p, 0<t< w
H,) there is a p > 0 such that op < u < p implies

g(t,u) > a(t)u, 0<t<w.

Remark 1. If there isa p > 0 such that op < u < pimplies
g(t,u) < a(t)u, 0<t<w,

then H3) holds.

2. Main results. First of all, notice that to find a w-periodic solution of Eq. (1.1) is equivalent
to finding a w-periodic solution of the integral equation

o) = [ Glt9)g(s.uls — 7(5)is, 2.1)

where

Gt s) := L : (2.2)

One can see, for s € [t,t + w], that

AL Gt < Gt,s) < Gt t+w) L B, (2.3)
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where
exp | [ al)ie
A= — ! , B = A0 .
exp /a(ﬁ)df -1 exp /a(§)d§ -1
0 0
Thus ¢ = A/B, where o is as in (1.7).
Let
X ={y(t) : y(t) € C(R,R),y(t +w) = y(t)}, (24)
and define
lyll = sup {ly(t)] -y € X}
te[0,w]
Then X with the norm || - || is a Banach space.

By using (2.1), (2.2), we know for every positive w-periodic solution of Eq. (1.1), one has

Iyl < B / 9(s,y(s — 7(5)))ds,
0

and

o(t) = A [ gls,u(s = 7(s)))ds,
0
so we have

u(t) = Lyl = olyl. (25)

The following theorems are our main results.

Theorem 1. Assume that H,) and Hs) are satisfied. Then Eq. (1.1) has at least two w-periodic
positive solutions y, and ys such that

0 <ol <p <yl

Corollary 1. The conclusion of Theorem 1 remains valid if H,), is replaced by:
t t

H7) liminf, o 9t w) = o0 and lim inf g(t,v) =
U uToo U

Theorem 2. Assume that Hs) and H,) are satisfied. Then Eq. (1.1) has at least two w-periodic
positive solutions y, and ys such that

0 <[l <p <l
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Corollary 2. The conclusion of Theorem 2 remains valid if H) is replaced by:

t t
9(t,v) =0 and limsup g(t,v)
u uToo u

= 0.

H3) limsup,, 10

Theorem 3. Egq. (1.1) has at least one w-periodic positive solution, provided one of the
following conditions holds:

g(t, u)

t
i) liminf, o 9t w) > a(t) and limsup disp———= < a(t);
u utoo u
t t
ii) limsup,, g 9t ) < a(t) and lim inf gt u) > af(t).
utToo U

Corollary 3. Eq. (1.1) has at least one w-periodic positive solution, provided one of the
following conditions holds:

t t
i) liminf, o gt u) =o00 and limsup gt u) =0 (sublinear);
u utoo u
ii) limsup,, g gt u) =0 and lim i%lf gt u) = oo (superlinear).
u uToo u

Remark 2. Theorem 3 extends and improves Theorems A and B in [3].

Remark 3. Note that if g(¢,u) = a(t)u, then the existence of positive w-periodic solutions
for linear problem

y (8) = —a()y(t) + a(t)y(t - 7(1))
cannot be guaranteed. As a result the conditions in Theorems 1 -3 are optimal.

3. Proof of main results. First, we state the fixed point theorem in cones which will be used
in this section.

Lemma 1[10]. Let X = (X, || ||) be a Banach space and let K be a cone in X. Also, v, R
are constants with 0 < r < R. Suppose ® : Qr N K — K( here Qr = {z € X,||z|| < R}) be
a continuous and completely continuous operator such that

i) © # Aoz, for\e€|[0,1] and x € K NOQ,,
and

ii) there exists p € K\{0} such that x # ®x + §p forx € KNIQrand § > 0.

Then ® has a fixed pointin K N {x € X : r < ||z|| < R}.

Remark 4. In Theorem 1, if i) and ii) are replaced by

i) *x # Xz, for € [0,1] and x € K NINg,
and

ii) * there exists ¢ € K\{0} such that z # ®x + Jy forz € K N 9N, and § > 0.
Then @ has a fixed pointin K N{z € X : r < ||z|| < R}.
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Let X be as in (2.4). Define an operator on X as follows:

y =y (3.1)
where @ is defined by

t+w

(@y)(t) = / G(t, 5)g(5,y(s — 7(s)))ds, (32)

t

for y € X. Clearly, ¢ is a continuous and completely continuous operator on X.
Let

K={yeX:ylt)>0 and y(t) > o|y|};

here o is as in (1.7). It is not difficult to verify that K is a cone in X.
Lemma2. ¢(K) C K.

Proof. For any y € K, we have

|oy| < B / o5, y(s — 7(s)))ds,
0

and

(®y)(t) > A / a(s,y(s — 7(s)))ds.
0

Thus we have
A
(@y)(1) > S0yl = ooy,
i. e.,, ®y € K. This completes the proof of Lemma 2.

Proof of Theorem 1. Suppose that H;) and H3) hold. By using the first inequality of H;),
g(t,u)
u

i.e., liminfy, o > a(t),one can find 0 < r < pand e > 0 such that

g(t,u) > a(t)(1 +¢&)u, whenever 0 < u <r. (3.3)

Thus, if y € K with |ly|| = r, then y(t) > or.
Let ¢y = 1 and we now prove that

y#*=dy+dyp for ye KNoQ,. and § > 0. (34)
If not, there exist yg € K N 992, and g > 0 such that
Yo = Pyo + ot

ISSN 1562-3076. Heainitini koausarnns, 2003, m. 6, N 3



340 D. JIANG, D. O’REGAN, AND R.P. AGARWAL

Let 1 = minger yo(t). Then for ¢ € R we have

Yo(t) = (@yo)(t) + do =
t+w
= / G(t,s)g(s,y0(s — 7(s)))ds + do >

t

t+w

/ G(t, 5)a(s)(1 + &)ols — 7(5))ds >

v

and this implies ;1 > p(1 + €), a contradiction.
Next, by using the inequality in Hs), we prove that

y# Ay for ye KNoQpand0 < X < 1. (3.5)
If not, there exist yp € K N9, and 0 < A9 < 1 such that
Yo = AoPyo.
Clearly, \p > 0. Thus, ||yo|| = pand op < yo(t) < pfort € R, so we have
g(t,yo(t —7(t))) < a(t)p, t € R. (3.6)

Then we obtain

and this implies ||yo|| = p < p, a contradiction.

In view of (3.4) and (3.5), by Lemma 1, we see that ® has a fixed point y; € K and r <
< |lyll < p. Thus y1(t) > or > 0, which means that y;(¢) is a w-periodic positive solution
of (1.1).
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t
Next, by using the second inequality of Hy), i. e., liminf, 1o g(u,u) > a(t), one can find
ry > pand e > 0 such that
g(t,u) > a(t)(1 +¢)u, whenever u > ry. (3.7)
1
Let R = —, so we have
o
u(t) > ollull =R =7 for ue KNoNg. (3.8)
Thus, if y € K with |y|| = R, then y(t) > cR = ry.
Let ¢ = 1 and we now prove that
y# dy+oy for ye KNoQr and § > 0. (3.9)

If not, there exist yg € K N IQg and §y > 0 such that
Yo = Pyo + ot
Let 1 = minger yo(t). Then for ¢t € R we have

yo(t) = (Pyo)(t) + do =
t+w
- / G(t, 5)g(s,yo(s — 7(s)))ds + 6o >

t

t+w

> / G(t,s)a(s)(1+e)yo(s — 7(s))ds >

t

t+w

>p(l+e¢) / G(t,s)a(s)ds = p(1 +¢),

and this implies ¢ > u(1 + €), a contradiction.

In view of (3.5) and (3.9), by Lemma 1, we see that ® has a fixed point y» € K and p <
< |ly2|]| < R. Thus y2(t) > op > 0, which means that y5(t) is a w-periodic positive solution
of (1.1).

This completes the proof of Theorem 1.

Proof of Theorem 2. Suppose that Hy) and Hy4) hold. By using the first inequality of Ha),
g(t,u)
u

i.e., limsup, o < a(t),onecanfind0 < r < pand 0 < € < 1 such that

g(t,u) < a(t)(l —e)u, whenever 0 <u <r. (3.10)
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Thus, if y € K with |ly|| = r, then y(t) > or. We want to show that
y#= A0y for ye KNOQ, and 0 < )\ < 1.
If not, there exist yg € K NI, and 0 < A\g < 1 such that
Yo = AoPyo.

Clearly, A\g > 0. Then we have

:M/amew—mmws

t

t+w

< / G(t,s)a(s)(1 —e)yo(s — 7(s))ds <

t

t+w

<=9l [ Gltsalsds -
t

= (1 =2)llyoll;

and this implies ||yo|| < (1 — €)||yo]|, a contradiction.
Next, by using the inequality in Hy), and letting ¢y = 1 we now prove that

y#®y+6y for ye KNoQ, and 6 > 0.
If not, there exist yg € K NS, and 6o > 0 such that
Yo = Pyo + do¢.
Thus, |lyo|| = pand op < yo(t) < pfort € R, so we have

gltyot = T(1)) > albyolt —7()), t € R.

(3.11)

(3.12)

(3.13)
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Let 1 = minger yo(t). Then for ¢ € R we have

Yo(t) = (Pyo)(t) + o =

t+w
= / G(t,$)g(s,yo(s — 7(s)))ds + 6o >

>u [ Gl =

t

and this implies 1 > p, a contradiction.

In view of (3.11) and (3.12), by Lemma 1, we see that ¢ has a fixed point y; € K and
r < |ly1]] < p. Thus y1(t) > or > 0, which means that y; (¢) is a w-periodic positive solution
of (1.1).

Next, by using the second inequality of Hz), i.e., limsup,1o, g(tu,u) < af(t), one can find
ry > pand 0 < € < 1 such that
g(t,u) < a(t)(1+¢e)u, whenever u > ry. (3.14)
Let R = %1, so we have,
u(t) > oljull = ocR =r1 for uw e KNOoQg. (3.15)

Thus, if y € K with |y|| = R, then y(t) > oR = r1.
Essentially the same reasoning as before (the details are left to the reader) yields

y# APy for y€ KNoNr and 0 < A< 1. (3.16)

In view of (3.12) and (3.16), by Lemma 1, we see that ® has a fixed point y» € K and
p < |ly2|]| < R. Thus ya(t) > op > 0, which means that y»(¢) is a w-periodic positive solution
of (1.1).

This completes the proof Theorem 2.

Proof of Theorem 3. Essentially the same reasoning as in the proof of Theorems 1 and 2
establishes the result.

Remark 5. Essentially the same reasoning as in this paper establishes (the details are left
to the reader) the existence of single and multiple positive periodic solutions for the general
Volterra integro-differential equation (see [12], which has results similar to those in [3])

0
U (1) = —a(t)y(t) + / K(r)g(t,y(t +r))dr
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where a(t) € C(R,(0,00)),g9 € C(R x [0,00),[0,00)), and a(t), g(t, y) are all w-periodic functi-
0
ons; here w > 0 is a constant. Moreover, K (r) € C((—o0,0], [0,00)) and/ K(r)dr = 1.

4. Examples. In this section, we apply the main result obtained in the previous section to
examples modelling biological phenomena.
It follows from Theorem 3 and Corollary 3 that the following results hold.

Corollary 4. Assume that

Hi)a(t), b(t) € C(R,(0,00)), B(t) € C(R,(0,00)),7(t) € C(R,R), a(t),b(t), 7(t) and 5(t)
are all w-periodic functions, here w > 0 is a constant.

Then Eq(1.2) has at least one w-periodic positive solution.

Corollary 5. Assume that

Hi) a(t), b(t) € C(R,(0,00)), 7(t) € C(R,R), a(t),b(t) and 7(t) are all w-periodic functi-
ons; here w > 0 s a constant.

Then Eq. (1.3) has at least one w-periodic positive solution.

Corollary 6. Assume that

Hj) a(t), b(t) € C(R,(0,00)),7(t) € C(R,R), a(t),b(t) and 7(t) are all w-periodic functi-
ons; here w > 0 is a constant;

Hs) b(t) > a(t) fort € [0,w].

Then Eq. (1.4) has at least one w-periodic positive solution.

Corollary 7. Assume that

H;) a(t), b(t) € C(R,(0,00)), B(t) € C(R,(0,00)), 7(t) € C(R,R), a(t),b(t),7(t) and
B(t) are all w-periodic functions; here w > 0 is a constant;

Hs) b(t) > a(t) fort € [0,w].

Then Eq. (1.5) has at least one w-periodic positive solution.

Corollary 4 and Corollary 5 can be checked easily. For Corollary 6 and Corollary 7 notice

im 98—y > ) and  tim 28 0 < aq),
u0 U utoo u

so the result follows from Theorem 3.

Example 1. Consider the equation

y (t) = —a(t)y(t) + b [yt — () + y°(t —7(t))], 0 <a <1<b, 4.1)

where a(t), b(t) € C(R, (0,00)), 7(t) € C(R,R), and a(t), b(t), 7(t) are all w-periodic functi-
ons; here w > 0 is a constant.

Applying Theorem 1, we will show that Eq. (4.1) has two w-periodic positive solutions provi-
ded

b(t) x

max < S .
te0,w] Cb(t) :):E(O,F;o) 2% 4 b

(4.2)
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Set g(t,u) = b(t)(u® 4 u’), then

t t
limM =o0 and lim M = 00,
u0 U uToo U
so Hj) holds. Set
x
T —
(z) gy £ 0

then T'(0+) = 0,7 (c0) = 0, and

Then for op < u < p, we have

<a(t)(p* +p") Baox Z((g <

<a(t)(p*+p")T(p) = a(t)p,

so Hs) holds. Then the result follows from Theorem 1 (or Corollary 1).
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