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EXISTENCE OF A CONTINUOUSLY DIFFERENTIABLE SOLUTION OF A
CAUCHY PROBLEM FOR A SYSTEM OF INTEGRO-FUNCTIONAL
EQUATIONS WITH PARTIAL DERIVATIVES AND LINEARLY
TRANSFORMED ARGUMENTS
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A theorem of existence of continuously differentiable solution of a system of integro-functional
equations with partial derivatives and linearly transformed arguments is proved.
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We consider a system of nonlinear differential equations

up — Aug = f(t,z,u(z, t), u(At, z), u(\t, px),

h(t,z)

/ V(t,x, s,u(s,z), u(As, ), u(As, ux))ds), (1)

0

where A = diag(A1, ..., ), Aiy i = 1,n, are real numbers, A\, u € R (An # 0),¢, x belong to
some closed domain D, f(t,z,v1,v2,v3,v4) : D x R” x R® x R x R! — R”, where

h(t,z)

vt = / Bt 2, 5, u(s, 2), u(rs, 2), u(As, jz) )ds,
0

u(t, ) is an unknown vector-valued function.

Denote by A, = min A;, A* = max );, and assume that the domain D is bounded by
1<i<n 1<i<n

a segment [0, a] on the axis OX (a = const > 0) and characteristics [; and Iy, with angular
coefficients 1/A* and 1/\,, starting in the points 0 and a, respectively.

The aim of this article is to study the problem of existence of a solution of the system such
that the solution has a continuous derivative of the first order in D. Also, this solution should
satisfy the initial condition

where ¢(z) is a vector-valued function continuously differentiable in the segment [0, a|.
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Theorem 1. Let the following conditions hold:
DA A <0and0 < A< p<1

h(t,z)
2) Sup f(t7 a”"? 07 O? 07 f w(t? w’ 8’ 0’ 07 O)ds)
0

(t,x)eD

h(t,x)
= sup max |fi(t,«,0,0,0, / P(t,x,8,0,0,0)ds)| = My < oo,
(t2)eD 151 /

sup_|1(t,2,5,0,0,0)] = sup  max [¢;(t, z,s,0,0,0)] = Mz < oo,
(t,2)eD (t,x)eD 1SS

[h(t,z)] < N, fp(z)] < M

299

3) the vector-valued functions f(t,x,v1,va,vs,vs, V(t,x,s,v1,v2,v3) and their partial deri-

vatives,
621+12f(t7 x, V1, V2, V3, ’04) 8114‘121][)(757 x,Ss,v1, V2, US)
Dt Ou2 ’ Ozt Ov? ’
J

are continuous with respect to all variables for every (t,z) € D, v; € RY, vy € R, v3 € R?,

vy € R and satisfy the Lipschitz condition

|f(t,a:,vi,v§,vé,vﬁl) - f(tvxv 'Ui/’ Ug?”él’vﬁll)‘

< Ui — o]+ vy — vy + Jog — vg] + vl — vf]),

i1+17 / / / / 21 +17 "o 0
81 Qf(t7x7v1>v2>v3>v4) _al Qf(t,$,v1,v2,03,v4)
Oz 81);-2 Oz (%;2

< U(Joh = VY| + o — o3| + vy — vg] + |vi — vf]),

‘w(t7 x? 87 ’Ui, ’Ué, ’Ué - w(t7 x? 87 Ui’? /Ué/7 vg

< () = of |+ v — vg| + [vg — vy,
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O 2(t, x5, 0], vh,v5)  ONTRY(t s, 0] vY vY)

ozh 81);-2 ozh 811;-2

<

< U(Jvy — o] + v — vg] + [v5 — 25]),
where [, [* = const > 0,

(t,z, v}, vh, v, vh), (t, z, 0, v5, v, v]) € DxR™ x R" x R" x R — R™,

(t,z, 8,01, 05, v5), (t,x,8,0],05,05) € D x R" x R" x R" x R! — R™.

Then there exists a continuously differentiable solution of the problem (1), (2) in the domain D.

Proof. First of all it is sufficient to show that there exists a solution of the system of integral
equations of the form

t

ui(t,a:) = gDZ'(.I — )\z‘t) + /fz'(T, )\z‘(T —t) —|—x,u(7', )\i(T —t) —|-.%'),
0

U(AT, Ni(T — t) + 2, u( AT, p( N (T — t) + ),

h(t,z)

/ (T, Ni(T —t) + x), 8, u(s, \i(7 — t) + ), u(As, \i(T — t) + ),
0

w(As, p(\i(7 —t) + x))ds))dr, 3)

which is continuously differentiable with respect to ¢ and = in D.

In order to construct a solution of the system (3), we can use the method of successive
approximations. The successive approximations «;",i = 1,n,m = 0,1,..., are defined the
following relations:

u?(t,:c) =0,
¢

ul*(t, ) = pi(z — A\it) —|—/fi(7', N(T—t) + 2, u™ N, N(T — 1) + 2),
0

umil()ﬂ-a AZ(T - t) +, umil()ﬂ-v H(AZ(T - t) + l’)),
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h(T,x—\;t)
/ (T, Ni(T —t) + 2), 8, um_l(s, Xi(T—1t) 4+ z), um_l()\s, ANi(T—t)+ ),
0
u™ (s, u(Ni (T — t) + x))ds))dr, i=1,n, m=12,.... 4)

We shall show that the sequences of the continuous functions u"(¢t,z), i = 1,n,m =
0,1, ..., uniformly converge to some continuous functions u;(¢, z),i = 1,n, forevery (¢t,x) € D.
It is sufficient to show that the following estimates hold:

31Qt)™

' (6 ) — ' (4 0)] < M

= 1,n, where M,(Q = const > 0, (5)

for every (t,z) € Dand m > 1.
Condition 2), for m = 1 and (3), implies that

t
Ju (t, ) — (8, 2)] < Jgi(z — Nit))] +/ fi(m, Xi(T — 1) 4+ 2,0,0,0,
0

h(T,x—A\it)

(T, Ni(T —t) + x),s5,0,0,0)ds|dT < M; + Mat = M.

0

In this case the condition (5) is satisfied.
Suppose that the condition (5) holds for some m > 1 and show that it will be the same if
we pass from m to m + 1. Indeed, in view of (4), 2), 3), and (5), we have

t
' (ta) — ko) < [
0

uT (AT, N (T =) + x), u" (AT, p( N (T — t) + 7)),

filr, Ai(T —t) + x, ™ (7, Ni(T — t) + ),

h(T,mf)\it)

(T, Ni(T =)+ 2),8,u™ (s, (T — t) + ), u™ (As, (T — t) + ),

[e=]

u™ (s, (N (T — t) + 2))ds) — fi(r, Ni(T — ) + 2, u™ 1, N (T — t) + 2),
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um_l()n', Xi(T—1t) 4+ z), um_l()\T, uwNi(T —t) + ),

h(t,z)

/ DT, (T —t) + ), 5,u™ s, N (T — ) + 2), ™ (As, \i(T — t) + 1),
0

u™ s, (N (T — t) 4+ 2))ds) |dT

S/l(|um(7', N(T—t) +2) — ™, (T — t) + )|
0

+ [T, N (T —t) ) —u™ T O, N(T — ) 4 1)
+ [ O, pNi(T = 1)+ 2)) = u O p(Ni(T — t) + )

h(T,z—\;t)

+ / F(lu™(s, (T —t) + ) —u™ s, (T — t) + 2)|

o

+ [u™Ns, \i (T — ) + 1) —u™ (A8, Ni(T — t) + 2)

BlQH)™

+ |u™(Ns, pONi (T — 1) + 1)) — ™ (s, u(Ni(T — t) + 2))|)ds)dr < M -

Y

where Q = 1+ [*N. Thus, condition (5) is satisfied for every (¢,) € D and m > 1. From this
it follows that the series

Z(u?‘(t, .%') - u;n—l(t’ x))? 1= 17”7

m=1

and, the sequences u"*(t,z),7 = 1, n, are uniformly convergent to some continuous functions
ui(t,r),i = 1,n, with respect to t, z for every (¢,z) € D.

Passing to the limit as m — oo in (4), we can verify that the functions w;(¢,z),7 = 1,n, are
solution of the system (3).

Let us prove that the obtained solution is continuously differentiable with respect to ¢, x for
every (t,z) € D.Itissufficient to show that the sequences of functions du? (¢, x) /dx, Oul"* (¢, z)/
ot,i = 1,n,m = 0,1,..., are uniformly convergent to some continuous functions u/* (¢, z) with
respect to t, z for every (t,z) € D.
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In view of (4), we have

ou(t, )
Ox

t
ouj*(t,z) ' Ofi(m—1)  9fi(m—1) 0u™ (r,\i(T — t) + )
ox =¢(z = Ad) + / ( ox + ouy ox

0

dfi(m —1) aum_l()\T, ANi(T—t)+ )
+
Ovy ox

n Mafi(m — 1) Qu™ (A7, p(Ni(T — 1) + 7))

Ovs ox
h(T,z—A;—t)
n dfi(m —1) / oY;(m — 1) n ai/)i(mf1)3um_1(s,)\i(77t)+x)
vy ox ovy ox

0

N Afi(m —1)oum™ (s, \i(7 — t) + )

Ovy Ox
Oi(m — 1) Ou™ 1 (As, u(Ni(T — t) + x))
+ u 903 % ds | |dr,
ﬁug(t,w) B
o 0,
W = N (x = N\t) + fi(r, (T — ) + um_l(T, Xi(T—1t) 4+ z),

WY (T — 1) + @), 0 O, (7 — 1) + @),

h(T,z—\;t)

Vi(T, Ni(T —t) + 2, 8, um_l(s, ANi(T—t)+ ),

[en]
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um_l()\s, Ai(T—t)+ ), um_l()\s, pw(Ni (T —t) +x)))ds)

t

' Ofilm —1)  Ofi(m—1) 0u™ Y1, Ni(T —t) + )
B )\l/ ( ox + vy ox
0

Ofi(m — 1) ou™ Y Ar, \i(7 —t) + )
+
Oy ox

n Mﬁfz’(m — 1) ou (O, p(N( — t) + 1))

ovs ox
+ sz((;n—l) <¢i(7’ )\i(T — t) +x,s, um_l(s, )\i(T — t) + x),
V4

um_l()\s, Xi(T—1t) 4+ z), um_l()\s, uwNi(T —1t) +x)))

h(T,CE—)\it)

. / <81/J¢(m ~1), Oui(m ~1) oum1(s, \i(1 — 1))

ox ovy ox
0

oY;(m — 1) 8um_1()\s, Ai(T —1))
+
Ovy ox

Obi(m — 1) du™ (s, u(Ni(T — 1))
T ovs ox > d8> > ar,

where
film —=1) = Yi(r, \i(7 —t) + ac,um_l(T, ANi(T—t)+ x),um_l()n‘, Xi(T—1t) 4+ 2),

h(T,(E—)\Z‘t)

u™ (O, p(Ai(r —t) + x)), / (T, M(T —t) + s, u™ (T, Ni(T — t) + ),
0

u™ YO, (N (T — t) + 2)))ds).
Now, it is sufficient to prove that only sequences

ou™(t, )
or

1 =1,n, m=0,1,...
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are uniformly convergent for every (t,z) € D.
Let us prove that the following relations hold:
our(t,x)  ou Nt x) (KtQ)™!
? _ 7 < 27’
Ox Ox - (m—-1)!

(6)

for every (t,z) € D and m > 1, where Q, K, Z are some positive numbers.
As a consequence of (5), we have

[ (t,2)| <|uf(t,2)] + |ui (t, 2) — u (¢, 2))]

o
— ] 1—1
+ o ()| = e g 2)] <Y (f )| = [l ()
j=1

3lTQ ¥t .
<M , 1= 1,n,

foreverym > 1and (¢t,x) € D, where T is some positive number larger than an arbitrary value

of t from the bounded domain D and such that the number series Z;‘;l % is convergent.

Then we have

lui" (t, )| < M,i=1,n,M = const > 0, (7)

for every (t,z) € Dandm > 1.
Analogously, if relations (6) hold, then we have the following inequalities for every (¢, z) € D:

ou™(t ~ ~
Qui(t, ) < N,i=1,n,N = const > 0. (8)
ox
Denote by
(T
L, = supmax Ofilt, z,v1, v2,v3,v4) 7 ©)
D Z'vj 8'0]
L* = sup max awi(t7x787v17v27v3) , (10)
D iJ 0v;
m
N = SupmaX M , (11)
D i ox
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L™ = sup max v , (12)
D 7 ox
where D = {(t,z,v1,v9,v3,v4) : (t,2) € D, |vq] < M,\vgl < M,]vg\ < 1\7,\7)3] < St
Taking into account (1) and (9) we have
ox ox = !
t h(T,z—\;t)
+ / g‘i (T, \i(T —t) +2,0,0,0, gz{; / aaliz (t, Mi(T —t) +x,5,0,0,0)ds)|dT
0 0

< Lo+ Iht < Lo+ LT = Z,

therefore, condition (6) holds for m = 1. Reasoning by induction, suppose that condition (6) is
proved for some m > 1 and show that this condition is the same after passing from m to m + 1.
Indeed, using (5), conditions 2) and 3) of the theorem and (4), (5), (9), (11) we have

ou*(t,x)  Ou*(t, )
ox Ox

t t

(3ZQ) _1/ m—1 * (BZQ) _1/ m—1
<
3IM (m—1)! T dr + 3l M]\fi(m 01 T dr
0 0

t t

AT *% (3ZQ)m_1 m— * (SlQ)m_l m—
+ (BIN+L )(3M(m_1)!/7 i 431 NM(m_m/T Ly
0 0

t t
(EKQ™ ! [ s (KQ™ ' [
+ 3L1ZM!T dT+leMJT dr

@Kt (M (3" (v (3" N 31\
(] ) )

+?WMNZ* 3l m+L**M 3l m+L**l*NM Bl m+37L1+£
70 \K 70 \ K 70 \ K OK QK |
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From this it follows that, for sufficiently large K, @, the inequality
M (3" Nae (3T 3N (31\" SN (31"
ZQ\ K ZQ \ K ZQ \ K ZQ K

ZQ \ K ZQ K QK QK

holds and, therefore, condition (6) is true.

From (6) it directly follows that the sequences du?*(t,z)/dx,i = 1,n,m = 0,1,..., are
uniformly convergent to continuous functions du;(t, z)/dx,i = 1,n, for every (t,z) € D. This
completes the proof of theorem.
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