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Let Rp be a real linear space of p-dimensional vectors with norm |x|, R =]−∞,+∞[ the real
axis, h > 0 a given real number, C a Banach space of continuous functions ϕ : [−h, 0] → Rp
with norm ‖ϕ‖ = max(|ϕ(s)|,−h ≤ s ≤ 0). For any continuous function x : [α − h, β[→ Rp,
α, β ∈ R,α < β, and every t ∈ [α, β[, define a function xt ∈ C by xt(s) = x(t+s),−h ≤ s ≤ 0.
By ẋ(t), we understand the right-hand derivative.

Consider a time lag type functional-differential equation,

ẋ(t) = f(t, xt), (1)

where f : R+ × CH → Rp is a completely continuous mapping, periodic in t ∈ R+, i.e.,
f(t+ T, ϕ) = f(t, ϕ) for all (t, ϕ) ∈ R+ × CH , satisfying the Lipschitz condition in ϕ,

|f(t, ϕ2)− f(t, ϕ1)| ≤ L‖ϕ2 − ϕ1‖, L = L(t), (2)

for all (t, ϕ2), (t, ϕ1) ∈ R+ ×K, and every compact set K ⊂ CH .
With these assumptions, by [1], a solution x = x(t, α, ϕ) of equation (1) is unique and

satisfies the initial condition xα = ϕ; it is also continuous with respect to the initial conditions
(α,ϕ). If the solution x = x(t, α, ϕ) can not be extended outside the interval [α − h, β[, then
‖xt(α,ϕ)‖ → H for t → β.

To describe the limiting behavior of the solution x = x(t, α, ϕ), as t → +∞, we make the
following definition [1].

Definition 1. The orbit γ+(α,ϕ) of a solution x = x(t, α, ϕ) of equation (1) is the set

γ+(α,ϕ) = {xt(α,ϕ), t ≥ α }.
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Definition 2. Let a solution x = x(t, α, ϕ) of equation (1) be defined for all t ≥ α − h. A
point p ∈ CH is called a positive limit point of this solution if there exists a sequence tn → +∞
such that

lim
n→∞

xtn(α,ϕ) = p.

The set of all limit points of a solution x = x(t, α, ϕ) makes a positive limit set, w+(α,ϕ).

According to the definition,

w+(α,ϕ) =
⋂
t≥α

d
(⋃
τ≥t

xτ (α,ϕ)
)
,

where dA denotes the closure of the set A.
One can deduce the following properties of the sets γ+(α,ϕ) and w+(α,ϕ).

Lemma 1. Let x = x(t, α, ϕ) be a solution of equation (1), defined for all t ≥ α. If γ+(α,ϕ)
is precompact, thenw+(α,ϕ) is nonempty, compact, and connected. We also have that xt(α,ϕ) →
w+(α,ϕ) for t → +∞.

Lemma 2. If a solution x = x(t, α, ϕ) is bounded, |x(t, α, ϕ)| ≤ H1 < H for all t ≥ α − h,
and the right-hand side of equation (1) is bounded on this solution,

|f(t, xt(α,ϕ))| ≤ M (3)

for all t ≥ α, then the orbit of this solution, γ+(α,ϕ), is precompact.

Because the function f = f(t, ϕ) is completely continuous independently of t or periodic
in t, it follows that it is bounded on the set R+ × CH1 for any H1 < H . This observation and
Lemma 2 give the following.

Corollary 1. If a solution x = x(t, α, ϕ) of periodic equation (1) is bounded, |x(t, α, ϕ)| ≤
H1 < H for all t ≥ α− h, then its orbit, γ+(α,ϕ), is precompact.

The most important property of the positive limit setw+(α,ϕ) of a solution of an autonomous
or periodic equation is that it is invariant. A detailed treatment of this problem is given in [1].
In what follows, we give a modification of the invariance property in the case of a periodic
equation.

Let the right-hand side of equation (1) be a periodic function of t with some T > 0, i.e., we
have f(t+T, ϕ) = f(t, ϕ) for all (t, ϕ) ∈ R+×CH . It is easy to see that a solution x = x(t, α, ϕ)
of such an equation satisfies

x(t+ nT, α+ nT, ϕ) = x(t, α, ϕ), t ≥ α, (4)

for every point (α,ϕ) ∈ R+×CH and every number n ∈ N. Hence, solutions x(t, α, ϕ), determi-
ned by initial conditions (α,ϕ) ∈ [0, T [×CH , define a totality of all solutions of (1).
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Definition 3. A set M ⊂ CH is called invariant if for any point ψ ∈ M there exists time
α ∈ [0, T [ such that the solution x(t, α, ψ) is defined and contained in M , xt(α,ψ) ∈ M for all
t ∈ R.

Theorem 1. Let a solution x = x(t, α, ϕ) of equation (1) with a periodic right-hand side be
bounded, |x(t, α, ϕ)| ≤ H1 < H for all t ≥ α.

Then the positive limit set w+(α,ϕ) of this solution is connected, compact, and invariant.

Proof. Lemmas 1 and 2 imply that the set w+(α,ϕ) is connected and compact. Let us show
that it is invariant.

Let ψ ∈ w+(α,ϕ) so that there exists a sequence tn → +∞ such that ϕn = xtn(α,ϕ) → ψ
for n → ∞. Choose a subsequence tnj → +∞ (denote it in the sequel by tj → +∞) such that,
for some sequence of natural numbers nj → +∞, we have tj − njT → α∗, 0 ≤ α∗ < T , for
j → ∞. By the definition of solution and using (4) we get

x(t+ tj , α, ϕ) = x(t+ tj , tj , ϕj) = x(t+ tj − njT, tj − njT, ϕj). (5)

The sequence of solutions xj(t) = x(t + tj − njT, tj − njT, ϕj) converges to the solution
x = x(α∗ + t, α∗, ψ), for j → ∞, uniformly in t ∈ [−h, γ], where γ = const is an arbitrary
constant. Hence, for each t ∈ R+, we have

lim
j→∞

xtj+t(α,ϕ) = xα∗+t(α
∗, ψ).

This implies that xt(α∗, ψ) ∈ ω+(α,ϕ) for all t ≥ α∗.
Relations (5) hold for all t, t ≥ α − tj , where tj → +∞ for j → ∞. Hence, the solutions

xj(t) can be extended to t ≤ 0 and the solution x = x(t, α∗, ψ) can be extended to all t < α∗.
For t ≤ 0, in a similar way, we also have xt(α∗, ψ) ⊂ w+(α,ϕ). The theorem is proved.

Let f(t, 0) ≡ 0 and equation (1) have the zero solution, x = 0.
As in the case of ordinary differential equations [2], there is the following relation between

stability properties.

Theorem 2. Suppose the function f(t, ϕ) in equation (1) does not explicitly depend on t or it
is periodic in t, i.e., there exists T > 0 such that f(t+ T, ϕ) = f(t, ϕ) for all (t, ϕ) ∈ R+ × CH .

Then stability and asymptotic stability of the solution x = 0 of equation (1) are uniform.

The direct Lyapunov method, applied to study stability of functional-differential equations,
is based on the use of Lyapunov functionals and functions.

Let V : R+ × CH → R be a continuous Lyapunov functional and x = x(t, α, ϕ) a solution
of equation (1). The function V (t) = V (t, xt(α,ϕ)) is a continuous function of t ≥ α.

We call

V̇ +(t, xt(α,ϕ)) = lim
∆t→0+

sup
1

∆t

(
V (t+ ∆t, xt+∆t(α,ϕ))− V (t, xt(α,ϕ))

)
the upper right-hand derivative of V along the solution x(t, α, ϕ) [1, 3, 4].

Define the set {V̇ +(T, ϕ) = 0} to be a set of points ϕ ∈ CH in which the upper right-hand
derivative of the functional V (t, ϕ) equals zero at time t ∈ R+.
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Definition 4. A set M ⊆ {V̇ +(T, ϕ) = 0} is an invariant subset of the set {V̇ +(t, ϕ) = 0} if
it follows from the condition ϕ ∈ {V̇ +(α,ϕ) = 0} that the solution x = x(t, α, ϕ) is such that
xt(α,ϕ) ∈ M on the whole interval where the solution is defined.

Theorem 3. Let, for equation (1) with a periodic right-hand side, there exist a Lyapunov
functional V = V (t, ϕ), periodic in t with period T , V (t + T, ϕ) = V (t, ϕ) for all (t, ϕ) ∈
R+ × CH , such that its derivative V̇ +(t, ϕ) ≤ 0.

Then, for each bounded solution x = x(t, α, ϕ), |x(t, α, ϕ)| ≤ H1 < H , the set of limit points
w+(α,ϕ) ⊂ M for all t ≥ α, where M is a maximal invariant subset of the set {V̇ +(α,ϕ) = 0}.

Proof. Suppose ψ ∈ w+(α, φ) and there exists tn → +∞ such that xtn(α,ϕ) → ψ for
n → ∞. As in Theorem 1, define a sequence nj → ∞ and a number α∗ such that tnj − njT →
α∗. The sequence x = x(tnj + t, α, ϕ) converges to the solution x = x(α∗ + t, α∗, ψ) uniformly
in t ∈ [−γ, γ] for each number γ > 0.

The function V (t) = V (t, xt(α,ϕ)) is monotone decreasing, as a function of t, since
V̇ +(t, xt) ≤ 0. Because the functional V (t, ϕ) is periodic in t, it is bounded in the region
CH1 = {ϕ : ‖ϕ‖ ≤ H1}. Thus, the function V (t) is lower bounded and, hence, the limit

lim
t→+∞

V (t, xt(α,ϕ)) = c0 (6)

exists. Since V (t, ϕ) is periodic, it follows that for each t ∈ [−γ, γ] and sufficiently large nj ,

V (τ, xτ (α,ϕ))|τ=tnj +t = V (tnj + t− njT, xτ (α,ϕ))|τ=tnj +t.

By passing to the limit for nj → ∞, since V (t, ϕ) is continuous and x(tnj + t, α, ϕ) converges
to x(t, α∗, ϕ∗), we get from (6) that

V (τ, xτ (α∗, ψ))|τ=α∗+t = c0 = const

for all t ∈ R. This implies that the derivative of V (t, ϕ) along a solution x = x(t, α∗, ψ) such
that xt(α∗, ψ) ∈ ω+(α,ϕ) for all t ∈ R equals zero, V̇ +(t, xt(α,ψ)) ≡ 0 for all t ∈ R. The
theorem is proved.

This theorem is an extension of the theorem due to J. Hale [1, 4] and theorem of J. P. La
Salle proved for ordinary differential equations with periodic right-hand sides. An essential
difference of the latter is that it gives invariance of ω+(α,ϕ). Namely, it is established wi-
thout passing to discrete dynamical systems. From the proved theorem, it is easy to deduce
corresponding theorems of N. N. Krasovskii on asymptotic stability and instability by using a
Lyapunov functional with the derivative of constant sign [3].

Suppose that the function f(t, ϕ), which is periodic in t, satisfies the condition f(t, 0) = 0,
hence equation (1) has a zero solution.

Let us consider an application of a Lyapunov functional of constant sign to the problem on
asymptotic stability for an equation which is autonomous or periodic in time. To this end, let us
make the following definition.

Definition 5. Let M ⊂ CH be an open set containing a point ϕ = 0. The solution x = 0 is
stable with respect to M if for any ε > 0 and each α ∈ R+ there exists δ = δ(ε, α) > 0 such that
for all ϕ ∈ {‖ϕ‖ < δ} ∩M and all t ≥ α, we have |x(t, α, ϕ)| < ε.
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Definition 6. The solution x = 0 is uniformly stable with respect to a set M if the number δ
in Definition 5 depends only on ε, i.e., δ = δ(ε).

Definition 7. The solution x = 0 is asymptotically stable with respect to a set M if it is stable
with respect to M and for each α ∈ R+ there exists η = η(α) > 0 such that for all ϕ ∈ {‖ϕ‖ <
η} ∩M , we have lim

t→+∞
x(t, α, ϕ) = 0.

Definition 8. The solution x = 0 is uniformly asymptotically stable with respect to a set M if
it is uniformly stable with respect to M and there exists η > 0 such that for any small ε > 0, one
can find σ = σ(ε) > 0 such that for all α ∈ R+, all ϕ ∈ {‖ϕ‖ < η} ∩M , and all t ≥ α+ σ, we
have |x(t, α, ϕ)| < ε.

Remark. Following the proof of Theorem 2 it is easy to show that if equation (1) is periodic
in t, then stability and asymptotic stability of x = 0 with respect to M is uniform.

Theorem 4. Suppose that
1) the right-hand side of equation (1), f = f(t, ϕ), is periodic in t, f(t + T, ϕ) = f(t, ϕ),

T > 0;
2) there exists a Lyapunov functional, V = V (t, ϕ) ≥ 0, periodic in t, V (t+T, ϕ) = V (t, ϕ),

with the derivative V̇ +(t, ϕ) ≤ 0;
3) the solution x = 0 is asymptotically stable with respect to the set M = {V (t, ϕ) = 0}.

Then the solution x = 0 is uniformly stable.

Proof. By Theorem 2, it is sufficient to prove that x = 0 is stable. Assume the converse,
i.e., x = 0 is not stable so that for some α, 0 ≤ α < T , there exist ε0 > 0, a sequence ϕn → 0,
as n → +∞, and a sequence {βn} such that |x(α+ βn, α, ϕn)| = ε0.

Let η > 0 be the number defined in Theorem 3. Set l = min(η, ε0)/2. For the solution
x = x(t, α, ϕn) there exists a sequence of times, {γn ≤ βn}, such that

|x(t, α, ϕn)| < l, |x(α+ γn, α, ϕn)| = l (7)

for α ≤ t < α+γn. Since the solution x = 0 is continuous, it follows that γn → +∞. However,
since V = V (t, ϕ) is continuous in the point ϕ = 0, we have V (α,ϕn) → 0 for n → ∞. The
function V = V (t, x(t, α, ϕn)) is monotone in t, hence,

lim
n→∞

V (t, xt(α,ϕn)) = 0 (8)

for each fixed t ≥ α.
Let σ = σ(l) be the number defined by Condition 3 of the theorem according to Definiti-

ons 7 and 8. Set θn = α+γn−σ and consider the sequence {ψn = x(θn, α, ϕn)}. Let ψnk
→ ψ∗

for nk → ∞ be a convergent subsequence. Since x(θnk
+ t, α, ϕnk

) = x(θnk
+ t, θnk

, ψnk
), we

find from relations (7) and (8) that ‖ψ∗‖ ≤ l and also

|x(θnk
+ σ, θnk

, ψnk
| = l,

lim
n→∞

V (θnk
+ t, xτ+t(θnk

, ψnk
)|τ=θnk

) = 0
(9)

for each fixed t ∈ R .
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Let us now define a subsequence nkl → ∞ such that for some sequence of natural numbers,
jl → ∞, the sequence θnkl

− jlT → α∗, 0 ≤ α∗ < T . Then, since solutions of an equation that
is periodic in t are continuous, x(θnkl

+ t, θnkl
, ψnkl

) = x(θnkl
− jlT + t, θnkl

− jlT, ψnkl
) →

x∗(α∗ + t, α∗, ψ∗) for jl → ∞, where x∗(t, α∗, ψ∗) is a solution of equation (1). As it was noted
above, ‖ψ∗‖ ≤ l.

Passing to limit as nkl → +∞ we get, from the first relation of (9), that |x∗(α∗+σ, α∗, ψ)| =
l. The second relation, since the functional V (t, ϕ) is periodic in t, i.e.,

V (θnkl
+ t, xτ+t(θnkl

, ψnkl
)|τ=θnkl

) = V (θnkl
− jlT + t, xτ+t(τ, ψnkl

)|τ=θnkl
−jlT ),

and continuous, gives, as l → ∞, that

V (α∗ + t, x∗α∗+t(α
∗, ψ∗)) = 0

for all t ∈ R+, and this contradicts Condition 3 of the theorem. The theorem is proved.

Theorem 5. Suppose that conditions of Theorem 3 hold and
4) the set {V (t, ϕ) > 0} does not contain solutions along which V̇ +(t, ϕ) = 0.
Then the solution x = 0 of equation (1) is uniformly asymptotically stable.

Proof. Let η > 0 and σ > 0 be the numbers defined by Condition 3 of the theorem,
Γ0 = {‖ϕ‖ < η0 > 0} be the region from where solutions are bounded so that if ϕ ∈ Γ0, then
|x(t, α, ϕ)| < η/2 for all t ≥ α − h. Such a region exists, since x = 0 is uniformly bounded by
Theorem 3.

Let us show that the region Γ0 is a region of attraction to the zero solution of equation (1).
Assume the converse, i.e., for some number ε0 > 0 and an arbitrary sequence σn → +∞

there exists a sequence of initial conditions {ϕn : ‖ϕn‖ ≤ η0} such that, for the solution
x(t, α, ϕn) of (1), we have

|x(α+ σn, α, ϕn)| = ε0. (10)

The function V (t, xt(α,ϕn)) is decreasing in t along the solution x(t, α, ϕn) by Theorem 2.
It follows from Theorem 3 and Condition 4 of the theorem that lim

t→+∞
V (t, xt(α,ϕn)) = 0.

Whence we find that

lim
n→∞

V (τn, ψn) = 0 (11)

for the sequence of times τn = α+ σn − σ and the sequence of points ψn = xτn(α,ϕn).
By choosing a subsequence if necessary, assume that ψn → ψ∗ for n → ∞. Consider the

sequence of solutions x = x(t, τn, ψn) = x(t, α, ϕn), t ≥ τn. It follows from (10) that these
solutions satisfy

|x(τn + σ, τn, ψn)| = ε0. (12)

Find a sequence of natural numbers jn → ∞ such that, for n → ∞,

τn − jnT → α∗, 0 ≤ α∗ < T.
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Then, since V is periodic and continuous, it follows from (11) that

V (α∗, ψ∗) = lim
n→∞

V (τn − jnT, ψn) = lim
n→∞

V (τn, ψn) = 0

in the point (α∗, ψ∗). Because f = f(t, ϕ) is periodic in ϕ and solutions depend on the initial
conditions continuously, we get that the sequence of solutions x = x(t, τn, ψn) = x(t−jnT, τn−
jnT, ψn) converges to the solution x(α∗ + t, α∗, ψ∗) for n → ∞. By (12), we have |x(α∗ +
σ, α∗, ψ∗)| = ε0 > 0. But this contradicts Condition 3, which proves the theorem.

Theorems 4 and 5 extend and generalize, for functional-differential equations, the results
of [5, 6] obtained for ordinary differential equations.

Example. Consider the following system:

ẋ1(t) = −a1(t)x1(t) + a2(t)x1(t− h),

ẋ2(t) = −a3(t)x2(t) + a4(t)x1(t− h),
(13)

where ai(t), i = 1, 4, are functions periodic in t with period T and satisfying the inequalities

a1(t) ≥ a0 + ε > 0, |a2(t)| ≤ a0, a3(t) ≥ a0 > 0, ε > 0.

For the Lyapunov functional,

V =
ϕ2

1(0)

2
+
a0

2

0∫
−h

ϕ2
1(τ) dτ,

we find that its derivative

V̇ = −a1(t)

2
ϕ2

1(0) + a2(t)ϕ1(0)ϕ1(−h) +
a0

2
(ϕ2

1(0)− ϕ2
1(−h))

≤ −ε
2
|ϕ1(0)|2 ≤ 0.

The solution x1 = x2 = 0 is asymptotically stable with respect to the set {V = 0} = {ϕ1 = 0},
since on this set, the system reduces to the equation ẋ2(t) = −a3(t)x3

2(t) with the coeffici-
ent a3(t) ≥ a0 > 0. By using Theorem 5, we see that the zero solution of (11) is uniformly
asymptotically stable.
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