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We establish efficient conditions that guarantee the existence of a solution of the periodic-type boundary-
value problem for the two-dimensional system of nonlinear functional-differential equations in the case
where the right-hand side of the system is the sum of positively homogeneous terms of degrees A and 1/
and other terms with a relatively slow growth at infinity. The general results are reformulated in the special
case of differential equations with maxima.

PosristHyTO KpaiioBy 3amady IMepioqUIHOrO TUITY JJIsT IBOBUMIPHOI CHCTEMHU HETIHIMHUX (PYHKIIIOHAJIBHO-
IndepeHIiaIbHIX piBHAHD Y BUIMAOKY, KOJU IIpaBa YaCTUHA CUCTEMU € CYMOIO MO3UTUBHO OTHOPIIHUX
IOMAHKIB 3i cremeHsMu A > 0, 1/ Ta iHIINX TOTAHKIB i3 BITHOCHO MOBUTFHUM 3pOCTaHHSM Ha HECKiH-
qeHHOCTI. BecraHoBIEHO eheKTUBHI YMOBH, 1110 TapaHTYIOTh ICHYBaHHSI pO3B’A3KY TAKOi KpaioBoi 3amadi.
3arajbHi pe3yIbTaTh 3aCTOCOBAHO Y CIIeLiaJbHOMY BUITaIKy IHbepeHIiaIbHAX PIBHAHD 13 MAKCUMYMaMU.

Introduction. The concept of differential equations with maxima was introduced in the mathemati-
cs in the early 1960s, around 60 years ago [1 —3]. Since then the theory of this type of functional
differential equations has been developed in a series of papers (see [4 — 15] for further references)
and monographs [1, 16]. Nowadays this theory provides an adequate framework for analysis of
some models and problems appearing in the applied sciences [1 -3, 5, 15]. The topic of nonlinear
oscillations (either periodic [4, 8, 12], or almost periodic [1, 13, 17], or even chaotic [15]) is
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central for the theory. In the present paper, we show how a rather abstract Fredholm-type result
from [10] can be successfully applied to study w-periodic solutions to the following second order
differential equation with a (A 4 1)-Laplacian and maxima:

(1) Psen (1)) = g(t) max {Ju(s) senu(s): u(t) < s <7()} + folt), (1)

where fj,g € L([O,w];R), A >0, and p,7: [0,w] — [0,w] are measurable functions satisfying
p(t) < 7(t) for almost all ¢ belonging to the period segment [0,w]. Two of our main results
stated in Section 2, Corollaries 2.3 and 2.4, present easily verifiable conditions for the existence
of at least one w-periodic solution for w-periodic equation (1.1) for each periodic perturbation
fo(t), cf. with [4, 17]. Importantly, the leading coefficient g(¢) in (1.1) can oscillate: in such
a case, we will assume that either positive or negative part of ¢g(¢) dominates the part of g(¢)
having the opposite sign, see Corollaries 2.3 and 2.4 for the precise formulations. Note that the
uniqueness of periodic solutions is not analysed in the present work. Nevertheless, it is known
from [12, 15] that even the first order periodic equation with the right-hand side as in (1.1) and
constant coefficient ¢(¢) can have multiple (or even infinite number of) subharmonic periodic
solutions for a class of sine-like forcing terms f(¢). We leave the aforementioned uniqueness
problem for equation (1.1) as an interesting open question.

Now, our approach allows to consider more general objects in the form of two-dimensional
system of functional differential equations

ull(t) - fl(ulaUQ)(t)v (12)
uy(t) = fa(ur, uz)(t), te0,w], (1.3)

subjected to the periodic-type boundary value conditions
ur(w) — u1(0) = hi(ur,uz), uz(w) — uz(0) = ha(ur, uz). (1.4)

Here f;: C([0,w];R) x C([0,w];R) — L([0,w];R), i = 1,2, are continuous operators satisfying
Carathéodory conditions, i.e., for every r > 0 there exists ¢, € L([O, wl; R+) such that

|f1(ur,u2) ()| + | fo(ur,u2)(t)] < ¢-(t) forae. te€[0,w] whenever |uillc+ ||usllc <7,

and h;: C([0,w];R) x C([0,w];R) — R, i = 1,2, are continuous functionals bounded on every
ball by a constant, i.e., for every r > 0 there exists M, > 0 such that

|h1(U1,U2)’ + ’hQ(Ul,UQ)‘ S Mr whenever Hulﬂc + HUQHC S T.

By a solution to the system (1.2), (1.3) we understand a vector-valued function (uj,us) €
€ C([0,w];R) x C([0,w]; R) with absolutely continuous components that satisfy the equaliti-
es (1.2) and (1.3) almost everywhere in [0,w]. By a solution to the problem (1.2)—(1.4) we
understand a solution to (1.2), (1.3) which satisfies (1.4).

Before presenting our main results in Section 2 and the proofs of these results in Sections 3,
4, let us introduce basic notation used in this work:

R is a set of all real numbers;
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PERIODIC-TYPE SOLUTIONS FOR DIFFERENTIAL EQUATIONS 121

C([0,w];R) is a Banach space of continuous functions u: [0,w] — R endowed with the
norm

[ulle = max{|u(t)]: € [0,w]};

L([0,w];R) is a Banach space of Lebesgue integrable functions u: [0,w] — R endowed
with the norm

lullz = / () dt:
0

if g € L([0,w];R), then [g]+, resp. [g]—, denotes the non-negative, resp. non-positive, part
of the function g, i.e.,

gl L WOEI0 g 2 OO porae s e o,
P(A), where A > 0, is a set of all continuous nondecreasing operators p: C([0,w];R) —
— L([0,w];R) satisfying Carathéodory conditions which are positively homogeneous with a

degree ), i.e., for every ¢ > 0 and u € C([0,w]; R) the following identity holds:
pleu)(t) = p(u)(t) forae. te[0,w].

Let pu,7:[0,w] — [0,w] be measurable functions. Then, for every ¢ € [0,w], we put
I(p(t), 7(t) = [pu(t), 7(t)] if u(t) < 7(t) and I(u(t),7(t)) = @ otherwise.

S is a set of all mappings S: [0,w] — 2[%¢] such that S(t) is a union of at most countable
number of intervals I(u(t), 7x(t)), where ug, 7 : [0,w] — [0,w] are measurable functions sati-
sfying py(t) < 7 (t) for almost all ¢ € [0, w].

Note that the function ¢ — sup {|u(s)[*sgnu(s): s € S(t)} is measurable whenever u €
€ C([0,w];R), S €S, and A > 0 (we put sup @ = —o0).
For given p € P()\) and a number ¢ € [0, 1] we define the operator p(-;6): C([0,w];R) —
— L([0,w];R) and a non-negative numbers P(5) and P(4) in the following way:
p(w:0) (1) £ (1= O)p(u)(t) — dp(—u)(t) forae. tefow],  Po) L / p(150) (¢)dt,
0

-

Y 4w
P(9) A nax {/p(l;é)(t)dt—i— / p(1;1=06)(t)dt: x € [0,w],y € [z,x —|—w]} ,

z Y

where
p(L;v)(t) =p(l;v)(t —w) forae. te€ (w,2w], v=41-0.

Obviously, P(6) < P() and —p(—u;8) = p(u; 1 — §) for every u € C([0,w];R) and 4 € [0,1].
It can be also easily verified that

P(s)=P(1—05) for &el0,1]. (1.5)
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Furthermore, for given py € P(A\1) and py, p2 € P(A2) we define the following functions:
df
an(t.p) L sp { a(un, u2)0) o))

||ulucsp,||ugrcsw} forac. te[0,u] (1.6)

ax(t,p) L sup {\f2<u1,u2><t> i (un)(0) + o) ()]
||ulucgph,||uzuc§p} forae. te 0w (1.7)

mi(p) = sup { Ie(ur, w)| - fluille < pulus—ille < o™}, k=12 (18)

2. Main results. Now we can formulate our main results. The proofs of the results slightly
differ depending on the values of \;. Therefore it is convenient formulate assertions for two
separate cases. Thus, Theorem 2.1 deals with the case when Ay > 1, Theorem 2.2 can be applied
in the case when \y < 1.

Theorem 2.1. Let A\, A2 > 0, M\ A2 = 1, and let there exist py € P(\1) and p1,ps € P(\2)
such that

w

lim /qk(s’p)ds:o, im P _o g1 2.1)
p——+00 P p—r—+00 P

0

where qi, and ny, are given by (1.6) —(1.8). Let, moreover, Ao > 1, po(1) # 0, po(—1) # 0, and
let there exist i € {1,2} such that, for every § € [0, 1], the following inequalities hold:

Po(d ~ Py(6) = ~

MR <1, BN < (1 - o) Pﬁ(a)) Pi(9), 22)
P20 P20
202+()\2)P3i(5) <2 1+\/1 MR(@). (2.3)

Then the problem (1.2)—(1.4) has at least one solution.

Theorem 2.2. Let A\, A2 > 0, M2 = 1, and let there exist py € P(\1) and p1,ps € P(A2)
such that (2.1) is fulfilled where q;, and n. are given by (1.6)—(1.8). Let, moreover, Ao < 1,
po(1) # 0, po(—1) # 0, and let there exist i € {1,2} such that, for every 6 € |0, 1], the following
inequalities hold:

Py(o ~ FPy(d) ~ ~
Oi pre <1 BN < (1 - Q&(Af Pi’\l(é)) P ,(0), (2.4)
Fy*(9) Fy*(9)
92 +1 P3_Z((5) <14+4\/1- e PZ((S) (25)

Then the problem (1.2)—(1.4) has at least one solution.
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In the case when the operator p € P()\) is homogeneous on the constant functions, i.e., if
p(—1) = —p(1), then the numbers P(d), P(d) take more simple form. More precisely, they do
not depend on § anymore and

The typical operator having the above-described property is an operator defined by means of
suprema of the function u over certain subsets of its domain:

p)(t) £ g(t) sup { ju(s)*semu(s) : s € S0}

where g € L([0,w];R) and S € S. Therefore, considering the system

uh (£) = go(t) sup { [uz(s) ™ sgnua(s) : 5 € So(t) } + i (wr, ) (1), (2.6)
wh(t) = g1 () sup {ur () sgnur (s) : 5 € S1 ()} -

— go(t) sup {|u1(8)|A2 sgnuy(s): s € Sg(t)} + fz(ul, ug)(t), 2.7

where g; € L([0,w]R,), S; €S, i =0,1,2, and f1, f2: C([0,w];R) x C([0,w]; R) — L([0,w]; R)
are continuous operators satisfying Carathéodory conditions, from Theorems 2.1 and 2.2 we
derive the following assertions:

Corollary 2.1. Let M\, 2 > 0, My = 1, and let (2.1) be fulfilled where

ax(t, ) Esup {| fulur, u2) ()] < uille < pllus-sllo < P4} forae. telow]  28)

and mny, are given by (1.8). Let, moreover, Ay > 1 and g¢;(t) > 0, i = 0,1,2, for almost every
t € [0,w], go # 0, and let there exist i € {1,2} such that the following inequalities hold:

HQOHL A A HQOHL A A
oroac ol <1 el < (1 - iy lall2t ) lgs—illy"

g0l A 9017
Uo0l2” gy < 2 14 1= DL,

Then the problem (2.6), (2.7), (1.4) has at least one solution.

Corollary 2.2. Let A1, )\ > 0, \iAy = 1, and let (2.1) be fulfilled where qi. and ny, are given
by (2.8) and (1.8), respectively. Let, moreover, Ay < 1 and g;(t) > 0, 1 = 0,1, 2, for almost every
t € [0,w], go # 0, and let there exist i € {1,2} such that the following inequalities hold:

HQOHL A A HQOHL A A
g Mgl <1, lgallz" < (1= Sy ez ) llgs—illz'

lgoll72 lgol172
22A2f1 lgs—ill <1+14/1-— 4A2L llgill -

Then the problem (2.6), (2.7), (1.4) has at least one solution.
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Corollaries 2.1, 2.2 immediately follows from Theorems 2.1, 2.2 and their proofs are omitted.
Now, consider the particular case of equation (1.1) where fy,g € L([0,w];R), A > 0, and p, 7:
[0,w] — [0, w] are measurable functions satisfying p(¢) < 7(¢) foralmostall ¢ € [0, w]. Obviously,
in such a case, we can invoke our previous results setting go = 1, g1 = [9]+, 92 = [9]—,
A1 =1/A, Ay = A, and Sy(t) = {t}, Si(t) = Sa(t) = [u(t), 7(¢)] for almost all ¢ € [0,w]. Thus,
Corollaries 2.1 and 2.2 yields the following assertions dealing with the equation (1.1).
Corollary 23. Let \ > 1 and let there exist o € {—1,1} such that

21+)\
llogl+lle < =

llog)+llz 2>+ w
o T <H[Ug]_||L<? 214 1‘@”[”9]—1—‘& :
(1= 575 Nloghel1)

Then the equation (1.1) has at least one solution u that satisfies u(0) = u(w), v/ (0) = v/ (w).
Corollary 24. Let 0 < X\ < 1 and let there exist o € {—1,1} such that

foal < (1)

o 22+1 w
llolelle < hiog 1. < 2, <1+\/1—(4)A||[og1+u>-

w X
(1 RETESYN llogl+II )

Then the equation (1.1) has at least one solution u that satisfies u(0) = u(w), v/ (0) = v/ (w).

3. Fredholm-type core theorem and three lemmas. The proofs of the main results are
based on the following theorem which can be found in [10] (Theorem 1). We formulate it in a
form suitable for us.

Theorem 3.1. Let A\, A2 > 0, A\ A2 = 1, and let there exist py € P(A1) and p1,p2 € P(A2)
such that (2.1) is fulfilled, where qi, and ny. are given by (1.6)—(1.8). Let, moreover, the problem

uy (t) = poluz; 9)(t), (3.1)
uy(t) = p1(u1;0)(t) — pa(ur; 8)(t), (3.2)
u1(0) = w1 (w), u2(0) = uz(w) (3.3)

has only the trivial solution for every § € [0, 1]. Then the problem (1.2)—(1.4) has at least one
solution.

Remark 3.1. Note that if (u1,uz) is a solution to (3.1)—(3.3) for some § = ¢y € [0, 1], then
(uy,us) d (—uy,—ug) is a solution to (3.1)—(3.3) with § = 1 — dy.

Lemma 3.1. Assume that \y > 0 and \y = 1/A1, po € P(A1) and p1,p2 € P(\2). Let there
exist 0 € [0, 1] such that the problem (3.1)— (3.3) has a nontrivial solution (uy,us), where

ui(t) >0 for tel0,w].
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PERIODIC-TYPE SOLUTIONS FOR DIFFERENTIAL EQUATIONS 125

Let, moreover, po(1;9) # 0 and po(—1;0) # 0. Then

P(6) (1 ~ 5T pM (5)) < PM(5), i=1,2 (3.4)

Proof. Obviously, if 2!+M < Pg(é)f’fl(é) for some i € {1,2}, then the corresponding
inequality holds trivially. Assume therefore that
Po(6) 5x

Jin, B0) <1, i=12 (3.5)

Suppose first that ugy is still non-positive or still non-negative. Then from (3.1) it follows that
w1 1s a monotone function, which together with (3.3) implies that u; is a constant function, i.e.,
uy(t) = up for ¢ € [0,w]. Consequently, integrating (3.2) over [0,w] results in

uoﬁl(é) = UQﬁQ((S)

If ug # 0, then we have ]31(6) = 132(5), and so (3.4) is valid. In the case when 1y = 0, from (3.2)

we obtain that us is a (nonzero) constant function. Consequently, (3.1) implies po(1;6) = 0 if ug

is positive and po(—1;6) = 0 if ug is negative. However, both cases contradicts our assumptions.
Assume now that uy changes its sign. Put

M, = max {ui(t): t € [0,w]}, m1 = min{ui(t): ¢t € [0,w]}, (3.6)
My = max {us(t): t € [0,w]}, mo = max {—usg(t): t € [0,w]}. (3.7)

Then M; >0, m1 >0, My >0, mg > 0.
Now we prolong the functions u; and us w-periodically to the interval [0, 2w]| and we put

po(u2;8)(t) = po(ue;d)(t —w) forae. te (w,2w],
p1(u1;0)(t) = p1(ug;0)(t — w), pa(u1;0)(t) = pa(uy;0)(t —w) forae. te (w,2w].

Then, obviously, the equalities (3.1) and (3.2) hold for almost every ¢ € [0, 2w]. Let ¢, € [0,w),
tyr € (tmytm +w), Sm € [0,w), Samr € (Sm, Sm + w) be such that

w1 (tm) = mi, uy(tar) = M, u2(8m) = —ma, uz(sy) = Ma. (3.8)

Then the integration of (3.1) from t,, to t;; and from ¢, to t,, + w, respectively, yields

tar
My =y <08 [ (o) eyt (3.9)
tm
tmtw tmt+w
My —my < —mi? / po(—1;0)(t) dt = m* / po(1;1 — 8)(t) dt. (3.10)
tm tar
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Moreover, multiplying the corresponding sides of (3.9) and (3.10), applying the inequality 4AB <
< (A + B)?, we arrive at

tf\f[ tm+w
M; 4+ mao)™
My —my < (221:;112) (/po(1;5)(t)dt+ / po(1;1 5)(t)dt) <

tm ty

(MQ + m2)>‘1

< e Fo(d). (3.11)

Furthermore, the integration of (3.2) on [s,,, sjs] and on [sps, s, + w] results in

SM

Myt < M2 [ p1(1:8)(0)dt < M PLG), (3.12)
Smtw
My 4+ my < M}® / p2(1;8)(t) dt < MM Py(5). (3.13)

SM
Consequently, since A\j Ay = 1, from (3.11)—(3.13), on account of (3.5), we obtain

Py(9) Ph

0<M1<1—21+/\1 ]

(5)) <my, i=1,2. (3.14)

On the other hand, the integration of (3.2) on [0, w], with respect to (3.3), results in

A1
mlﬁg)\_li(é) < (/pgi(u1;5)(t) dt) =

w A1
— (/pi(ul;é)(t) dt) < MyPM(6), i=1,2. (3.15)
0
Now, the inequalities (3.14) and (3.15) imply (3.4).

Lemma 3.2. Assume that \1 > 0 and Ao = 1/\1, po € P(\1) and p1,p2 € P(A2). Let
there exist § € [0,1] such that the problem (3.1)—(3.3) has a nontrivial solution (u1,uz). Let,
moreover, uy attain both positive and negative values. Then there exist ¢ € (0,1), sp € [0,w),
and s € (so, s + w) such that

C)\2 N s1 (1 B C))\Q N s1
1< Iy P32(0) | p1(1;6)(t) dt + WPO (0) [ p2(1;1 —0)(t)dt, (3.16)
S0 S0
so+w so+w
(L= M s
1< =i £0700) | pLi1=0)@)dt + g B () [ pa(150)(2) dt, (3.17)
S1 S1

where

pe(L;v)(t) = pr(L;v)(t —w) forae te(w,2w|, k=12 v=201-40.
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Proof. Obviously, the function uy has to change its sign. Define M» and my by (3.7) and put
My = max {ui(t): t € [0,w]}, my1 = max {—uy(t): t € [0,w]}. (3.18)

Then M; > 0, m1; > 0, My > 0, and mo > 0.
Now we prolong the functions u; and uy w-periodically to the interval [0, 2w] and we put

po(u2;0)(t) = po(ug;d)(t —w) forae. t€ (w,2w],
p1(ur;0)(t) = p1(u1;0)(t —w), p2(u1;0)(t) = pa(u1;9)(t —w) forae. te (w,2w].

Then, obviously, the equalities (3.1) and (3.2) hold for almost every ¢ € [0, 2w]. Let ¢, € [0,w)
and tps € (tm, tm + w) be such that

ui(ty) = —myq, ui(tar) = M. (3.19)
Choose ty € (tm,tar) and t; € (tar, ty + w) such that
ui(to) =0, ui(ty) = 0. (3.20)
Moreover, let sp € [0,w) and s; € (sg, so + w) be such that
uz(sp) = —ma, uz(s1) = Mo. (3.21)

Then the integration of (3.1) from ¢; to ¢, + w and from ¢,, to ¢y yields

tmtw tm+tw
mi < —md / po(—1:8)(t) dt = m3) / po(131 — 8)(t) dt, (3.22)
t1 t1
to
m <8 [ po(1s5)()dt. (3.23)

tm

Now the multiplication of the corresponding sides of (3.22) and (3.23), on account of the
inequality 4AB < (A + B)?, results in

to P 1/2
0<my < W ( /pg(l;é)(t) dt / po(131 = 8)(1) dt) L 324
t

m t1

Analogously, on the intervals [to, /] and [tas, 1] we obtain

ty t1
M; < Mjy* /po(l;a)(t)dt, My < mj)! /p0(1; 1 —0)(t)dt,
to tar
and, consequently,
\ tar t 1/2
0< M < (MQ;"”) ( /pou;a)(t) dt/po(l; 1 - 8)(1) dt) . (3.25)
to tar
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Moreover, there exist cj, ¢y € (0,1) such that

to ty

[miowa = [ po:s) (3.26)
tm tm
t1 tmtw
/p0(1; 1= 8)(t)dt = e / po(1:1 — 8)(1) dt. (3.27)
ta ty
Obviously,
tar tar
[t =) [ o), (3.28)
to tm
tm+tw tm+tw
/ po(1;1=6)(t) dt = (1 — c2) / po(L;1—6)(t) dt. (3.29)
t1 tyv

Put ¢ = (1 — ¢1 + ¢2)/2. Then ¢ € (0,1) and

— 2 _ 9
Q—ehpcdzatal o gy d-eta)l

4 4
Consequently, from (3.24) and (3.25), with respect to (3.26) —(3.30) and the identity A\ = 1,

it follows that

=(1-c) (3.30)

Mo + mo

My +m
A 2 2
M12 < 21+

2 pA A
< o R0, myt s

(1 — )2 P;2(9). (3.31)

On the other hand, the integration of (3.2) from sy to s; and from s; to sg + w, respectively, in
view of (3.21), yields

S1 S1
Myt < M2 [ o100 de+md* [ pa1i1 - 6)(e) a, (3.32)
S0 S0
Sso+w sotw
My +my < m)? / pr(1;1 = 8)(t) dt + M2 / pa(1;6)(¢) dt. (3.33)
S1 S1

Thus, by using (3.31) in (3.32) and (3.33) we get (3.16) and (3.17).
Lemma 3.3. Let A > 1 and

-2 1-(1-2)

p(z) = =2 + o> for x€(0,1).

Then

min {p(z): z € (0,1)} = p(1/2) = 2(2* - 1). (3.34)

ISSN 1562-3076. Heniniiini koausannus, 2022, m. 25, Ne 1



PERIODIC-TYPE SOLUTIONS FOR DIFFERENTIAL EQUATIONS 129

Proof. Set v = 0.5 — z € (—0.5,0.5), then, by the Cauchy inequality and the binomial
formula, ¢(u) = ¢(0.5 — u) satisfies

b(u) 2 2/[0.5 W) — 1[(05 +u) — 1] =

= 24/1+(0.25 —u) — (0.5 — )= — (0.5 + u) > =

k!
k=1

A—1 A1
=Ml (12 ) (1) >
C’“ (+k+1> (+ 2k>_
S S .
E o \k+1 ' 2 =

2% \F
-1 —1 F
S Py (L I P I e P )
k T k

2\] (2)‘—1)2-1-2)‘“%% )\()\+1)...()\+k—1)(4u2)kZQ(QA_l)’

k
where we have used the AM-GM inequality and the inequality 2*/% > 1+ 2In2/k, = € R.

4. Proofs of the main results.

Proof of Theorem 2.1. According to Theorem 3.1 it is sufficient to show that the prob-
lem (3.1)—(3.3) has only the trivial solution for every ¢ € [0,1]. Therefore, assume on the
contrary that for some ¢ € [0, 1] there exists a nontrivial solution (u1,u2) to the problem (3.1) -
(3.3).

First assume that u; is still non-positive or still non-negative. With respect to Remark 3.1,
without loss of generality we can assume that u;(t) > 0 for ¢ € [0,w]. Therefore, Lemma 3.1
yields (3.4) which contradicts (2.2).

Assume therefore that wu; attains both positive and negative values. Thus, according to

Lemma 3.2 there exist ¢ € (0,1), sop € [0,w), and s; € (sp, S0 + w) such that (3.16) and
(3.17) are fulfilled. Consequently, if (2.2) holds for : = 1 then we obtain

51
P2(s
0<ch (1 - 201+(A2) /m(l;é)(t) dt) <

S0

S0

so+w
0<(1@M(1§ig)/“mﬂﬂ5ﬂﬂﬁ)<

S1

P | 1—c*
<(1—¢) ( 201+(Ag) /pz(l; 1—0)(t)dt — W) , @D
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Ao so+w A\
5 (1 = o)
<c/\2(];(i+(/\2) / pg(l;é)(t)dtl(i/bc)). 4.2)

S1

On the other hand, if (2.2) is fulfilled with ¢ = 2 then we get

0<(1—c) (1 — ];Ui(;? /pg(l; 1—6)(t) dt) <

S0

X2 (5 5 1 e
<ck2(1;01+§j [ o dtl(;c)), (4.3)

S0

so+w
P2 (8
0 < ™ (1 22+(A2) / p2(1;6)(t) dt) <

S1

R 1— oM
<<1c>”<2°1+§2) / p1<1;16>(t)dt(12y2>. (4.4)

S1

Multiplying the corresponding sides of the inequalities (4.1) and (4.2), respectively of the inequali-
ties (4.3) and (4.4), by using the estimates (1 — A)(1 — B) > 1 — (A + B) on the left-hand side
and 4AB < (A + B)? on the right-hand side, on account of (1.5) we arrive at

A2 A2 — o — (1 =) 2
4 <1 — ];OHS?B((S)) < (1;)01+(Ai)P3—i(5) - <(1 e T 1 (im ! )) ' (4.5)

Note that in view of (4.1), (4.2) and (4.3), (4.4), respectively, we have

P2 (6) 1—c2 1-(1-c)™
91+A2 Ps-i(0) > (1 —c) o2 ’

Therefore, by using Lemma 3.3, from (4.5) it follows that

P25 P2(6
2\/ - o) < 0 by ) 22 1),

However, the latter inequality contradicts (2.3).

Proof of Theorem 2.2. According to Theorem 3.1 it is sufficient to show that the prob-
lem (3.1)—(3.3) has only the trivial solution for every ¢ € [0,1]. Therefore, assume on the
contrary that for some ¢ € [0, 1] there exists a nontrivial solution (u1,ug) to the problem (3.1)—
(3.3).

First assume that «; is still non-positive or still non-negative. With respect to Remark 3.1,
without loss of generality we can assume that u;(t) > 0 for ¢t € [0,w|. Therefore, Lemma 3.1
yields (3.4) which contradicts (2.4).
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Assume therefore that w; attains both positive and negative values. Thus, according to
Lemma 3.2 there exist ¢ € (0,1), sop € [0,w), and s; € (sp, S0 + w) such that (3.16) and
(3.17) are fulfilled. Note that, because of Ao < 1, the function z ~ (zA + (1 — 2)B)*? for
x € [0,1] is concave, and so we have

<A B>A2>A’\2 B

273 5 T

Consequently, 1 > 2*271((1 — ¢)*2 + ¢*2), and so, if (2.4) holds for i = 1 then we obtain

0< o (113@;@/101@;5)(%) <

P2(8
42

( s p2(1 1—6)(t)dt — 1), (4.6)
( P0>‘2 so w

A2 p1(1;1 —0)(t) dt) <

A2 sot
<ot (P@Eé) / p2<1;5><>dt1)- (4.7

S1

On the other hand, if (2.4) is fulfilled with ¢ = 2 then we get

0<(1—c) (1 _ PO:;S‘) /p2(1; 1—6)(#) dt) <

S0

A2 sk
< (PZAECS) /p1(1;5)(t) dt 1) , (4.8)
Py "
0 < (1 — ZAE) / p2(1;0)(t) dt) <
P
<(1—c)2 (ZAQ / pr(1:1 = 6)(t) dt — 1) . (4.9)

Multiplying the corresponding sides of the inequalities (4.6) and (4.7), respectively of the inequali-
ties (4.8) and (4.9), using the estimates (1 — A)(1 — B) > 1 — (A + B) on the left-hand side and
4AB < (A + B)? on the right-hand side, on account of (1.5) we arrive at

A2 A2 2
4(1 — Plp\@ Pz(6)> < <P4)\§5) Ps_ 1(5) - 2) : (4.10)
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Note that in view of (4.6), (4.7) and (4.8), (4.9), respectively, we have

Py (6
(ip\g) Pg_z(é) > 2.

Therefore, from (4.10) it follows that

)\2 )\2
2\/ 100 oy < T by )2

However, the latter inequality contradicts (2.5).
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