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A class of nonlinear second-order differential equations with constant delay is considered. Qualitative
properties of solutions, namely, global stability of zero solution, eventually uniform boundedness of
solutions, existence of periodic solutions and existence of a unique stationary oscillation of the considered
equations, are investigated. As techniques of the proofs, the Lyapunov –Krasovskii functional method and
the second Lyapunov method are used to prove the main results of this paper. In this paper, we improve
and correct some former results, which are available in the literature. Finally, in particular cases, we
provide three examples for illustrations and applications of the obtained new results. Hence, we have some
contributions to the topic of the paper.
Розглянуто клас нелiнiйних дифенцiальних рiвнянь другого порядку зi сталим запiзненням. До-
слiджено якiснi властивостi розв’язкiв, а саме глобальну стiйкiсть нульового розв’язку, кiнцеву
однорiдну обмеженiсть розв’язкiв, iснування перiодичних розв’язкiв i єдиного стацiонарного коли-
вання розглянутих рiвнянь. Основнi результати роботи отримано з використаннямфункцiонального
методу Ляпунова –Красовського та другого методу Ляпунова. Покращено й виправлено деякi вiдомi
результати. Як iлюстрацiї нових результатiв розглянуто три приклади.

1. Introduction. Mathematical models as delay differential equations (DDEs) of second order
have many applications in various fields of sciences, engineering and so on. In generally, solving
that kind of equations is a hard problem, except numerically. However, during the investigations
of that kind of mathematical models, it is needed to have information about behaviors of soluti-
ons of that kind of equations without prior information of solutions. In the relevant literature,
two methods called Lyapunov –Krasovskii functional (LKF) method and the second method of
Lyapunov are stand out and they are very effective to study qualitative properties of solutions
delay differential equations of higher order (see the books of Burton [1], Hale [2], Yoshizawa [3]
and Krasovskii [4]).
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In [5], Peng considered the following nonlinear DDE of second order:

x′′(t) + f(x(t), x′(t)) + g(x(t), x′(t))ψ(x(t− τ)) = p(t), (1)

where x ∈ R, R = (−∞,∞), t ∈ R+, R+ = [0,∞), τ is a positive constant, i.e., the constant
delay satisfies, t− τ ≥ 0, ψ ∈ C1(R,R), f ∈ C(R2,R), g ∈ C1

(
R2,R

)
and p ∈ C(R+,R) such

that g(0, 0)ψ(0) = 0 and f(0, 0) = 0. Under these assumptions, the DDE (1) includes the zero
solution when p(t) = 0. We should mention that the continuity of the functions f, g, ψ, and p
is a sufficient condition for the existence of the solutions of DDE (1). Next, we assume that the
functions f, g and ψ satisfy the Lipschitz condition with respect to the dependent variable x
and its derivative x′. Hence, via this assumption, the uniqueness of the solutions of DDE (1) is
guaranteed depending on the proper initial conditions

In [5], Peng proved four new and interesting theorems on the various qualitative properties
of the solutions of DDE (1). The mentioned properties include the globally stability of zero
solution of DDE (1) when p(t) = 0, the eventually uniform boundedness of solutions, existence
of the periodic solutions and the existence of unique one stationary oscillation of DDE (1) when
p(t) 6= 0.

To perform the aim of the paper [5], LKF and Lyapunov function (LF) were defined and then
used as basic tools by Peng [5]. Based on that the LKF and the LF, four new and interesting
theorems ([5], Theorems 1 – 4) were proved on global stability of the zero solution by the
LKF approach, eventually uniform boundedness of solutions, existence of the periodic solutions
and existence and uniqueness of the stationary oscillation by the second method of Lyapunov,
respectively.

As for the motivation of this paper, it comes from the results of Peng [5] (Theorems 1 – 4).
To the best of information of the authors of this paper, in the general cases, the results of [5]

(Theorems 1 – 4) are not correct for DDE (1). Here, our aim is to show the mistakes in [5] and to
correct the results of Peng [2] (Theorems 1 – 4) for some particular cases.

Indeed, for the results of [5] to be correct, the function g in DDE (1) must be independent
from the second variable, x′, i.e., it is needed that g(x(t), x′(t)) = g(x(t))must be satisfied. We
assume that y(t) = ẋ(t). Hence, DDE (1) can be transformed to the following system:

ẋ(t) = y(t),

ẏ(t) = −f(x(t), y(t))− g(x(t), y(t))ψ(x(t))+

+ g(x(t), y(t))

0∫
−τ

ψ′x(x(t+ η))y(t+ η)dη + p(t). (2)

Through this paper, when we need without mention, x(t) and y(t) will be represented by x
and y, respectively.

2. Qualitative results of DDE (1). We now present the first theorem of Peng [2] (Theorem 1)
on the globally stability of the zero solution of DDE (1), which has been proved by the LKF
approach (see Burton [1], Graef and Tunç [6] (Theorem 2.1), Hale [2], Sinha [7] (Lemma 1),
Yoshizawa [3, p. 202] (Theorem 35.4), Krasovskii [4]).

Theorem 1 ([5], Theorem 1). Let p(t) ≡ 0, f(0, 0) = 0, g(0, 0)ψ(0) = 0 and the following
conditions are satisfied:
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(A1) g(x, y)ψ(x) 6= 0 if x 6= 0, y 6= 0,

g(x, y)ψ(x)x > 0 for all x 6= 0 as y ∈ R;

(A2)
∫ x

0
g(ξ, y)ψ(ξ)dξ → +∞ for all y ∈ R as |x| → +∞;

(A3) there exist a positive constant C such that∣∣g(x, y)ψ′(z)∣∣ ≤ C for all x, y, z ∈ R;

(A4) Cτy2 < f(x, y) for all y 6= 0 as x ∈ R, where C is the positive constant from (A3).
Then, the zero solution of DDE (1) is globally stable.
Remark 1. To prove Theorem 1, the second method of Lyapunov is used by Peng [5]. For

this case, the author defined the following LKF V = V (xt, yt) :

V (xt, yt) =
1

2
y2(t) +

x(t)∫
0

g(ξ, y(t))ψ(ξ)dξ +
1

2
C

0∫
−τ

t∫
t+η

y2(ξ)dξdη. (3)

As for the next step, it is clear from (3) that

V (xt, yt) ≥ 0, V (xt, yt) = 0 if and only if x(t) = y(t) ≡ 0.

We can also obtain from condition (A2) that

V (xt, yt)→∞ as x2 + y2 →∞.

For the case p(t) ≡ 0 in DDE (1), Peng [5] (Theorem 1) calculated the time derivative of
the LKF V (xt, yt) along the solutions of the system (2) and the author obtained the following
relation:

d

dt
V (xt, yt) = y(t) [−f(x(t), y(t))− g(x(t), y(t))ψ(x(t))] +

+ y(t)g(x(t), y(t))

0∫
−τ

ψ′x(x(t+ η))y(t+ η)dη+

+ g(x(t), y(t))ψ(x(t))y(t) +
1

2
C

0∫
−τ

[
y2(t)− y2(t+ η)

]
dη =

= −f(x(t), y(t))y(t)− g(x(t), y(t))ψ(x(t))y(t)+

+ y(t)g(x(t), y(t))

0∫
−τ

ψ′x(x(t+ η))y(t+ η)dη+

+ g(x(t), y(t))ψ(x(t))y(t) +
1

2
C

0∫
−τ

[
y2(t)− y2(t+ η)

]
dη =
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= −f(x(t), y(t))y(t) + y(t)g(x(t), y(t))

0∫
−τ

ψ′x(x(t+ η))y(t+ η)dη+

+
1

2
C

0∫
−τ

[
y2(t)− y2(t+ η)

]
dη. (4)

Now, it can be noted that the above time derivative (4) of the LKF V (xt, yt) along solutions
of the system (2) is not correct. Namely, let us consider the term

x(t)∫
0

g(ξ, y(t))ψ(ξ)dξ,

which is contained in (3).
If we calculate the time derivative of this term, then it follows that

d

dt

x(t)∫
0

g(ξ, y(t))ψ(ξ)dξ = g(x(t), y(t))ψ(x(t))y(t) +

x∫
0

∂g(ξ, y)

∂y

dy

dt
ψ(ξ)dξ,

where

dy

dt
= −f(x(t), y(t))− g(x(t), y(t))ψ(x(t)) + g(x(t), y(t))

0∫
−τ

ψ′x(x(t+ η))y(t+ η)dη. (5)

From this point of view, it follows that the three terms of (5) are included in the derivative of the
integral term

x(t)∫
0

∂g(ξ, y(t))

∂y

dy

dt
ψ(ξ)dξ.

However, instead of this fact, Peng [5] calculated the time derivative of the above integral
term as the following:

d

dt

x(t)∫
0

g(ξ, y(t))ψ(ξ)dξ = g(x(t), y(t))ψ(x(t))y(t). (6)

Indeed, the equality (6) is not correct, and not complete, too. That is, the time derivative of the

LKF V (xt, yt), which given by (4), does not include the term
∫ x(t)

0

∂g(ξ, y(t))

∂y

dy

dt
ψ(ξ)dξ with

the three terms of dy
dt

in (5).We think that probably during the calculation of the time derivative of

the integral term in (6), Peng [5] considered the variable y in the integral
∫ x(t)

0
g(ξ, y(t))ψ(ξ)dξ

as a constant. This idea can lead a wrong and lack calculation of the time derivative of the
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LKF V (xt, yt). Hence, the result and idea of Theorem 1 is not correct for the general cases,
when g = g(x, y).

In view of the above discussion, the result of Theorem 1 can be corrected for the particular
case when g = g(x) in DDE (1). Hence, it is correct for the particular case of DDE (1) given by

x′′(t) + f(x(t), x′(t)) + g(x(t))ψ(x(t− τ)) = 0. (7)

In this case, the first result of Peng [5] (Theorem 1) can be updated and corrected by
Theorem 1* as the following:

Theorem 1*. Let p(t) ≡ 0, f(0, 0) = 0, g(0)ψ(0) = 0 and the following conditions are
satisfied:

(A1) ′ g(x)ψ(x)x > 0 for all x 6= 0;

(A2) ′
∫ x

0
g(ξ)ψ(ξ)dξ → +∞ as |x| → +∞;

(A3) ′ there exist a positive constant C such that∣∣g(x)ψ′(z)∣∣ ≤ C for all x, z ∈ R;

(A4) ′ Cτy2 < f(x, y) for all y 6= 0 as x ∈ R, where C is a positive constant from (A3)′

Then, the zero solution of DDE (7) is globally stable.
Remark 2. It should be noted that to prove this theorem, we can use the following LKF:

V (t) =
1

2
y2(t) +

x(t)∫
0

g(ξ)ψ(ξ)dξ +
1

2
C

0∫
−τ

t∫
t+η

y2(ξ)dξdη,

which is obtained from the LKF (3) for the case g(x(t), y(t)) = g(x(t)). In view of the Routh –
Hurwitz stability conditions, (see, Ahmad and RamaMohana Rao [8, p. 89, 90], which are related
to differential equations of second order and the conditions of Theorem 1*, we can assume that
g(x(t))ψ(x(t))

x(t)
≥ a2 > 0, a2 ∈ R, x(t) 6= 0. Then, it is clear that

x(t)∫
0

g(ξ)ψ(ξ)dξ =

x(t)∫
0

g(ξ)ψ(ξ)

ξ
ξdξ ≥ 1

2
a2x

2(t).

Hence, we derive that
V (xt, yt) ≥

1

2
y2(t) +

1

2
a2x

2(t).

From this point of view, the terms 1

2
y2(t) +

1

2
a2x

2(t) can be taken as lower bound of the
LKF V (xt, yt). Similarly, for the next step, it can be shown that the LKF V (xt, yt) has an upper
bound. Here, we omit the details of mathematical calculations for the sake of the brevity.

Example 1. We consider the following DDE of second order:

x′′(t) +

(
10x′(t) +

x2(t)

2(1 + x2(t))
sinx′(t)

)
+

2 exp
(
x2(t)

)
1 + exp (x2(t))

x

(
t− 1

3

)
= 0. (8)

ISSN 1562-3076. Нелiнiйнi коливання, 2022, т. 25, № 1



ON THE QUALITATIVE ANALYSIS OF SOLUTIONS OF A CLASS OF NONLINEAR DIFFERENTIAL EQUATIONS . . . 113

From DDE (8), we have

x′(t) = y(t),

y′(t) = −
(
10y(t) +

x2(t)

2 (1 + x2(t))
sin y(t)

)
−

−
2x(t) exp

(
x2(t)

)
1 + exp (x2(t))

+
2 exp

(
x2(t)

)
1 + exp (x2(t))

t∫
t− 1

3

y(s)ds. (9)

By comparing the system (9) with the system (2) and taking into account the assumptions of
Theorem 1*, we derive the following relations, respectively:

f(x, y) = 10y +
x2

2 (1 + x2)
sin y, f(0, 0) = 0,

yf(x, y) = 10y2 +
x2

2 (1 + x2)
y sin y ≥ 10y2 >

29

3

(
y2
)
, y 6= 0, τ =

1

3
, C = 29,

g(x) =
2 exp(x2)

1 + exp(x2)
, ψ(x) = x, ψ′(x) = 1,

g(0)ψ(0) = 0, i.e., g(x)ψ(x) = 0⇔ x = 0,

g(x)ψ(x)x =
2x2 exp(x2)

1 + exp(x2)
> 0 for all x 6= 0,

∣∣g(x)ψ′(z)∣∣ = 2 exp(x2)

1 + exp(x2)
≤ 2 = C,

x∫
0

g(ξ)ψ(ξ)dξ =

x∫
0

2ξ exp
(
ξ2
)

1 + exp (ξ2)
dξ = ln

[
1 + exp(x2)

2

]
.

If |x| → +∞, then ln

[
1 + exp(x2)

2

]
→∞, i.e.,

∫ x

0
g(ξ)ψ(ξ)dξ →∞.

Thus, all the conditions of Theorem 1* are held. By virtue of this result, we reach that the
zero solution of DDE (8) is globally stable.

We now present the second theorem of Peng [5] (Theorem 2) on the eventually uniform
boundedness of solutions of DDE (1) by the second method of Lyapunov.

Theorem 2 ([5], Theorem 2). Assume that p(t) is a bounded function and the following
conditions are satisfied:

(C1) there exist constants m > 0, M > 0 such that

m ≤ g(x, y) ≤M for all x, y ∈ R;

(C2) there exist a constant C1 > 0 such that∣∣g(x, y)ψ′(z)∣∣ ≤ C1 for all x, y, z ∈ R;
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(C3) there are constants C2 > 0, H > 0 such that

f(x, y)

y
≥ C2 for all x ∈ R as |y| ≥ H;

(C4) C1τ

√
M

m
< C2, where m, M, C1 and C2 are taken from (C1) – (C3);

(C5)
∫ x

0
g(ξ, y)ψ(ξ)dξ → +∞ for all y ∈ R as |x| → +∞.

Then, every solution of DDE (1) is eventually uniform bounded.
Remark 3. To prove Theorem 2, Peng [5] (Theorem 2) benefited from the direct Lyapunov

method and, hence, the author defined a new Lyapunov function (LF) V (x(t), y(t)) by

V (x(t), y(t)) =
1

2
y2(t) +

x(t)∫
0

g(ξ, y(t))ψ(ξ)dξ. (10)

Subject to conditions (C1) – (C5) of Theorem 2, it can be shown that there exists a positive
monotonously increasing continuous function a(x) such that V (x(t), y(t)) ≤ a(x). Further, there
exists a non-negative monotonously increasing continuous function b(x) such that

b(r) ≤ V (x(t), y(t)), lim
r→+∞

b(r) = +∞ with r =
√
x2 + y2.

Next, for the case p(t) 6= 0 [5] (Theorem 2), Peng [5] calculated the time derivative of the LF
V (x(t), y(t)) in (10) along the solutions of the system (2) and obtained the following relation:

d

dt
V (x(t), y(t)) = y(t)[−f(x(t), y(t))− g(x(t), y(t))ψ(x(t))]+

+ y(t)g(x(t), y(t))

0∫
−τ

ψ′x(x(t+ η))y(t+ η)dη+

+ g(x(t), y(t))ψ(x(t))y(t) + y(t)p(t) =

= −y(t)f(x(t), y(t)) + y(t)p(t)+

+ y(t)g(x(t), y(t))

0∫
−τ

ψ′x(x(t+ η))y(t+ η)dη. (11)

When we consider the LF V (x(t), y(t)), it follows that the LF in (10) includes the integral term∫ x(t)

0
g(ξ, y(t))ψ(ξ)dξ. The time derivative of this integral term with respect to the variables

y = y(t) and t were calculated lack, i.e., wrong. Indeed, during the calculations of the time
derivative of this integral term, it is omitted the term

x(t)∫
0

∂g(ξ, y(t))

∂y

dy

dt
ψ(ξ) dξ
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with

dy

dt
= −f(x(t), y(t))− g(x(t), y(t))ψ(x(t)) + g(x(t), y(t))

0∫
−τ

ψ′x(x(t+ η))y(t+ η) dη.

In fact, if the time derivative of the term
∫ x(t)

0
g(ξ, y(t))ψ(ξ)dξ is calculated correctly, then we

will have
x(t)∫
0

∂g(ξ, y(t))

∂y

dy

dt
ψ(ξ) dξ = −

x(t)∫
0

∂g(ξ, y(t))

∂y
f(x(t), y(t))ψ(ξ)dξ−

−
x(t)∫
0

∂g(ξ, y(t))

∂y
g(x(t), y(t))ψ(x(t))ψ(ξ)dξ+

+

x(t)∫
0

∂g(ξ, y(t))

∂y

g(x(t), y(t)) 0∫
−τ

ψ′x(x(t+ η))y(t+ η)dη

ψ(ξ)dξ.
However, these terms are not involved in (11). Now, it is seen that the time derivative

d

dt
V (x(t), y(t)) was not calculated correctly by Peng [5] (Theorem 2).
Therefore, it is worth to mention that Remark 2 can also be updated for Theorem 2. Here, we

would not like to give the details of the discussion for the sake of the brevity.
In this case, the correct form of Theorem 2, i.e., that of Peng [5] (Theorem 2) can be updated

for DDE (7) and corrected by Theorem 2* as the following.
Theorem 2*. Assume that p(t) is a bounded function and the following conditions are held:
(C1) ′ there are constants m > 0, M > 0 such that

m ≤ g(x) ≤M for all x ∈ R;

(C2) ′ there exist a constant C1 > 0 such that∣∣g(x)ψ′(z)∣∣ ≤ C1 for all x, z ∈ R;

(C3) ′ there are constants C2 > 0, H > 0 such that

f(x, y)

y
≥ C2 for all x, y ∈ R as |y| ≥ H;

(C4) ′ C1τ

√
M

m
< C2, where m, M, C1 and C2 are given in (C1) – (C3), τ is the constant

delay;
(C5) ′

x∫
0

g(ξ)ψ(ξ)dξ → +∞, |x| → +∞.

Then, every solution of DDE (7) is eventually uniformly bounded.
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In particular case of the DDE (7), we now give an example which satisfies all the conditions
of Theorem 2*.

Example 2. Assume that p(t) is a bounded function. Then, we consider the following DDE
of second order:

x′′(t) +

(
25x′(t) +

x2(t)

2(1 + x2(t))
sinx′(t)

)
+

3 + x2(t)

1 + x2(t)
x

(
t− 1

3

)
= e−t sin t. (12)

From DDE (12), we have

x′(t) = y(t),

y′(t) = −
(
25y(t) +

x2(t)

2 (1 + x2(t))
sin y(t)

)
−
(
3 + x2(t)

)
x(t)

1 + x2(t)
+

+
3 + x2(t)

1 + x2(t)

t∫
t− 1

3

y(s) ds+ e−t sin t. (13)

By comparing the systems (13) and (2) and taking into account the conditions of Theorem 2*,
we obtain the following relations:

f(x, y) =

(
25y +

x2

2 (1 + x2)
sin y

)
, f(0, 0) = 0,

f(x, y)

y
= 25 +

x2

2 (1 + x2)

sin y

y
≥ 24 = C2 for all x ∈ R as |y| ≥ |H|,

g(x) =
3 + x2

1 + x2
, ψ′(x) = 1, g(0)ψ(0) = 3× 0 = 0,

1 = m ≤ 3 + x2

1 + x2
= g(x) ≤ 3 =M for all x ∈ R,

∣∣g(x)ψ′(z)∣∣ = 3 + x2

1 + x2
= 1 +

2

1 + x2
≤ 3 = C1,

x∫
0

g(ξ)ψ(ξ)dξ =

x∫
0

3ξ + ξ3

1 + ξ2
dξ = ln

(
1 + x2

)
+

1

2
x2.

Hence, if |x| → +∞, then ln
(
1 + x2

)
+

[
1

2
x2
]
→∞,

i.e.,
x∫

0

g(ξ)ψ(ξ)dξ →∞ as |x| → +∞,
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3× 1

3

√
3

1
=
√
3 = C1τ

√
M

m
< C2 = 25.

p(t) = e−t sin t ≤ e−t ≤ 1,

i.e., p(t) is bounded.
Thus, the conditions of Theorem 2* are satisfied. Hence, every solution of DDE (12) is

eventually uniformly bounded.
We now present the third theorem of Peng [5] (Theorem 3) on the existence of the periodic

solutions of T -periodicity of DDE (1).
Theorem 3. Suppose that conditions (C1) – (C5) of Theorem 2 hold, and, in addition, p(t)

is a periodic function of T -periodicity, i.e., p(t+ T ) = p(t). Then, DDE (1) has some periodic
solutions of T -periodicity.

Remark 4. In [5] (Theorem 3), the proof of the existence of the periodic solutions of DDE (1)
is based on the boundedness of the solutions of this equation for all t ∈ R+, R+ = [0,∞). To
prove Theorem 3, Peng [5] (Theorem 3) used the second method of Lyapunov and, hence, in the
proof of this theorem, the author used the LF V (x(t), y(t)), which is given by (10). Because of
the reason above, Remark 3 is valid for Theorem 3. In this case, the conditions of Theorem 3 are
held true for the particular case when g(x, y) = g(x) in DDE (1), i.e., for DDE (7).

In the light of Remark 4, the third result of Peng [5] (Theorem 3)can be updated and corrected
by Theorem 3∗ as the following:

Theorem 3∗ . Suppose that conditions (C1) ′ – (C5) ′ of Theorem 3∗ are satisfied and, in
addition, p(t) is a periodic function of T -periodicity, i.e., p(t + T ) = p(t). Then, DDE (7) has
some periodic solutions of T -periodicity.

We now introduce the fourth theorem of Peng [5] (Theorem 4) on the existence of the unique
one stationary oscillation in DDE (1).

Theorem 4. Assume that the conditions of Theorem 3 are satisfied. In addition, if x1(t) and
x2(t) are any two solutions of DDE (1) such that x1(t)− x2(t)→ 0 and x′1(t)− x′2(t)→ 0 as
t→∞, then there exists unique one stationary oscillation in DDE (1).

Remark 5. Since the proof of Theorem 4 (see, also, [5], Theorem 4) depends on the condi-
tions of Theorem 3, then the conditions of Theorem 4 are valid for the particular case when
g(x, y) = g(x) in DDE (1), i.e., for DDE (7). Because of this reason, Remark 4 is valid for
Theorem 4.

In the light of Remark 5, the fourth result Peng [5] (Theorem 4) can be updated and corrected
by Theorem 4∗ as the next theorem at the following.

Theorem 4∗ . Assume that the conditions of Theorem 3∗ are satisfied. In addition, if x1(t)
and x2(t) are any two solutions of DDE (7) such that x1(t)− x2(t)→ 0 and x′1(t)− x′2(t)→ 0
as t→∞, then there exists unique one stationary oscillation in DDE (7).

Here, we would not like to give the proof of this theorem for the sake of the brevity (see [5],
Theorem 4).
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