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IСНУВАННЯ ДОДАТНИХ РОЗВ’ЯЗКIВ МОДЕЛI ПОПУЛЯЦIЇ,
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Using the method of sub-supersolutions, we study the existence of positive solutions for a class of singular
nonlinear semipositone systems involving nonlocal operator.

З використаннямметоду суб- i суперрозв’язкiв дослiджено iснування додатних розв’язкiв для одного
класу сингулярних нелiнiйних напiвпозитонних систем, якi мають нелокальний оператор.

1. Introduction. We consider the existence of positive solutions of singular nonlinear semiposi-
tone problem of the form



−M
(∫

Ω
|∇u|pdx

)
div
(
|x|−αp|∇u|p−2∇u

)
=

= |x|−(α+1)p+β
(
aup−1 − f(u)− c

uγ

)
, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded smooth domain of RN , N ≥ 3, with 0 ∈ Ω, 1 < p < N, 0 ≤ α < N − p
p

,

γ ∈ (0, 1), and a, c, β are positive constants and f : [0,∞) → R, are continuous functions
and M : [0,∞] → R+, aside from being continuous and nondecreasing function and 0 < M0 ≤
≤ M(t) ≤ M∞ for all t ∈ [0,∞). This model arises in the studies of population biology of
one species with u representing the concentration of the species. We use the method of sub-
supersolutions to establish our results. We discuss the existence of positive solution when f

satisfies certain additional conditions.
We make the following assumptions:
(A1) There exist L > 0 and b > 0 such that f(u) < Lub, for all u ≥ 0.

(A2) There exists a constant S > 0 such that aup−1 < f(u) + S, for all u ≥ 0.

(A3) There exist t2 > t1 > 0 such that M(t2)

t
2

N−2

2

>
M(t1)

t
2

N−2

1

[1].
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A typical example of a function satisfying this condition is M(t) = M0 + at with a ≥ 0 and for
all t ≥ 0. System (1.1) is related to the stationary problem of a model introduced by Kirchhoff
[2]. More precisely, Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−

P0

h
+
E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

∂2u

∂x2
= 0, (1.2)

where ρ, P0, h, E are all constants. This equation extends the classical d’Alembert wave
equation. A distinguishing feature of equation (1.2) is that the equation has a nonlocal coefficient
P0

h
+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx which depends on the average 1

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx, hence the equation is no

longer a pointwise identity. We refer to [3] for additional result on Kirchhoff equations. In recent
years, there has been considerable progress on the study of nonlocal problems [4 – 6]. Nonlocal
problems can be used for modeling, for example, physical and biological systems for which u

describes a process which depends on the average of itself, such as the population density. On the
other hand, elliptic problems involving more general operator, such as the degenerate quasilinear
elliptic operator given by −div

(
|x|−αp|∇u|p−2∇u

)
, were motivated by Caffarelli, Kohn and

Nirenberg’s inequality [7 – 9]. The study of this type of problem is motivated by its various
applications, for example, in fluid mechanics, in Newtonian fluids, in flow through porous media
and in glaciology [10, 11].

More recently, reaction – diffusionmodels have been used to describe spatiotemporal phenom-
ena in disciplines other than ecology, such as physics, chemistry, and biology [11 – 13]. In
addition, most ecological systems have some form of predation or harvesting of the population,
for example, hunting or fishing is often used as an effective means of wildlife management. This
model describes the dynamics of the fish population with predation. In such cases u denotes the
population density and the term c

uα
corresponds to predation. So, the study of positive solutions

of (1.1) has more practical meanings. We refer to [14 – 16] for additional results on elliptic
problems. So, the study of positive solutions of singular elliptic problems has more practical
meanings. Let f̃(u) = aup−1−f(u)− c

vγ
, Then limu→∞ f̃(u) = −∞, and hence we refer to (1.1)

as an infinite semipositone system. In [17], the authors discussed the single problem (1.1) when
M1(t) ≡ 1, α = 0, p = β = 2, and see [18] for the single equation case whenM1(t) ≡ 1. Here we
focus on further extending the study in [17, 18] for infinities semipositone Kirchhoff type systems
involving singularity. Our approach is based on the method of sub-supersolutions [12, 14].

2. Preliminaries and existing result. In this paper,we denoteW 1,p
0 (Ω, |x|−αp) , the completi-

on of C∞0 (Ω), with respect to the norm ‖u‖ =

(∫
Ω
|x|−αp|∇u|pdx

) 1
p

. To precisely state our
existence result we consider the eigenvalue problem−div

(
|x|−αp|∇φ|p−2∇φ

)
= λ|x|−(α+1)p+β|φ|p−2φ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.
(2.1)

Let φ1,p be the eigenfunction corresponding to the first eigenvalue λ1,p of (2.1) such that
φ1,p(x) > 0 in Ω and ‖φ1,p‖∞ = 1 [19, 20]. It can be shown that ∂φ1,p

∂n
< 0 on ∂Ω. Here n is

ISSN 1562-3076. Нелiнiйнi коливання, 2021, т. 23, № 3



424 S. SHAKERI

the outward normal. We will also consider the unique solution ζp(x) ∈ W 1,p
0 (Ω, |x|−αp) for the

problem −div
(
|x|−αp|∇u|p−2∇u

)
= |x|−(α+1)p+β, x ∈ Ω,

u = 0, x ∈ ∂Ω,

to discuss our existence result. It is well known that ζp(x) > 0 in Ω and ∂ζp(x)

∂n
< 0 on ∂Ω [19].

Now, we give the definition of weak solution and sub-supersolution of (1.1). A nonnegative
function ψ is called a sub-solution of (1.1) if it satisfies ψ ≤ 0 on ∂Ω and

M

∫
Ω

|x|−αp|∇ψ|pdx

∫
Ω

|x|−αp|∇ψ|p−2∇ψ · ∇wdx ≤

≤
∫
Ω

|x|−(α+1)p+β

(
aψp−1 − f(ψ)− c

ψγ

)
wdx,

and a nonnegative function z is called a super-solution of (1.1) if it satisfies z ≥ 0 on ∂Ω and

M

∫
Ω

|x|−αp|∇z|pdx

∫
Ω

|x|−αp|∇z|p−2∇z · ∇wdx ≥

≥
∫
Ω

|x|−(α+1)p+β
(
azp−1 − f(z)− c

zγ

)
wdx.

for all w ∈W = {w ∈ C∞0 (Ω) | w ≥ 0, x ∈ Ω}.
A key role in our arguments will be played by the following auxiliary result. Its proof is

similar to those presented in [13], the reader can consult further the papers [16, 21].
Lemma 2.1. Assume that M : R+ → R+ is a continuous and increasing function satisfying

M(t) ≥M0 > 0 for all t ∈ R+.

If the functions u, v ∈W 1,p
0 (Ω) satisfies

M

∫
Ω

|∇u|p dx

∫
Ω

|∇u|p−2∇u · ∇ϕdx ≤

≤M

∫
Ω

|∇v|p dx

∫
Ω

|∇v|p−2∇v · ∇ϕdx (2.2)

for all ϕ ∈W 1,p
0 (Ω), ϕ ≥ 0, then u ≤ v in Ω.
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Proof. Our proof is based on the arguments presented in [22, 23]. Define the functional Φ :
W 1,p

0 (Ω)→ R by the formula

Φ(u) :=
1

p
M̂

∫
Ω

|∇u|p dx

, u ∈W 1,p
0 (Ω).

It is obviously that the functional Φ is a continuously Gáteaux differentiable whose Gáteaux
derivative at the point u ∈W 1,p

0 (Ω) is the functional Φ′ ∈W−1,p
0 (Ω), given by

Φ′(u)(ϕ) = M

∫
Ω

|∇u|p dx

∫
Ω

|∇u|p−2∇u · ∇ϕdx, ϕ ∈W 1,p
0 (Ω).

It is obvious that Φ′ is continuous and bounded since the function M is continuous. We will
show that Φ′ is strictly monotone in W 1,p

0 (Ω). Indeed, for any u, v ∈ W 1,p
0 (Ω), u 6= v, without

loss of generality, we may assume that

∫
Ω

|∇u|p dx ≥
∫
Ω

|∇v|p dx

(otherwise, changing the role of u and v in the following proof). Therefore, we have

M

∫
Ω

|∇u|p dx

 ≥M
∫

Ω

|∇v|p dx

 (2.3)

since M(t) is a monotone function. By using Cauchy’s inequality, we have

∇u · ∇v ≤ |∇u||∇v| ≤ 1

2

(
|∇u|2 + |∇v|2

)
. (2.4)

By using (2.4), we get

∫
Ω

|∇u|p dx−
∫
Ω

|∇u|p−2∇u · ∇v dx ≥ 1

2

∫
Ω

|∇u|p−2
(
|∇u|2 − |∇v|2

)
dx (2.5)

and ∫
Ω

|∇v|p dx−
∫
Ω

|∇v|p−2∇v · ∇u dx ≥ 1

2

∫
Ω

|∇v|p−2
(
|∇v|2 − |∇u|2

)
dx. (2.6)
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If |∇u| ≥ |∇v|, by using (2.3) – (2.6), we obtain

I1 := Φ′(u)(u)− Φ′(u)(v)− Φ′(v)(u) + Φ′(v)(v) =

= M

∫
Ω

|∇u|p dx

∫
Ω

|∇u|p dx−
∫
Ω

|∇u|p−2∇u · ∇v dx

−

−M

∫
Ω

|∇v|p dx

∫
Ω

|∇v|p−2∇v · ∇u dx−
∫
Ω

|∇v|p dx

 ≥

≥ 1

2
M

∫
Ω

|∇u|p dx

∫
Ω

|∇u|p−2
(
|∇u|2 − |∇v|2

)
dx−

− 1

2
M

∫
Ω

|∇v|p dx

∫
Ω

|∇u|p−2
(
|∇u|2 − |∇v|2

)
dx =

=
1

2
M

∫
Ω

|∇v|p dx

∫
Ω

(
|∇u|p−2 − |∇v|p−2

) (
|∇u|2 − |∇v|2

)
dx ≥

≥ M0

2

∫
Ω

(
|∇u|p−2 − |∇v|p−2

) (
|∇u|2 − |∇v|2

)
dx. (2.7)

If |∇v| ≥ |∇u|, changing the role of u and v in (2.3) – (2.6), we have

I2 := Φ′(v)(v)− Φ′(v)(u)− Φ′(u)(v) + Φ′(u)(u) =

= M

∫
Ω

|∇v|p dx

∫
Ω

|∇v|p dx−
∫
Ω

|∇v|p−2∇v · ∇u dx

−

−M

∫
Ω

|∇u|p dx

∫
Ω

|∇u|p−2∇u · ∇v dx−
∫
Ω

|∇u|p dx

 ≥

≥ 1

2
M

∫
Ω

|∇v|p dx

∫
Ω

|∇v|p−2
(
|∇v|2 − |∇u|2

)
dx−

− 1

2
M

∫
Ω

|∇u|p dx

∫
Ω

|∇u|p−2
(
|∇v|2 − |∇u|2

)
dx =
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=
1

2
M

∫
Ω

|∇v|p dx

∫
Ω

(
|∇v|p−2 − |∇u|p−2

) (
|∇v|2 − |∇u|2

)
dx ≥

≥ M0

2

∫
Ω

(
|∇v|p−2 − |∇u|p−2

) (
|∇v|2 − |∇u|2

)
dx. (2.8)

From (2.7) and (2.8) we get(
Φ′(u)− Φ′(v)

)
(u− v) = I1 = I2 ≥ 0 ∀u, v ∈W 1,p

0 (Ω).

Moreover, if u 6= v and (Φ′(u)− Φ′(v)) (u− v) = 0, then we obtain∫
Ω

(
|∇u|p−2 − |∇v|p−2

) (
|∇u|2 − |∇v|2

)
dx = 0,

so |∇u| = |∇v| in Ω. Thus, we deduce that(
Φ′(u)− Φ′(v)

)
(u− v) = Φ′(u)(u− v)− Φ′(v)(u− v) =

= M

∫
Ω

|∇u|p dx

∫
Ω

|∇u|p−2|∇u−∇v|2 dx = 0, (2.9)

i.e., u − v is a constant. In view of u = v = 0 on ∂Ω we have u ≡ v which is contrary with
u 6= v. Therefore, (Φ′(u)− Φ′(v)) (u− v) > 0 and Φ′ is strictly monotone in W 1,p

0 (Ω).

Let u, v be two functions such that (2.2) is verified. Taking ϕ = (u− v)+, the positive part
of u− v, as a test function of (2.2), we have

(
Φ′(u)− Φ′(v)

)
(ϕ) = M

∫
Ω

|∇u|p dx

∫
Ω

|∇u|p−2∇u · ∇ϕdx−

−M

∫
Ω

|∇v|p dx

∫
Ω

|∇v|p−2∇v · ∇ϕdx ≤ 0. (2.10)

Relations (2.9) and (2.10) mean that u ≤ v.
Then the following result holds:
Lemma 2.2. Suppose there exist sub and super-solutions ψ and z, respectively, of (1.1) such

that ψ ≤ z. Then (1.1) has a solution u such that ψ ≤ u ≤ z.
We are now ready to give our existence result.

Theorem 2.1. Assume (A1) – (A3) hold, that if
a

M∞
>

(
p

p− 1 + γ

)p−1

λ1,p, then there

exists c0 > 0 such that if 0 < c < c0, then the system (1.1) admits a positive solution.
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Proof. We start with the construction of a positive subsolution for (1.1). To get a positive
subsolution, we can apply an anti-maximum principle [15], from which we know that there exist
a δ1 > 0 and a solution zλ of−div

(
|x|−αp|∇z|p−2∇z

)
= |x|−(α+1)p+β(λzp−1 − 1), x ∈ Ω,

z = 0, x ∈ ∂Ω,

for λ ∈ (λ1,p, λ1,p + δ1). Fix

λ̂ ∈
(
λ1,p,min

{(
p− 1 + γ

p

)
a, λ1,p + δ1

})
.

Let θ = ‖zλ̂‖. It is well known that zλ̂ > 0 in Ω and
∂zλ̂
∂n

< 0 on ∂Ω, where n is the outer
unit normal to Ω. Hence, there exist positive constants ε, δ, σ such that

|x|−αp|∇zλ̂|
p ≥ ε, x ∈ Ωδ, (2.11)

zλ̂ ≥ σ, x ∈ Ω0 = Ω\Ωδ,

where Ωδ =
{
x ∈ Ω | d(x, ∂Ω) ≤ δ

}
. Choose η1, η2 > 0 such that η1 ≤ min |x|−(α+1)p+β and

η2 ≥ max |x|−(α+1)p+β in Ωδ. We construct a subsolution ψ of (1.1), by using zλ̂. Define

ψ = M

(
p− 1 + γ

p

)
z

p
p−1+γ

λ̂
,

where

M = min




M∞

(
p

p− 1 + γ

)b
θ

(1−γ)(p−1)
p−1+γ

Lθ
pb

p−1+γ


1

b−p+1

,


(
p− 1

Lp

)
θ
p(p−1)
p−1+γ

[(
p− 1 + γ

p

)p−1

a1 −M∞λ̂

]
(
p− 1 + γ

p

)b
θ

pb
p−1+γ


1

b−p+1


.

Let w ∈W. Then a calculation shows that

∇ψ = Mz
1−γ
p−1+γ

λ̂
∇zλ̂,
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M

∫
Ω

|∇ψ|pdx

∫
Ω

|x|−αp|∇ψ|p−2∇ψ · ∇wdx ≤

≤M∞Mp−1

∫
Ω

|x|−αpz
(1−γ)(p−1)
p−1+γ

λ̂

∣∣∇zλ̂∣∣p−2∇zλ̂∇wdx =

= M∞M
p−1

∫
Ω

|x|−αp|∇zλ̂|
p−2∇zλ̂

[
∇
(
z

(1−γ)(p−1)
p−1+γ

λ̂
w

)
−
(
∇z

(1−γ)(p−1)
p−1+γ

λ̂

)
w

]
dx =

= M∞M
p−1

∫
Ω

[
|x|−(α+1)p+βz

(1−γ)(p−1)
p−1+γ

λ̂

(
λ̂zp−1

λ̂
− 1
)
−

− |x|−αp (1− γ)(p− 1)

p− 1 + γ

|∇zλ̂|
p

z
γp

p−1+γ

λ̂

]
wdx =

= M∞

∫
Ω

[
|x|−(α+1)p+βMp−1λ̂z

p(p−1)
p−1+γ

λ̂
− |x|−(α+1)p+βMp−1z

(1−γ)(p−1)
p−1+γ

λ̂
−

− |x|−αpMp−1 (1− γ)(p− 1)

p− 1 + γ

|∇zλ̂|
p

z
γp

p−1+γ

λ̂

]
wdx,

and ∫
Ω

|x|−(α+1)p+β

[
aψp−1 − f(ψ)− c

ψγ

]
wdx =

=

∫
Ω

[
|x|−(α+1)p+βaMp−1

(
p− 1 + γ

p

)p−1

z
p(p−1)
p−1+γ

λ̂
−

− |x|−(α+1)p+βf1

(
M

(
p− 1 + γ

p

)
z

p
p−1+γ

λ̂

)
−

− |x|−(α+1)p+β c

Mγ

(
p− 1 + γ

p

)γ
z

γp
p−1+γ

λ̂

]
w dx.

Let

c0 = Mp−1+γ min

{
M∞(1− γ)(p− 1)

p− 1 + γ

(
p− 1 + γ

p

)γ ε

η2
,

1

p

(
p− 1 + γ

p

)γ
σp
[(

p− 1 + γ

p

)
a−M∞λ̂

]}
.
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First we consider the case when x ∈ Ωδ. We have |x|−αp|∇zλ̂| ≥ ε on Ωδ. Since

M∞

(
p

p− 1 + γ

)p−1

λ̂ ≤ a, we get

|x|−(α+1)p+βM∞M
p−1λ̂z

p(p−1)
p−1+γ

λ̂
≤

≤ |x|−(α+1)p+βaMp−1

(
p− 1 + γ

p

)p−1

z
p(p−1)
p−1+γ

λ̂
, (2.12)

and from the choice of M, we arrive at

LM b−p+1θ
pb

p−1+γ ≤M∞
(

p

p− 1 + γ

)b
θ

(1−γ)(p−1)
p−1+γ . (2.13)

By (2.13) and (A1), we find

− |x|−(α+1)p+βM∞M
p−1z

(1−γ)(p−1)
p−1+γ

λ̂
≤

≤ −|x|−(α+1)p+βLM b

(
p− 1 + γ

p

)b
z

pb
p−1+γ

λ̂
≤

≤ −|x|−(α+1)p+βf1

(
M

(
p− 1 + γ

p

)
z

p
p−1+γ

λ̂

)
. (2.14)

Next, from (2.11) and definition of c0, we obtain

|x|−αpM∞Mp−1 (1− γ)(p− 1)

p− 1 + γ
|∇zλ̂|

p ≥ |x|−(α+1)p+β c

Mγ

(
p− 1 + γ

p

)γ
and

− |x|−αpM∞Mp−1 (1− γ)(p− 1)

p− 1 + γ

|∇zλ̂|
p

z
γp

p−1+γ

λ̂

≤

≤ −|x|−(α+1)p+β c

Mγ

(
p− 1 + γ

p

)γ
z

γp
p−1+γ

λ̂

. (2.15)

Hence, by using (2.12), (2.14), and (2.15), for c ≤ c0, we go to

M

∫
Ω̄δ

|∇ψ|pdx

∫
Ωδ

|x|−αp|∇ψ|p−2∇ψ · ∇wdx ≤

≤
∫
Ωδ

[
|x|−(α+1)p+βaMp−1

(
p− 1 + γ

p

)p−1

z
p(p−1)
p−1+γ

λ̂
−
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− |x|−(α+1)p+βf

(
M

(
p− 1 + γ

p

)
z

p
p−1+γ

λ̂

)
−

− |x|−(α+1)p+β c

Mγ

(
p− 1 + γ

p

)γ
z

γp
p−1+γ

λ̂1

]
wdx =

=

∫
Ωδ

|x|−(α+1)p+β

[
aψp−1 − f(ψ)− c

ψγ

]
wdx. (2.16)

On the other hand, on Ω0 = Ω\Ωδ, we have zλ̂ ≥ σ for some 0 < σ < 1. From the definition of
c0, for c ≤ c0, we get

c

Mγ

(
p− 1 + γ

p

)γ ≤ 1

p
Mp−1σp

[(
p− 1 + γ

p

)p−1

a−M∞λ̂

]
≤

≤ 1

p
Mp−1zp

λ̂

[(
p− 1 + γ

p

)p−1

a−M∞λ̂

]
. (2.17)

Also, from the choice of M, we obtain

LM b−p+1

(
p− 1 + γ

p

)b
z

pb
p−1+γ

λ̂
≤ z

p(p−1)
p−1+γ

λ̂

p− 1

p

[(
p− 1 + γ

p

)p−1

a−M∞λ̂

]
. (2.18)

Hence, from (2.17) and (2.18), we have

M

 ∫
Ω0

|∇ψ|pdx

∫
Ω0

|x|−αp|∇ψ|p−2∇ψ∇w dx ≤

≤M∞
∫
Ω0

|x|−(α+1)p+βMp−1λ̂z
p(p−1)
p−1+γ

λ̂
− |x|−(α+1)p+βMp−1z

(1−γ)(p−1)
p−1+γ

λ̂
−

− |x|−αpMp−1 (1− γ)(p− 1)

p− 1 + γ

|∇zλ̂|
p

z
γp

p−1+γ

λ̂

w dx ≤
≤M∞

∫
Ω0

|x|−(α+1)p+βMp−1λ̂z
p(p−1)
p−1+γ

λ̂
w dx =

= M∞

∫
Ω0

|x|−(α+1)p+β 1

z
γp

p−1+γ

λ̂

[
1

p
λ̂Mp−1zp

λ̂
+
p− 1

p
λ̂Mp−1zp

λ̂

]
w dx ≤
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≤
∫
Ω0

|x|−(α+1)p+β 1

z
γp

p−1+γ

λ̂


1

p
Mp−1

(
p− 1 + γ

p

)p−1

azp
λ̂
− c

Mγ

(
p− 1 + γ

p

)γ
 +

+Mp−1zp
λ̂

(
p− 1 + γ

p

)p−1

×

×

(p− 1)a

p
− LM b−p+1

(
p− 1 + γ

p

)b(p− 1 + γ

p

)1−p z
pb

p−1+γ

λ̂

z
p(p−1)
p−1+γ

λ̂


wdx =

=

∫
Ω0

|x|−(α+1)p+β

aMp−1

(
p− 1 + γ

p

)p−1

z
p(p−1)
p−1+γ

λ̂
−

−LM b

(
p− 1 + γ

p

)b
z

pb
p−1+γ

λ̂
−

b1z
−γp
p−1+γ

λ̂

Mγ

(
p− 1 + γ

p

)γ
w dx ≤

≤
∫
Ω0

|x|−(α+1)p+β

aMp−1

(
p− 1 + γ

p

)p−1

z
p(p−1)
p−1+γ

λ̂
−

− f
(
M

(
p− 1 + γ

q

)
z

p
p−1+γ

λ̂

)
− c

Mγ

(
p− 1 + γ

p

)γ
z

γp
p−1+γ

λ̂

w dx =

=

∫
Ω0

|x|−(α+1)p+β

[
aψp−1 − f(ψ)− c

ψγ

]
w dx. (2.19)

By using (2.16) and (2.19), we see that ψ is a sub-solution of (1.1).
Next, we construct a super-solution z of (1.1) such that z ≥ ψ. By (A2) and choose a large

constant S∗, such that aup−1 − f(u)− c

uγ
≤ S∗, for all u > 0. Let

z =

(
S∗

M0

) 1
p−1

ζp(x).

We shall verify that z is a super-solution of (1.1). To this end, let w ∈W. Then we have

M

∫
Ω

|∇z|pdx

∫
Ω

|x|−αp|∇z|p−2∇z∇w dx ≥
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≥ S∗
∫
Ω

|x|−(α+1)p+βw dx ≥

≥
∫
Ω

|x|−(α+1)p+β
[
azp−1 − f(z)− c

zγ

]
w dx.

Thus, z is a super-solution of (1.1). Finally, we can choose S∗ � 1 such that ψ ≤ z in Ω.

Hence, if c ≤ c0, by Lemma 2.1, there exists a positive solution u of (1.1) such that ψ ≤ z.
This completes the proof of Theorem 2.1.
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