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The necessary and sufficient conditions for the existence of solutions of linear and nonlinear boundary-
value problems in the Hilbert and Banach spaces are obtained. A convergent iterative procedure for finding
solutions in the nonlinear case is presented.

Onep:xaHo HEOOXiIHY i JOCTaTHIO YMOBH 1CHYBaHHS pO3B’ sI3KiB JIIHIHOI Ta HeJIIHIAHOI KpalloBUX 3a1a4 y
npoctopax ['inn0epra it banaxa. HaBeneHo 36ixkHy iTepalliiiHy IIpoLenypH IJisl 3HaXOIKEHHST pO3B’ SI3KiB
y HeJIHIAHOMY BUIIAIKY.

Introduction. In this work, we develop constructive methods of analysis of linear and nonlinear
boundary-value problems for the operator-differential equations in the Banach and Hilbert spaces.
Such problems occupy a central place in the qualitative theory of differential equations [1—18].
The specific feature of these problems is that the operator of the linear part of the equation
does not have an inverse. These does not allow one to use the traditional methods based on
the principles of contracting mappings and a fixed point. For the analysis of a nonlinear system
of differential equations, we develop the ideas of the Lyapunov —Schmidt method and efficient
methods of perturbation theory with using the theory of generalized inverse [19] and strongly
generalized inverse operators [20].

Statement of the problem. Consider the following boundary-value problem:

¢'(t,e) = p(t.e) +(t,e) +efilt,o(t,€), (L, €),€) + g1(t), 0
V(te) = p(te) +efalt, ot ), P(t,€), €) + g2(t), T €,
with boundary condition
l(¢<'75)7w('7€)) =, ()
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where ¢, € CY(J,H), C'(J,H) is the Banach space of continuously differentiable vector-
functions on the interval J C R with values in the Hilbert space # ; vector-functions fi, fo are
strongly differentiable; [ is a linear and bounded operator which translates solutions of (1) into the
Hilbert space H;; vector-functions g;(t), g2(t) € C(J,H). We find the necessary and sufficient
conditions of the existence of solutions ¢(¢,¢), ¥ (t,e) of the boundary-value problem (1), (2)
which for € = 0 turn in one of solutions of the generating linear boundary-value problem in the
following form:

©o(t) = @o(t) +o(t) + g1(t),
Yo(t) = @o(t) + g2(t), teJ,
I(po(:),%0()) = .

At first, we investigate a generating linear case.
Linear case. Consider the linear boundary-value problem

©o(t) = wolt) +1o(t) + g1(t),
Yo(t) = wolt) + g2(t), te€J,

(po(-), Yo(+) = a. “)

Denote by U(t) an evolution operator of homogeneous system

3)

wo(t) = wo(t) + ho(t),
wé(t) = (po(t), ted,
U't)y=AU(t), U(0)=1I,
where the matrix operator-valued function has the form
11
A=
10
and the evolution operator U(¢) has the form
> t"Frhy1  t"F,
Uy =t =3 ,
n=0 n. tnFn tnFn_l

where F), is a Fibonacci sequence:

Fo=0, Fi=1 Fyo=F+F, n2>0,

or
1++5 145, VE—1 1-vB, 14V, 1-vE,
25 e 2 "+ 25 e 2 e 2 "—e 2
U(t) = : 5
1435, 1-V5, 2 14V, 2 1-v5,
e 2 —e 2 2 e 2

e +
5+5 5-5
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In this case the set of solutions of the gather (3) has the form

t
(po(t, C) T 1 t"F, +1C1 + t"F, Co
( ) = etAc—I—/e(tT)Ag(T)dT = E o ! [
0

wo(t, C) n—0 t"Fhcq +t"F_1co

£ 1 (= 1) F1g1(7) + (t— 7)" Fuga(r)
+ — dr,
Z:%n'/ ((t—f)” ngl<7>+<t—7>"Fn_1gg<T>>

where ¢ = (c1,e2)T, c1,c0 € H, g(t) = (g1(t),g2(t))T (or with using of representation (5)).
Subsituting in the boundary condition (4) we obtain the following operator equation:

QCZO&—Z/U(')U_I(T)Q(T)CZT, Q=IU():H— Hi.
0

By using the theory of strong generalized solutions [21], we can obtain the following result:

Qc—a— Z/U(-)U_I(T)Q(T)dT, Q=1U(): H xH — Hi.
0

Theorem 1. 1. (a) Boundary-value problem (3), (4) has strongly generalized solutions if
and only if the following condition holds:

PN@*) {a — Z/U(')UI(T)Q(T)CZT} =0; (6)
0

if o — l/' U(U () f(r)dr € R(Q), then generalized solutions will be classical;

(b) ugtder condition (6) the set of solutions has the form
2] (tv E) R e -~
T;Z)O (ta C)

where PN@), PN@*) are the orthoprojectors onto the kernel and cokernel of the operator Q
respectively (Q is the extension of the operator Q [20]),

(Glg,a])(t) = /U(f)U_l(T)g(T)dT+Q+ {al/U(')Ul(T)g(T)dT}

0 0

is a generalized Green’s operator, @+ is strongly Moore — Penrose pseudoinvertible operator [20];
2. (a) boundary-value problem (3), (4) has strongly pseudosolutions if and only if the fol-
lowing condition holds:

Py {a l/U(-)Ul(T)f(T)dT} # 0; (8)

0
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(b) under condition (8) the set of strongly pseudosolutions has the form

@o(t, ) S
(%(t,@) = U(H)Pyge+ (Glg.a])(t) YeeH.

Nonlinear case. The following statement is hold.

Theorem 2. Suppose that the boundary-value problem (1), (2) has solution which turns in
one of solutions of generating boundary-value problem (3), (4) in the form (7) (¢ = 0) with an
element ¢ = cy. Then the element ¢\ satisfies the following operator equation for generating
elements:

F(C) = PN(@*)Z / U(')U_1(7_>f(7—a 900(7—7 C)? %(Tv C), O)dT =0.
0
Here

£t olt,), (1), 2) = (fl“v@(tvs),w(t,e),s))

f2(ta (P(t, 8)5 I/J(t, 5)7 6)
Proof. 1f the boundary-value problem (1), (2) has the solution, then from the theorem 1
follows that the following condition is true:

PN(@*) {a — l/U(-)U—l(T) (g(1) +ef(r, (T, 8),9(T,€),¢€)) dT} —0.
0

Since the boundary-value problem (1), (2) has the solution, then by using condition (6) we obtain
finally (¢ — 0)

Pyv@ {Z/U(')UI(T)f(T, wo(f,c),¢o(7,c),o)d7} —0.
0

For obtaining the sufficient condition of the existence of solutions we use the following change
of variables:

Qo(t7 5) = @(tv 5) + 900(75’ 00)7

@Zj(t? 5) = ¢(t7 5) + @Do(t, 00)7
where the element ¢ satisfies the equation for generating elements. We obtain the boundary-value
problem

@l(tv 5) = @(tv 5) + E(tv 8) + Efl (tv @(tv 8) + (pO(ta CO)?@(tv 5) + ¢0(ta 00)7 8)7
_ _ )
¢,(ta 8) = @(tv 5) + 8f2(t7¢(t7 6) + SOO(tv CO)’ 1/’(157 6) + ¢0(t7 00)7 5)5
1(5(35)’@(35)) =0. (10)
Suppose that the vector-functions f;, fo are strongly differentiable in the neighborhood of
the generating solution

fi, f2. € CHlle — woll < a1, [ — voll < g2),

q1, g2 are positive constants.
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Use the following expansions:

J1(t,2(t, ) + ot co), (t, €) + Yo(t, o), €)
= fi(t, wo(t, o), Po(t; co), 0) + fi,(t, po(ts co)s Yo(t, co), 0)B(t, )
+ flu(t, o(t. co), to(t, co), 0)9(t, €) + Ra(t, Blt, €), ¥(t,€), €),
fa(t,@(t, €) + polt, co), ¥(t, €) + o (t, o), €)
= falt, po(t, co), o(t, co), 0) + fau,(t, po(t, co), 1ot co), 0)B(t, €)
+ fau(t, 0 (t, o), Yot co), 0)¥(t, €) + Ra(t, Blt, €), ¥(t,€), €),
where
Ri(,0,0,0) = R, (£,0,0,0) = Rj,(,0,0,0) = 0,
Ra(t,0,0,0) = Rh,(£,0,0,0) = Rp,(£,0,0,0) = 0.

Then we can rewrite the boundary-value problem (9) — (10) in the following form:

P =0+¢+e{fi+fl,@+ fiy¥+Ri},

B - (11)
O =P +e{fot fr,8+ foy¥ + Ra},
l(@(ﬁ)a@(@)) =0. (12)
Let / L
F(t,e) = <f1 thpt fw% " Rl) :
fo+ 13,0+ fi, 0+ Ro
Under condition of solvability [19, 20]
Pr@) {l / U<->U1<T>F<T,e>dr} =0, (13)
0

the set of solutions of boundary-value problem (11), (12) has the following form:
»(t,¢) e
_ = U(t)PN(@c + ¢(G[F,0])(t) VeeH.

Substituting representation of solutions in the condition (13) we obtain the operator equation
Byc = b, (14)

where the operator Bj has the form

flo fiy

U(T)Py o dT,
7, fé) @

0
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Jie f“") GIF, 0](r)dr.

_5PN(Q*)Z/U(')U_1(T) ( A
/ foo i
Suppose that the following condition is hold:
Pn@;)Pra =0
Then the equation (14) is solvable. One of the solution has the form
c= Ear b.

In such a way we can obtain the following theorem.
Theorem 3. Suppose that the following condition is hold:

Py@yPra =0
Then for any element ¢ = ¢y € H which satisfies the equation for generating elements there exists

solution of the boundary-value problem (1), (2). This solution can be found with the iterative
procedure

(‘Pk—&-l(ta Ck)

— =U(t)Pyg)Ck + his1(t, €),
wk—‘rl(tvck’)) @

n . R T77 7@ , €
O = _BSFPN(Q*)Z/U(')U_l(T) R P
0 Ra(T, Py Ys €)

- B Py 0/ U U (r) (2: 22) T, e)dr,
his1(t,€) = eGLf (-, By, + @0, Vi + Yo, €), 0](1),
Rt Bt e),9(t€),) = fi(t, Bt €) + wolt, co), Y (¢, €) + Yo(ts o), )~
— f1t,po(t, co),o(t, c0), 0) — fi,(t, o(t, o), tolt, co),0)P(t, &) —
— fiy(t, @o(t, co), tolt, co), 0)3(t, €),
Ra(t, Bt €),9(t.€), ) = f2(t, Bt €) + wo(t, co), (¢, ) + Yo(ts o), )~
— fa(t, po(t, o), Yo (t, o), 0) — fa,(t, o (t, o), to(t, o), 0)P(t, €)—
— fou(t, po(t, co), tho(t, co), 0) iy (t, €),

(p(t, 8) = 900(t760) + lim @k(ta[‘:)a
k—o0
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¢(ta 5) = ¢0(t7 CU) + k:linolo Ek(ta 5)'
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