NOTE ON FRACTIONAL DIFFERENCE EQUATIONS WITH PERIODIC AND S-ASYMPTOTICALLY PERIODIC RIGHT-HAND SIDE*

ПРО РІЗНИЦЕВІ РІВНЯННЯ ДРОБОВОГО ПОРЯДКУ З ПЕРІОДИЧНОЮ І S-АСИМПТОТИЧНО ПЕРІОДИЧНОЮ ПРАВОЮ ЧАСТИНОЮ

M. Pospíšil

Comenius Univ., Mlynská dolina, 84248, Bratislava, Slovakia and Math. Inst., Slovak Acad. Sci. Štefánikova st., 49, 81473 Bratislava, Slovakia e-mail: Michal.Pospisil@fmph.uniba.sk

Decomposition of a solution of a fractional difference initial value problem with periodic right-hand side is found. For problems with S-asymptotically N-periodic right-hand side, a sufficient condition is proved for the existence of an S-asymptotically N-periodic solution.

Знайдено розклад розв'язку дробово-різницевої початкової задачі з періодичною правою частиною. Для задач з S-асимптотично N-періодичною правою частиною доведено достатню умову існування S-асимптотично N-періодичного розв'язку.

Dedicated to 60th birthday of professor Michal Fečkan

1. Introduction. In this note we consider the fractional difference initial value problem

$$\Delta_*^{\mu} u(k) = f(k), \quad k \in \mathbb{N}_{1-\mu},
u(0) = u_0,$$
(1.1)

with Caputo like fractional difference operator Δ_*^μ of order $0 < \mu < 1$. Here and after, \mathbb{N}_a , $a \in \mathbb{R}$, denotes the shifted set of positive integers, i.e., $\mathbb{N}_a = \{a, a+1, a+2, \ldots\}$. We shortly denote $\mathbb{N} := \mathbb{N}_1$. Motivated by [1] we shall improve our recent result from [2], where it was proved using R_a -transform (Laplace transform on the time scale of integers) that despite of having N-periodic right-hand side f, problem (1.1) can not posses an N-periodic solution; instead it has an S-asymptotically N-periodic solution. We shall consider $f: \mathbb{N}_{1-\mu} \to X$, where X is a Banach space equipped with a norm $|\cdot|$, and look for a solution $u: \mathbb{N}_0 \to X$ satisfying fractional difference equation (1.1) along with the corresponding initial condition.

For periodic right-hand side, here we find a decomposition of the solution u to constant, periodic, S-asymptotically periodic and shrinking part. In the case when f has zero arithmetic mean over the period N we obtain a convergence to an N-periodic function. We also derive the rate of this convergence.

^{*} This work was partially supported by Grants VEGA 1/0358/20, VEGA 2/0127/20 and APVV-18-0308.

[©] M. Pospíšil, 2021

Moreover, for S-asymptotically N-periodic right-hand side we prove sufficient condition under which the solution u to (1.1) is S-asymptotically N-periodic.

Throughout the paper, we assume the property of empty sum and empty product, i.e.,

$$\sum_{k=a}^{b} f(k) = 0, \qquad \prod_{k=a}^{b} f(k) = 1$$

if a > b.

2. Preliminaries. First we recall some definitions from the theory of fractional difference calculus. Basic definitions are due to [3, 4]. For properties of fractional difference operator see [5, 6].

Definition 2.1. Let $\nu \in \mathbb{R}$. Factorial function is defined as

$$t^{(\nu)} = \begin{cases} 0, & t+1-\nu \in \{\dots, -2, -1, 0\}, \\ \frac{\Gamma(t+1)}{\Gamma(t+1-\nu)}, & \textit{otherwise}, \end{cases}$$

where Γ is the Euler gamma function.

Lemma 2.1 ([7], Lemma 2.5). *For any* k > 0, $0 < \mu < 1$,

$$\sum_{j=1-\mu}^{k-\mu} (k - \sigma(j))^{(\mu-1)} = \frac{\Gamma(k+\mu)}{\mu \Gamma(k)},$$

where $\sigma(j) = j + 1$.

Definition 2.2. Let $a \in \mathbb{R}$, $\nu > 0$. The ν th fractional sum of function f defined on \mathbb{N}_a is given by

$$\Delta^{-\nu} f(k) = \frac{1}{\Gamma(\nu)} \sum_{j=a}^{k-\nu} (k - \sigma(j))^{(\nu-1)} f(j)$$

for any $k \in \mathbb{N}_{a+\nu}$.

Definition 2.3. Let $a \in \mathbb{R}$, $\mu > 0$, $m - 1 < \mu < m$ for some $m \in \mathbb{N}$, $\nu := m - \mu$ and function f be defined on \mathbb{N}_a . The μ th fractional Caputo like difference of f is defined as

$$\Delta_*^{\mu} f(k) = \Delta^{-\nu} (\Delta^m f(k)) = \frac{1}{\Gamma(\nu)} \sum_{j=a}^{k-\nu} (k - \sigma(j))^{(\nu-1)} (\Delta^m f)(j)$$

for any $k \in \mathbb{N}_{a+\nu}$. Here Δ^m is the mth forward difference operator,

$$\left(\Delta^m f\right)(k) = \sum_{j=0}^m \binom{m}{j} (-1)^{m-j} f(k+j).$$

A form of summation by parts formula (discrete analogue to per partes method) is mentioned in the following lemma.

Lemma 2.2. For any $a \in \mathbb{R}$, $b \in \mathbb{N}_a$,

$$\sum_{j=a}^{b} f(j)\Delta g(j) = \left[f(j)g(j) \right]_{j=a}^{b+1} - \sum_{j=a+1}^{b+1} \Delta f(j-1)g(j).$$

Definition 2.4. A function $f: \mathbb{N}_a \to X$ is N-periodic if there exists $N \in \mathbb{N}$ such that f(k+N) - f(k) = 0 for each $k \in \mathbb{N}_a$.

Definition 2.5 [8]. A function $f: \mathbb{N}_a \to X$ is called S-asymptotically N-periodic if there exists $N \in \mathbb{N}$ such that

$$\lim_{k \to \infty} (f(k+N) - f(k)) = 0.$$

In this case, the smallest such N is called asymptotic period of f.

Example 2.1. Function $g(k) = \sqrt{k}$ is S-asymptotically 1-periodic, since

$$\lim_{k \to \infty} \left(\sqrt{k+1} - \sqrt{k} \right) = \lim_{k \to \infty} \frac{1}{\sqrt{k+1} + \sqrt{k}} = 0.$$

We shall need the following estimation of a ratio of gamma functions. Another useful estimations can be found in [9].

Lemma 2.3 [10]. For any 0 < s < 1 and x > 0,

$$x^{1-s} \le \frac{\Gamma(x+1)}{\Gamma(x+s)} \le (x+s)^{1-s}.$$

We can apply the latter estimation immediately to prove the next statement.

Lemma 2.4. For any $N, J \in \mathbb{N}, \ 0 < \mu < 1,$

$$\sum_{j=J}^{\infty} (N+j+\mu-3)^{(\mu-2)} = \frac{\Gamma(N+J+\mu-2)}{(1-\mu)\Gamma(N+J-1)}.$$

Proof. We consider the infinite sum as $\lim_{K\to\infty}\sum_{j=J}^K$. Then for any $K\in\mathbb{N}_J$, we evaluate the finite sum by writing it as a telescoping series,

$$\begin{split} \sum_{j=J}^{K} (N+j+\mu-3)^{(\mu-2)} &= \sum_{j=J}^{K} \frac{\Gamma(N+j+\mu-2)}{\Gamma(N+j)} = \\ &= \frac{1}{1-\mu} \sum_{j=J}^{K} \left[\frac{\Gamma(N+j+\mu-2)}{\Gamma(N+j-1)} - \frac{\Gamma(N+j+\mu-1)}{\Gamma(N+j)} \right] = \\ &= \frac{1}{1-\mu} \left[\frac{\Gamma(N+J+\mu-2)}{\Gamma(N+J-1)} - \frac{\Gamma(N+K+\mu-1)}{\Gamma(N+K)} \right] \end{split}$$

for any $K \in \mathbb{N}_J$. Using Lemma 2.3 we obtain

$$0 \le \frac{\Gamma(N+K+\mu-1)}{\Gamma(N+K)} \le \frac{1}{(N+K)^{1-\mu}} \xrightarrow{K \to \infty} 0.$$

Lemma 2.4 is proved.

3. Periodic right-hand side. From [7] (Lemma 2.4) we know that function u is a solution to initial value problem (1.1) if and only if it satisfies

$$u(k) = u_0 + \frac{1}{\Gamma(\mu)} \sum_{j=1-\mu}^{k-\mu} (k - \sigma(j))^{(\mu-1)} f(j)$$
(3.1)

for each $k \in \mathbb{N}_0$. Assume that $f: \mathbb{N}_{1-\mu} \to X$ is N-periodic for some $N \in \mathbb{N}_2$ and decompose

$$f(k) = \bar{f} + \tilde{f}(k), \quad k \in \mathbb{N}_0,$$

with

$$\bar{f} := \frac{1}{N} \sum_{k=1-\mu}^{N-\mu} f(k).$$

Consequently,

$$\sum_{j=1-\mu}^{N-\mu} \tilde{f}(j) = \sum_{j=1-\mu}^{N-\mu} f(j) - \sum_{j=1-\mu}^{N-\mu} \bar{f} = 0.$$

Using Lemma 2.1, we obtain

$$u(k) = u_0 + \frac{\bar{f}}{\Gamma(\mu)} \sum_{j=1-\mu}^{k-\mu} (k - \sigma(j))^{(\mu-1)} + \frac{1}{\Gamma(\mu)} \sum_{j=1-\mu}^{k-\mu} (k - \sigma(j))^{(\mu-1)} \tilde{f}(j) =$$

$$= u_0 + \frac{\bar{f}\Gamma(k+\mu)}{\Gamma(\mu+1)\Gamma(k)} + \frac{1}{\Gamma(\mu)} \sum_{j=1-\mu}^{k-\mu} (k - \sigma(j))^{(\mu-1)} \tilde{f}(j). \tag{3.2}$$

Now we have the following observations.

Lemma 3.1. Function $k \mapsto \frac{\Gamma(k+\mu)}{\Gamma(k)}$ is S-asymptotically 1-periodic. Consequently, it is also S-asymptotically N-periodic.

Proof. Lemma 2.3 with $x = k + \mu$, $s = 1 - \mu$ implies

$$(k+\mu)^{\mu} \le \frac{\Gamma(k+1+\mu)}{\Gamma(k+1)} \le (k+1)^{\mu},\tag{3.3}$$

and with $x = k + \mu - 1$, $s = 1 - \mu$ we get

$$(k+\mu-1)^{\mu} \le \frac{\Gamma(k+\mu)}{\Gamma(k)} \le k^{\mu}. \tag{3.4}$$

Therefrom, using mean value theorem we derive

$$\frac{\Gamma(k+1+\mu)}{\Gamma(k+1)} - \frac{\Gamma(k+\mu)}{\Gamma(k)} \le (k+1)^{\mu} - (k+\mu-1)^{\mu} =$$

$$= \frac{d}{dx} \left[x^{\mu} \right]_{x=\theta_k} (k+1-(k+\mu-1)) = \frac{\mu(2-\mu)}{\theta_k^{1-\mu}}$$

for some $\theta_k \in (k + \mu - 1, k + 1)$. Note that $\theta_k \to \infty$ as $k \to \infty$. Similarly, from (3.3) and (3.4) we obtain

$$\frac{\Gamma(k+1+\mu)}{\Gamma(k+1)} - \frac{\Gamma(k+\mu)}{\Gamma(k)} \ge (k+\mu)^{\mu} - k^{\mu} = \frac{d}{dx} \left[x^{\mu} \right]_{x=\vartheta_k} (k+\mu-k) = \frac{\mu^2}{\vartheta_k^{1-\mu}}$$

for some $\vartheta_k \in (k, k + \mu)$. Again, $\vartheta_k \to \infty$ as $k \to \infty$. Summarizing, we get

$$\lim_{k \to \infty} \left(\frac{\Gamma(k+1+\mu)}{\Gamma(k+1)} - \frac{\Gamma(k+\mu)}{\Gamma(k)} \right) = 0.$$

Lemma 3.1 is proved.

Lemma 3.2. Function $\widetilde{F}(k) = \sum_{j=1-\mu}^{k-\mu} \widetilde{f}(j)$ is N-periodic on \mathbb{N} . **Proof.** For any $k \in \mathbb{N}$ we have

$$F(k+N) - F(k) = \sum_{j=1-\mu}^{k+N-\mu} \tilde{f}(j) - \sum_{j=1-\mu}^{k-\mu} \tilde{f}(j) = \sum_{j=k-\mu+1}^{k+N-\mu} \tilde{f}(j) = \sum_{j=k-\mu+1}^{k+N-\mu} \left(f(j) - \bar{f}\right) =$$

$$= \sum_{j=k-\mu+1}^{k+N-\mu} f(j) - N\bar{f} = \sum_{j=1-\mu}^{N-\mu} f(j) - \sum_{j=1-\mu}^{N-\mu} f(j) = 0.$$

Lemma 3.2 is proved.

Due to the empty sum property one can see that $\widetilde{F}(k)=0$ whenever k<1. Later we will need \widetilde{F} to be defined and periodic on \mathbb{Z} — the set of all integers. Thus to simplify the notation from now on we will assume that \widetilde{F} denotes an N-periodic extension of the function

$$\{1, 2, \dots, N\} \ni k \mapsto \sum_{j=1-\mu}^{k-\mu} \tilde{f}(j)$$

to \mathbb{Z} or, in other words,

$$\widetilde{F}(k) = \sum_{j=1-\mu}^{\Phi(k)-\mu} \widetilde{f}(j), \quad \Phi(k) = k - N \left\lfloor \frac{k}{N} \right\rfloor$$
(3.5)

for $k \in \mathbb{Z}$, where $\lfloor \cdot \rfloor$ is the floor function defined as $\lfloor x \rfloor = \max\{y \in \mathbb{Z} \mid y \leq x\}$ for any $x \in \mathbb{R}$. Obviously, if $k \in \mathbb{N}$, the value of $\widetilde{F}(k)$ remains unchanged and $\widetilde{F}(k)$ can be understood as in Lemma 3.2.

Since we are interested in asymptotic properties of u, we can assume that k > N. Let us further split the last term in (3.2) to get

$$u(k) = u_0 + \frac{\bar{f}\Gamma(k+\mu)}{\Gamma(\mu+1)\Gamma(k)} + \frac{1}{\Gamma(\mu)} \sum_{j=1-\mu}^{k-N-\mu} (k-\sigma(j))^{(\mu-1)} \tilde{f}(j) + \frac{1}{\Gamma(\mu)} \sum_{j=k-N+1-\mu}^{k-\mu} (k-\sigma(j))^{(\mu-1)} \tilde{f}(j).$$
(3.6)

ISSN 1562-3076. Нелінійні коливання, 2021, т. 24, № 1

After substituting $l = j + \mu$ we can apply discrete per partes from Lemma 2.2 to work with the sum in the third term:

$$\begin{split} &\sum_{j=1-\mu}^{k-N-\mu} (k-j-1)^{(\mu-1)} \tilde{f}(j) = \sum_{l=1}^{k-N} (k-l+\mu-1)^{(\mu-1)} \tilde{f}(l-\mu) = \\ &= (k+\mu-2)^{(\mu-1)} \tilde{f}(1-\mu) + \sum_{l=2}^{k-N} (k-l+\mu-1)^{(\mu-1)} \tilde{f}(l-\mu) = \\ &= (k+\mu-2)^{(\mu-1)} \tilde{f}(1-\mu) + \sum_{l=2}^{k-N} (k-l+\mu-1)^{(\mu-1)} \Delta \tilde{F}(l-1) = \\ &= (k+\mu-2)^{(\mu-1)} \tilde{f}(1-\mu) + \left[(k-l+\mu-1)^{(\mu-1)} \tilde{F}(l-1) \right]_{l=2}^{k-N+1} - \\ &- \sum_{l=3}^{k-N+1} \Delta_l (k-l+\mu)^{(\mu-1)} \tilde{F}(l-1) = \\ &= (k+\mu-2)^{(\mu-1)} \tilde{f}(1-\mu) + (N+\mu-2)^{(\mu-1)} \tilde{F}(k-N) - \\ &- (k+\mu-3)^{(\mu-1)} \tilde{F}(1) - \sum_{l=2}^{k-N} \Delta_l (k-l+\mu-1)^{(\mu-1)} \tilde{F}(l). \end{split}$$

Here the lower index l in Δ_l means that the difference should be taken with respect to l. Now, note that

$$(k+\mu-2)^{(\mu-1)}\widetilde{f}(1-\mu)-(k+\mu-3)^{(\mu-1)}\widetilde{F}(1)=-\left[\Delta_l(k-l+\mu-1)^{(\mu-1)}\widetilde{F}(l)\right]_{l=1}.$$

Hence,

$$\sum_{j=1-\mu}^{k-N-\mu} (k-j-1)^{(\mu-1)} \tilde{f}(j) = (N+\mu-2)^{(\mu-1)} \tilde{F}(k-N) - \sum_{l=1}^{k-N} \Delta_l (k-l+\mu-1)^{(\mu-1)} \tilde{F}(l).$$

Rewriting the factorial function using gamma functions we can simplify the Δ_l -term as follows

$$\Delta_{l}(k-l+\mu-1)^{(\mu-1)} = (k-l+\mu-2)^{(\mu-1)} - (k-l+\mu-1)^{(\mu-1)} =$$

$$= \frac{\Gamma(k-l+\mu-1)}{\Gamma(k-l)} - \frac{\Gamma(k-l+\mu)}{\Gamma(k-l+1)} =$$

$$= \frac{\Gamma(k-l+\mu-1)}{\Gamma(k-l+1)} \left[k-l-(k-l+\mu-1)\right] =$$

$$=\frac{(1-\mu)\Gamma(k-l+\mu-1)}{\Gamma(k-l+1)}=(1-\mu)(k-l+\mu-2)^{(\mu-2)}.$$

So we can write

$$\sum_{j=1-\mu}^{k-N-\mu} (k-j-1)^{(\mu-1)} \tilde{f}(j) = (N+\mu-2)^{(\mu-1)} \tilde{F}(k) - (1-\mu) \sum_{l=1}^{k-N} (k-l+\mu-2)^{(\mu-2)} \tilde{F}(l)$$
(3.7)

using the N-periodicity of \widetilde{F} .

The last term in (3.6) is an N-periodic function. Indeed, taking the substitution l = j - k + N in the sum leads to

$$\sum_{j=k-N+1-\mu}^{k-\mu} (k-\sigma(j))^{(\mu-1)} \tilde{f}(j) = \sum_{l=1-\mu}^{N-\mu} (N-\sigma(l))^{(\mu-1)} \tilde{f}(l+k-N)$$
 (3.8)

where the N-periodicity of the right-hand side follows from the N-periodicity of function \tilde{f} . At this moment we can use (3.7), (3.8) to rewrite u(k) of (3.6) as

$$u(k) = u_0 + \frac{\bar{f}\Gamma(k+\mu)}{\Gamma(\mu+1)\Gamma(k)} + \left[\frac{(N+\mu-2)^{(\mu-1)}\tilde{F}(k)}{\Gamma(\mu)} + \frac{1}{\Gamma(\mu)} \sum_{j=1-\mu}^{N-\mu} (N-\sigma(j))^{(\mu-1)}\tilde{f}(k+j) \right] - \frac{1-\mu}{\Gamma(\mu)} \sum_{j=1}^{k-N} (k-j+\mu-2)^{(\mu-2)}\tilde{F}(j)$$
(3.9)

for $k \in \mathbb{N}$, where there is an N-periodic function in the bracket (we omitted N in the argument of \tilde{f} due to its N-periodicity).

Now we focus on the last sum. We substitute l = k - N + 1 - j to get

$$\sum_{j=1}^{k-N} (k-j+\mu-2)^{(\mu-2)} \widetilde{F}(j) = \sum_{l=1}^{k-N} (l+N+\mu-3)^{(\mu-2)} \widetilde{F}(k-N+1-l).$$
 (3.10)

We want to get rid of k in the upper bound of the sum, so we would get another N-periodic term. We can do it by extending the sum to infinity and subtracting what we added. Here we need the periodicity of \widetilde{F} on the whole \mathbb{Z} . Without extending to non-positive integers empty sum property would cause the sum to contain a finite number (although changing with k) of nonzero terms whereas the other sum would be empty. Fortunately (due to periodic extension in (3.5)), \widetilde{F} is periodic on \mathbb{Z} and it only needs to be verified that the sums converge. Here we apply Lemma 2.4 with J=1 to get the estimation

$$\left\| \sum_{l=1}^{\infty} (l+N+\mu-3)^{(\mu-2)} \widetilde{F}(k-N+1-l) \right\| \le \|\widetilde{F}\|_{\infty} \frac{\Gamma(N+\mu-1)}{(1-\mu)\Gamma(N)}$$

with

$$\|\widetilde{F}\|_{\infty} = \sup_{k \in \mathbb{Z}} |\widetilde{F}(k)| = \max_{k=1,\dots,N} |\widetilde{F}(k)|,$$

and analogously

$$\left\| \sum_{l=k-N+1}^{\infty} (l+N+\mu-3)^{(\mu-2)} \widetilde{F}(k-N+1-l) \right\| \le \|\widetilde{F}\|_{\infty} \frac{\Gamma(k+\mu-1)}{(1-\mu)\Gamma(k)}$$
(3.11)

by applying Lemma 2.4 with J = k - N + 1.

We summarize this section into the next result.

Theorem 3.1. Let $N \in \mathbb{N}_2$. If f is N-periodic on $\mathbb{N}_{1-\mu}$, then a solution u to (1.1) is S-asymptotically N-periodic on \mathbb{N}_0 . More precisely, it can be written as

$$u(k) = u_0 + v_1(k) + v_2(k) + v_3(k)$$

for $k \in \mathbb{N}_{N+1}$, where

$$v_1(k) = \frac{\bar{f}\Gamma(k+\mu)}{\Gamma(\mu+1)\Gamma(k)}$$

is S-asymptotically N-periodic,

$$v_2(k) = \frac{(N+\mu-2)^{(\mu-1)}\widetilde{F}(k)}{\Gamma(\mu)} + \frac{1}{\Gamma(\mu)} \sum_{j=1-\mu}^{N-\mu} (N-\sigma(j))^{(\mu-1)}\widetilde{f}(k+j) - \frac{1-\mu}{\Gamma(\mu)} \sum_{j=1}^{\infty} (j+N+\mu-3)^{(\mu-2)}\widetilde{F}(k+1-j)$$

is an N-periodic function and

$$v_3(k) = \frac{1-\mu}{\Gamma(\mu)} \sum_{j=k-N+1}^{\infty} (j+N+\mu-3)^{(\mu-2)} \widetilde{F}(k+1-j) \xrightarrow{k\to\infty} 0.$$

Proof. It only remains to prove the convergence of $v_3(k)$. But this follows by applying Lemma 2.3 on the right-hand side of (3.11), i.e.,

$$\|\widetilde{F}\|_{\infty} \frac{\Gamma(k+\mu-1)}{(1-\mu)\Gamma(k)} \le \frac{\|\widetilde{F}\|_{\infty}}{(1-\mu)k^{1-\mu}} \to 0 \quad \text{as} \quad k \to \infty.$$

Moreover, we omitted N in the arguments of \widetilde{F} due to its N-periodicity.

Theorem 3.1 is proved.

Remark 3.1. Since by Lemma 2.3,

$$\frac{\Gamma(k+\mu)}{\Gamma(k)} \ge (k+\mu-1)^{\mu} \to \infty \quad \text{as} \quad k \to \infty,$$

 $v_1(k)$ is bounded if and only if $\bar{f} = 0$. Consequently, the boundedness of u_0 , $v_2(k)$ and $v_3(k)$ implies that u(k) is bounded on \mathbb{N}_0 if and only if $\bar{f} = 0$.

Remark 3.2. Without splitting the last term in (3.9) it would be possible to prove (by using (3.10), N-periodicity of \widetilde{F} , a lemma analogous to Lemmas 2.1 and 2.3) that this term is S-asymptotically N-periodic directly by showing that it satisfies Definition 2.5. Nevertheless, by writing as a difference of two infinite sums, we showed that the term is asymptotic to a periodic function, which is more precise, since not every S-asymptotically periodic function has this property (see, e.g., Example 2.1).

4. S-asymptotically periodic right-hand side. In this section we assume that the right-hand side f of (1.1) is S-asymptotically N-periodic and we investigate the solution u having the form of (3.1). We look for a condition under which u is S-asymptotically N-periodic. First we substitute $l = k - j - \mu + 1$ to remove the dependence on k in the factorial function,

$$u(k) = u_0 + \frac{1}{\Gamma(\mu)} \sum_{l=1}^{k} (l + \mu - 2)^{(\mu - 1)} f(k - l - \mu + 1).$$

Next we calculate the difference

$$u(k+N) - u(k) = \frac{1}{\Gamma(\mu)} \sum_{l=1}^{k+N} (l+\mu-2)^{(\mu-1)} f(k+N-l-\mu+1) - \frac{1}{\Gamma(\mu)} \sum_{l=1}^{k} (l+\mu-2)^{(\mu-1)} f(k-l-\mu+1) = \frac{G_1(k) + G_2(k)}{\Gamma(\mu)}$$

$$(4.1)$$

where

$$G_1(k) = \sum_{l=1}^k (l + \mu - 2)^{(\mu - 1)} (f(k + N - l - \mu + 1) - f(k - l - \mu + 1)),$$

$$G_2(k) = \sum_{l=k+1}^{k+N} (l + \mu - 2)^{(\mu - 1)} f(k + N - l - \mu + 1).$$

First we take a look at G_2 . If $l \in \{k+1, k+2, \dots, k+N\}$ then

$$k + N - l - \mu + 1 \in \{1 - \mu, 2 - \mu, \dots, N - \mu\}.$$

Thus by Lemma 2.3 we get the estimation

$$|G_{2}(k)| \leq \sum_{l=k+1}^{k+N} \frac{\Gamma(l+\mu-1)}{\Gamma(l)} |f(k+N-l-\mu+1)| \leq$$

$$\leq \max_{j=1-\mu,\dots,N-\mu} |f(j)| \sum_{l=k+1}^{k+N} l^{\mu-1} \leq \frac{N \max_{j=1-\mu,\dots,N-\mu} |f(j)|}{(k+1)^{1-\mu}}.$$
(4.2)

Note that the right-hand side tends to 0 as $k \to \infty$.

Now, we shall study G_1 . Let us introduce the assumption

(H) There are $c, \beta > 0$ such that

$$|f(k+N) - f(k)| \le ck^{-\beta} \quad \forall k \in \mathbb{N}.$$

Assuming (H), Lemma 2.3 yields

$$|G_1(k)| \le c \sum_{l=1}^k l^{\mu-1} (k - l - \mu + 1)^{-\beta} =$$

$$= \frac{c}{k^{1-\mu} (1-\mu)^{\beta}} + c \sum_{l=1}^{k-1} l^{\mu-1} (k - l - \mu + 1)^{-\beta}.$$

We had to split the sum because of what follows. We are going to estimate $\sum_{l=1}^{k-1}$ by using \int_0^{k-1} .

Function $x\mapsto x^{\mu-1}$ is decreasing on (0,k-1] and greater than or equal to the piece-wise constant function $l\mapsto \lceil l\rceil^{\mu-1}$ where $\lceil \cdot \rceil$ is a ceiling function defined as $\lceil x\rceil=\min\{y\in\mathbb{Z}\mid y\geq x\}$ for any $x\in\mathbb{R}$. As an upper bound for the non-decreasing function $l\mapsto \lceil k-l-\mu+1\rceil^{-\beta},\ l\in[0,k-1]$ we use $x\mapsto (k-x-\mu)^{-\beta}$. So we obtain

$$|G_1(k)| \le \frac{c}{k^{1-\mu}(1-\mu)^{\beta}} + c \int_0^{k-1} x^{\mu-1}(k-x-\mu)^{-\beta} dx \le$$
$$\le \frac{c}{k^{1-\mu}(1-\mu)^{\beta}} + c \int_0^{k-\mu} x^{\mu-1}(k-x-\mu)^{-\beta} dx.$$

Substituting $x = (k - \mu)y$, we arrive at

$$|G_1(k)| \le \frac{c}{k^{1-\mu}(1-\mu)^{\beta}} + c(k-\mu)^{\mu-\beta} \int_0^1 y^{\mu-1}(1-y)^{-\beta} dy =$$

$$= \frac{c}{k^{1-\mu}(1-\mu)^{\beta}} + c(k-\mu)^{\mu-\beta} B(\mu, 1-\beta)$$
(4.3)

for each $k \in \mathbb{N}$, where B(t, s) is the Euler beta function. Now we can formulate the main result of this section.

Theorem 4.1. Let $N \in \mathbb{N}_2$. If f satisfies the assumption (H) with $\mu < \beta < 1$, then a solution u to (1.1) is S-asymptotically N-periodic. More precisely, there is a constant C > 0 such that

$$|u(k+N) - u(k)| \le \frac{C}{(k-\mu)^{\beta-\mu}}$$

for all $k \in \mathbb{N}$ sufficiently large.

Proof. Applying estimations (4.3), (4.2) to (4.1) results in

$$|u(k+N) - u(k)| \le \frac{c}{\Gamma(\mu)k^{1-\mu}(1-\mu)^{\beta}} + \frac{cB(\mu, 1-\beta)}{\Gamma(\mu)(k-\mu)^{\beta-\mu}} +$$

+
$$\frac{N \max_{j=1-\mu,\dots,N-\mu} |f(j)|}{\Gamma(\mu)(k+1)^{1-\mu}}$$
.

Clearly, the right-hand side tends to 0 if $k \to \infty$ and $\mu < \beta < 1$. Finally, $(k - \mu)^{\mu - \beta}$ converges to 0 in the slowest way.

Theorem 4.1 is proved.

References

- 1. M. Fečkan, *Note on periodic solutions of fractional differential equations*, Math. Methods Appl. Sci., **41**, № 13, 5065 5073 (2018).
- 2. J. Diblík, M. Fečkan, M. Pospíšil, Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations, Appl. Math. Comput., 257, 230 240 (2015).
- 3. G. A. Anastassiou, Discrete fractional calculus and inequalities (2009); http://arxiv.org/abs/0911.3370.
- 4. K. S. Miller, M. Ross, *Fractional difference calculus*, Univalent functions, fractional calculus, and their applications (Kōriyama, 1988), Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 139 152 (1989).
- 5. F. M. Atici, P. W. Eloe, *A transform method in discrete fractional calculus*, Int. J. Difference Equ., **2**, № 2, 165–176 (2007).
- 6. F. M. Atici, P. W. Eloe, *Initial value problems in discrete fractional calculus*, Proc. Amer. Math. Soc., **137**, № 3, 981 989 (2009).
- 7. F. Chen, X. Luo, Y. Zhou, *Existence results for nonlinear fractional difference equation*, Adv. Difference Equ., **2011**, 1–12 (2011).
- 8. H. R. Henriquez, M. Pierri, P. Táboas, On S-asymptotically ω-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343, № 2, 1119–1130 (2008).
- 9. F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl., 2010, Art. ID 493058, 84 p. (2010).
- 10. J. G. Wendel, Note on the gamma function, Amer. Math. Monthly, 55, 563 564 (1948).

Received 17.02.21