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We suggest some new matrix models for clonal network dynamics which are typical for simulating many
biological clonal type networks and study their dynamics to the stable states. We describe in detail and
derives the corresponding matrix equations governing immune system dynamics based on the general
gradient type principles that can be inherent to a wide class of real living objects. Clonal networks of
special type are modelled by symmetric projector matrix variables simultaneously taking into account both
asymmetry of the interaction to each other and adaptation states that can be realized owing to possible
idiotypic clonal suppressions. We perform computer simulations of the model dynamics for some simple
cases of relatively low dimension, paying special attention to the dynamics of amounts of activated receptor
strings within clonal network.
Запропоновано новi матричнi моделi динамiки клональних мереж, типових для моделювання ба-
гатьох бiологiчних клональних мереж, та вивчено їхню динамiку до стiйких станiв. Базуючись на
загальних принципах градiєнтного типу, детально описано та виведено вiдповiднi матричнi рiвнян-
ня керування динамiкою iмунних систем для великого класу реальних живих об’єктiв. Клональнi
мережi спецiального типу моделюються симетричними проєкторними матричними змiнними, якi
одночасно враховують як асиметрiю взаємодiї один iз iншим, так i стани адаптацiї завдяки мож-
ливим iдiотиповим клональним пригнiченням. Для кiлькох випадкiв стосовно низької вимiрностi
виконано комп’ютерне моделювання, яке враховує динамiку кiлькостi активованих рецепторних
струн у клональнiй мережi.

Introduction. The dynamics of clonal networks is a very important problem for understanding
immune systems dynamics and starting from the first mathematical model of Jerne [1] a lot of
mathematical models are used for modeling it (See, for example [2 – 13]). It is very well known
that immune system contains many types of B-cells which can activate each other at certain
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conditions. If the receptors of such B-cells match each other the cells become antibody cells and
they effectively recognize antigens [4, 10 – 12]. The construction of the cell gene model allows
one to understand how the same network can support different independent states of the immune
system. Among these states we can distinguish states which are quite different in their functional
activity, for example a virgin state when the clone state is not activated, the immune state when a
clone proliferates antibody cells and finally — the inhibited state when proliferation terminates.
Which state is reached depends on the local topology of the network and conditions of gene
presentation With the additional assumption that the parameters of the model change between
early and late states one can understand how self-nonself interaction is accomplished by the
clonal network. In this case several original approaches has been proposed in order to explain
characteristic features of evolution of B-cell repertoire [14, 15] and evolution of specificity in
humoral immunity based on idiotypic network [16].

Dynamics of this clonal type network with symmetric interactions probably converge [17] to
steady or oscillatory state under very general assumptions [18 – 22]. But in reality interactions
between clones are not confined to steady states (attractors) but also include other almost periodic
and aperiodic behaviors. The interaction between an excitatory and inhibitory clone is clearly
asymmetric. Assume that a self basic gene is seen by its own clone. Recall [23] that adaptation
can be achieved by the suppression of this idiotypic clone by the corresponding anti-idiotypic
clone. Once the adaptation state is achieved, secondary presentation of the leading gene does not
give rise to any network response, because the gene only increases the suppression on its clone.
It would be interesting to observe if some basic modifications to the governing network model
equations could be made that allow really memory retention [24]. If it is not the case, then not
being able to retain memory of former inhibitory gene encounters may not be failing of the model
under regard but rather a reflection of the intrinsic properties of clonal network.

Of special interest are clonal networks, allowing the persistence [25] of some stable coherent
structures, formed by gene strings, owing to the presence of selfconsistent interaction. As the
related clonal dynamics strongly depends on the interaction nature, the related extremality
constraints should be suitably imposed on the clonal strings, guaranteeing the stable formati-
on of a coherent clonal structure. In particular, a clonal network model under study is composed
[11, 19, 26 – 31] of a varying number of cell clones of different specificities that form a clonal
network. Each clone is characterized by its specific inhibitory and excitatory receptors, which are
specified in the model both by bit string and by clonal receptor string vectors xα ∈ Enx , α ∈ Nx
and yβ ∈ Eny , β ∈ Ny, normalized by the conditions ‖xα‖ = 1 and ‖yβ‖ = 1, allowing for some
of their components to bring either positive or negative signs. Thereby this makes it possible
to achieve suitable adaptation state through the related suppression of idiotypic clone by the
corresponding anti-idiotypic clone, whose modeling within our clonal network is realized in the
framework of the postulated self-similarity of gene action and asymmetry of clone interaction.
Two clones can interact via soluble inhibitory genes whenever their receptor shapes, i.e., bit stri-
ngs are complementary. Cells that become activated proliferate and differentiate into inhibitory
secreting cells. This process takes some time during which another free inhibitory cells form
dynamic complexes not taking often real role within excitatory-inhibition network dynamics.

The existence of invariant localized dynamic patterns says that our idiotypic clonal network
possesses certain self-structured properties. Asymmetric interactions within the network determi-
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nate network’s working size and connectivity and determine the total inhibitory cells level.
Concerning the connectivity within the network one can conclude that the network in equilibrium
selects for growth and retaining within the network the clones with low connectivity. Within this
framework low connectivity is not an intrinsic property of any particular inhibitory cell but rather
is determined by the random structure of a clone’s receptor and the shapes of the receptors on the
other clones presented in the system.

The incorporation of this meta-dynamics in this excitatory-inhibitory model one can consider
as an attempt to account for the rapid enough turn over of clones in the clonal network. Such
processes were also studied in [27, 30, 32 – 34] within a cellular automation approach. There
was found that networks of automata can be considered as dynamical systems being the discrete
equivalent of differential systems. They have been recently widely used in clonal nets and cellular
automata to model complex systems such as brain. One of the main advantages of these networks
for a biologist involved in modeling is that the construction of a model requires a minimal
knowledge about the numerical values of the parameters defining a system. The differential
equation systems describing require biological data on cell lifetimes like thresholds for activation,
affinity constraints of the network dynamics. Most automata models do not require these data,
since the basic assumption is that sell populations need only be described by a set of some
discrete values, often 0 and 1, where 0 means that a populations absent, while 1 means that
it is presented at a high enough level. The corresponding interactions among populations are
represented by logical functions, i.e., Boolean set function, which most often are equivalent to
threshold automata like physical spin systems [27, 30, 32, 33]. Such a modeling can be applied
to a wide class of complicated neural networks [2, 6, 35] taking into account different states of
development of the corresponding cells and also to systems of evolution differential equations
discussed below. These aspects of studying our excitatory-inhibitory clonal type network are
planned to be discussed in more detail in another place. In this paper we will use in part an
approach devised in [6, 35 – 37] for describing evolution of the introduced clonal network.

2. Coherent structure formation and related gradient flows. Consider a many agent
neural model, allowing the persistence of some coherent structures formed by strings owing to
the presence of selfconsistent interaction. The related clonal dynamics strongly depends on its
nature and is governed by extremality constraints, suitably imposed on the clonal strings. Below
we will study the structure of the pattern formation process for a neural model before disussed in
our work [6] and using analytical techniques, devised in [6, 35 – 37] and, in part, in [2].

Consider the network phase variables {xi, yj ∈ R : i = 1, nx, j = 1, ny, nx, ny ∈ N}, modeled
by edges with vertices at points xi and yj , directed, for instance, from xi to yj , and forming a
graph Gn. These edges are taken with weights Ci,j+nx , i = 1, nx, j = 1, ny, depending both on
the corresponding internal interaction and on the imposed external constraints, mentioned above.
Shortly speaking the weight matrix C = {Cij : i, j = 1, n, n = nx+ny} represents a vector space
distribution of the persisting manymode orbits of the many agent neural model during forming a
coherent structure, permitted by the interacting neural network.

This weight matrix C ∈ EndEn, acting naturally in the real Euclidean space En, can be
effectively evaluated by means of an extremality graph problem, related with the graph Gn,

constructed above from the vertices and edges, connecting their vertices suitably to an initially
chosen coherent structure with prescribed interacting modes. To proceed with, we will describe
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our pattern formation process within the related graph notions, introduced above and actively
developed in [7, 8, 13].

Let Sn represent the symmetric group on n ∈ N different symbols. Denote by Tn ⊂
⊂ Mat(n;Z2) a subset of {0, 1}-valued symmetric (n × n)-matrices Mat(n;Z2), n ∈ N. By
viewing Tn, n ∈ N, as the set of incident matrices of some chosen set Γn of n-vertex graphs
Gn, one obtains a one-to-one correspondence between sets Tn and Γn, n ∈ N. Proceed now to a
definition of a neighborhood around an arbitrary element Gn ∈ Γn within the introduced matrix
space, modeling it as a many agent interaction system.

Definition 1. For any n-vertex extremality graph problem Γn we define a k -change nei-
ghborhood of a directed graph Gn as the set Nk of element from Γn, n ∈ N, that can be
obtained by removing k ∈ N directed edges from Gn and than placing k ∈ N alternative
directed edges to the remaining graph.

For example, if a matrix τ ∈ Tn ∼ Gn and πSn ⊂ EndEn is the matrix representation
of the symmetric group Sn in the real Euclidean space En, it is easy to see that the 2-change
neighborhood N2 consists of the n(n − 1)/2 permutation matrices of the form τAij , where
matrices Aij ∈ πSn, i, j = 1, n, have only two nonzero entries at (i, j) and (j, i)-places. We
mention here, that by definition, for any element σ ∈ Sn its matrix representation π(σ) :=

:=
(
eσ(1), eσ(2), . . . , eσ(n)

)
∈ O(n), where a column eσ(j) :=

(
0, 0, . . . ,

(j)

1 , 0, 0, . . . , 0
)ᵀ

has a
nonzero component only on the j -the place for all j = 1, n.

Let Gn be a fully connected directed graph with n ∈ N vertices endowed with some weights,
assigned to its directed edges. The standard graph partition problem is to find a partition of Gn
into subsets with p and q ∈ N, p + q = n, elements, such that the sum of weights on the cut
edges (that is, edges with their endpoints in different subsets of the partition) is minimized. To
formulate this problemmore analytically, let us denote by Cn ⊂ Mat(n;R) a suitable cost matrix,
constructed in such way that for a directed edge (i → j) of the graph Gn there is assigned the
value C(+)

ij ∈ R, yet for the reversed edge (j → i) there is assigned C(−)
ij ∈ R for any i, j = 1, n.

Let us now define [38] the simplest canonical symmetric incident matrix

τ := SG(p, q) =

[
0p,p Jp,q

Jq,p 0q,q

]
∈ Tn, (1)

where q, p ∈ N are given and Jp,q denotes the (p× q)-matrix with all entries equal to 1 . Then the
graph partition problem with the swap neighborhoods can be represented in the following way:
find the infimum

inf
A∈πSn

tr(CᵀAᵀSG(p, q)A), (2)

at which two different partitions appear to be neighbors if they can be identified to the other
by swapping at least two vertices. As πSn ⊂ O(n), the problem (2) can be reformulated as the
extremality problem on O(n), n ∈ N :

inf
A∈O(n)

tr
(
ACᵀAᵀSG(p, q)

)
, (3)

where for any A ∈ O(n) one has AᵀA = 1 = AAᵀ, detA = ±1 .
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Before proceeding to solving the problem (3), observe that owing to the fact that the matrix
SG(p, q) is symmetric, the functional

Ψ(P ) = tr(PSG(p, q)) = tr(P ᵀSG(p, q)), (4)

where P ∈ P := {P = ACᵀAᵀ : A ∈ O(n)}, can be without changing its values replaced by the
equivalent functional

Ψ̃(P ) = tr(SG(p, q)P ᵀ) = tr(P ᵀSG(p, q)),

that is
Ψ̃(P ) = Ψ(P )

for any P ∈ P. Thereby, the true problem setting for the functional (4) should look as follows:

inf
P∈Pa

Ψa(P ) = inf
P∈P

1

2
(Ψ(P ) + Ψ̃(P )), (5)

where we put, by definition,

Ps :=
{
P ∈ P : P ᵀ = P := −ACsAᵀ, Cs := (C + Cᵀ)/2, A ∈ O(n)

}
.

Consider now a special case, when the reduced symmetric “cost” matrix Cs ∈ EndEn

satisfies the projection constraint C2
s = Cs. Then the matrix space Ps becomes [39] equivalent

to the Grassmann matrix manifold Grm(En), generated by m-dimensional vector subspace Ker

Cs ⊂ En, invariant with respect to the orthogonal group O(n). It is now easy to observe that
solution to the problem (4) is given by the critical points P ∈ Ps of the following gradient vector
field on Ps :

dP/dt = ∇ϕΨs(P ), (6)

under the constraint functional ϕ : Ps × Ps → R, given by the expression

ϕ(X,P ) := tr(X(P 2 − P )) = 0

for all symmetric elements X = Xᵀ ∈ EndEn . As a result of simple calculations one finds that

∇ϕΨs(P ) = [[SG, P ], P ] (7)

for any P ∈ Ps . Thus, one checks readily that the inequality

dΨs(P )/dt = tr(∇ϕΨs(P )SG) =

= tr([[SG, P ], P ]SG) = tr([SG, P ] [P, SG]) =

= − tr([SG, P ][SG, P ]ᵀ) ≤ 0

holds for all P ∈ Ps . Thereby, the infimum of the problem (4) exists as the Grassmann manifold
Ps is compact and the Lyapunov functional Ψs : Ps → R is decreasing along the gradient vector
field (6).

Making now use of the previous interpretation of the projector matrix P ∈ Ps, related due to
(5) to the corresponding cost matrix Cs ∈ EndEn, n ∈ N, we can construct the corresponding
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solution to our partition problem with the swap neighborhood, modeling a coherent structure
formation within the multi-agent neural system, described by the graph Gn . This coherent
structure formation, being specified by means of the gradient vector field (6) on the compact
Grassmann manifold Ps, describes the dynamics of a virtual “cost” matrix P := ACᵀAᵀ ∈ Ps,
tending to the stable “cost” matrix P := ACᵀĀᵀ ∈ Ps at some value A ∈ O(n), or the same,
at some incidence matrix τ := ĀᵀSGĀ ∈ Tn ∼ Gn ∈ Γn due to (5), which is the matrix SG
with mixed, respectively, its rows and columns. This interpretation gives rise to some another
interesting applications of this partition model, in particular in many-agent market theory and
so on.

Another important aspect of our partition model is related with a possibility to describe our
“cost” changing process (6) as a Hamiltonian flow on the Grassmann manifold Ps . This aspect
was before just described in [36, 37] and is based on the fact [40] that the Grassmann manifold Ps
is also symplectic with respect to the following non-degenerate symplectic structure ω(2) ∈ Λ2(P)

on Ps :
ω(2) = tr(P dP ∧ dP P )

for all points P ∈ Ps, subject to which the gradient field (6) appears to be Hamiltonian on Ps .
It is worth to remark here, that the gradient vector field (7) was derived above for the unitary

case when P ᵀ = P ∈ Ps. If the condition P = P ᵀ does not hold for P ∈ P, then new vector
field expression should be derived for the resulting gradient flow (6). This problem is planned to
be studied in detail as well as related ones in another place.

3. Clonal network model description. A network under consideration models a clonal
dynamics exhibiting excitatory-inhibitory properties. It consists of interacting cell clones generated
by inhibitory and excitatory genes within a fixed medium. The latter will be called a configurati-
on phase space, depending strongly on the nature of interaction between clones. An inhibitory
clone population within the network can be effectively encoded, in general, by a real (n × n)-
asymmetric projection matrix of the canonical [41] form X :=

∑n(x)

α∈Nx

xα ⊗ x̂α ∈ EndEn,
where biorthogonal to each other vectors xα, x̂α ∈ En, α ∈ Nx ⊂ 1, n, are the corresponding
reciprocity receptor strings amplitudes responsible for an inhibitory clonal topology within the
network and the number cardNx = n(x) ∈ N means exactly the amount of activated receptors
belonging to the inhibitory clone. The inhibitory clonal self-similarity is realized now by means
of the fundamental projector property X2 = X for all whiles of time.

Similarly, an excitatory population can be encoded, in general, by real (m×m)-asymmetric
projector matrix of the canonical form Y :=

∑n(y)

β∈Ny

yβ ⊗ ŷβ ∈ EndEn, where biorthogonal to
each other excitatory vectors yβ, ŷβ ∈ Em, β ∈ Ny ⊂ 1,m, are the corresponding reciprocity
receptor strings amplitudes responsible for an excitatory clonal receptor topology and cardNy =

= n(y) ∈ N means the amount of activated excitatory receptors during the network dynamics.
The excitatory clonal self-similarity is realized here also by means of the fundamental projector
property Y 2 = Y for all whiles of time. In general, the integer numbers n(x), n(y) ∈ N can
change during the network dynamics because of the possible full suppression of some activated
clone receptor strings. Concerning the interaction between the clonal populations, it is described
by means of a real (m × n)-matrix Z :=

∑n(x)

α∈Nx

∑n(y)

β∈Ny

zβαyβ ⊗ x̂α ∈ Hom(En;Em) with
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parameters zβα ∈ E, α ∈ Nx ⊂ 1, n, β ∈ Ny ⊂ 1,m, responsible for the strengths of interaction
between receptors strings of two clonal populations. The adaptation of some inhibitory or exci-
tatory during interaction clones is modeled within our clonal network by means of a possible
time dependence of corresponding strength parameters zβα ∈ E, α ∈ Nx ⊂ 1, n, β ∈ Ny ⊂ 1,m,

that the matrix Z necessarily satisfies the next important self-similar clonal interaction properties
ZX = Z = Y Z for all whiles of time.

4. Clonal network topology and dynamics. It is natural to endow our configuration phase
space M ⊂ (EndEn×EndEm)×Hom(En;Em) with a reasonable Riemannian metrics by means
of the following scalar product on its tangent space T (M) :〈

(X,Y, Z), (X̃, Ỹ , Z̃)
〉

:= tr(XT X̃) + tr(Y T Ỹ ) + tr(ZT Z̃), (8)

where X, X̃ ∈ T (EndEn), Y, Ỹ ∈ T (EndEm) and Z, Z̃ ∈ T
(

Hom(En;Em)
)
are arbitrary

elements of the corresponding tangent spaces. Concerning the metrics (8) one can construct a
gradient vector field on the projector fieldmanifoldM(x,y,z) generated by the Lyapunov interaction
function Φ : M → R whose variation is

δΦ(X,Y, Z) := tr(DT
h δZ) + tr(DT

f δX) + tr(DT
g δY ) (9)

for some specified matrices Df ∈ T (EndEn), Dg ∈ T (EndEm) and Dh ∈ T
(

Hom(En;Em)
)
,

being responsible for the asymmetry of the interaction between clonal populations. Except the
Lyapunov function variation (9) it is necessary to involve into the picture the following natural
clonal phase constraints:

tr(AT (X2 −X)) = 0, tr(Bᵀ(Y 2 − Y )) = 0,

tr((ZX − Z)Qᵀ) = 0, tr((Y Z − Z), RT ) = 0,

holding for any A ∈ EndEn, B ∈ EndEm and Q,R ∈ Hom(En;Em). Constraints (4) can be
still augmented in many special cases by the symmetry conditions

tr((Xᵀ −X)P ᵀ) = 0, tr((Y ᵀ − Y )Sᵀ) = 0, (10)

holding also for arbitrary matrices P ∈ EndEn and S ∈ EndEm.
Below we will consider only this strongly symmetric case of our clonal network. Concerning

the constraint conditions involved above the corresponding gradient vector field generated by the
Lyapunov function variation (9) is given as

dX/dt = [[Df , X], X] + (ZᵀZ + 2I)−1(ZᵀDh − ZᵀZDf )(1−X)+

+ (1−X)(Dᵀ
hZ −DfZ

ᵀZ)(ZᵀZ + 2I)−1,

dY/dt = [[Dg, Y ], Y ] + (1− Y )(DhZ
ᵀ −DgZZ

ᵀ)(ZZᵀ + 2I)−1+

+ (2I + ZZᵀ)−1(ZDᵀ
h − ZZ

ᵀDg)(1− Y ), (11)

dZ/dt = −DhX − ZDfX + 2(Y − 1)(DhX −DgZ)(ZTZ + 2I)−1+
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+ Z(ZTZ + 2I)−1(ZᵀDh − ZᵀZDf )(1−X)

with the canonical [41] representations

X :=

n(x)∑
α∈Nx

xα ⊗ xα ∈ EndEn, Y :=

n(y)∑
β∈Ny

yβ ⊗ yβ ∈ EndEn,

〈xα, xα′〉 = δαα′ , α, α′ ∈ Nx ⊂ 1, n,
〈
yβ, yβ′

〉
= δββ′ , β, β′ ∈ Ny ⊂ 1,m.

Here we put also Df = Dᵀ
f , Dg = Dᵀ

g and took the matrix Dh ∈ T (End(En;Em)) arbitrary.
The gradient vector field (11) can be more specified if to take into account the following

Lyapunov function special case taking into account the corresponding self-symmetry clonal
declinations:

Φ(1) = tr
(
αh(Z −XβfZᵀβᵀgY ) + tr(Zᵀ − Y βgZβᵀfX)αᵀ

h

)
,

where (X,Y, Z) ∈M(x,y,z) and βf ∈ EndEn and βg ∈ EndEm are some constantmatrices which
are close to unity matrices with respect to the corresponding norms in EndEn and EndEm . Then
owing to the definition (9), one finds that

D
(1)
h = 2(αh − βᵀgY αhX),

D
(1)
f = −

(
βfZ

ᵀβᵀgY αh + αᵀ
hY βZβ

ᵀ
f

)
,

D(1)
g = −

(
αhXβfZ

ᵀβᵀg + βgZβ
ᵀ
fZα

ᵀ
h

)
,

Similarly one can take the following Lyapunov type function

Φ(2) = tr
(
αh,f (Zᵀ −XβfZᵀ)

)
+ tr

(
αh,g(Z

ᵀ − ZᵀβgY )
)
+

+ tr
(
(Z − ZβᵀfX)αᵀ

h,f

)
+ tr

(
(Z − Y βᵀgZ)αᵀ

h,g

)
,

where (X,Y, Z) ∈ M(x,y,z), βf ∈ EndEn and βg ∈ EndEm are some constant matrices which
are close to unity matrices with respect to the corresponding norms in EndEn and EndEm . Then
owing to the definition (9), one finds easily that

D
(2)
h = 2αh,f (I −Xβf ) + 2(I − βgY )αh,g,

D
(2)
f = −(βfZ

ᵀαh,f + αᵀ
h,fZβ

ᵀ
f ),

D(2)
g = −(βᵀgZα

ᵀ
h,g + αh,gZ

ᵀβg).

It has to be mentioned here that the Lyapunov function (12) models in general an asymmetric
case of the mutual interaction between inhibitory and excitatory clone populations, realizing a
really observed pattern formation structure, when the whole system is both under an external
medication and intrinsically activated immune state [42].

The special analysis still must be done concerning the possible similarities between receptor
sets of inhibitory and excitatory genes. This means that some mutual relationship between
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projector clone operators can be realized. For instance, their complete weak orthogonality can be
realized and the following additional constraint

tr
(
Y ξXηT

)
= 0

for all (X,Y, Z) ∈ M(x,y,z) and some constant matrices ξ, η ∈ Hom(En;Em) can hold . The
condition (14) gives rise to a little complicated gradient field like (11) in part reflecting the
mentioned above pattern isolating property of our clonal populations.

It can be also interesting to analyze the dynamical system (13) in the case when either
projector matrices X ∈ EndEn or Y ∈ EndEm or both ones model clonal populations with the
fixed number of the corresponding receptor strings activated during the interaction between them
be realized that can happen when the clonal network is activated artificially by means of some
external medication. This means that integers trX = n(x) ∈ N or trY = n(y) ∈ N persist to
be fixed during the system evolution. Then these integers must be conserved quantities for all
t ∈ R involving the additional scalar constraints. The latter gives rise to a little modified gradient
dynamical system like (11) which we do not write down here, being obtained the same way as
before.

5. Spectral analysis. Consider now two respectively biorthogonal systems of vectors xα ∈
∈ En, α ∈ Nx ⊂ 1, n, and yβ ∈ Em, β ∈ Ny ⊂ 1,m, being eigenvectors of the symmetric
projector matrices X = Xᵀ ∈ EndEn and Y = Y ᵀ ∈ EndEm, respectively, satisfying [41] the
following conditions:

Xxα = xα, Y yβ = yβ (12)

for all α ∈ Nx ⊂ 1, n and β ∈ Ny ⊂ 1,m. By differentiating the equalities (12) with respect to
the time, one gets that

dX/dtxα +Xdxα/dt = dxα/dt, dY/dtyβ + Y dyβ/dt = dyβ/dt

for all α ∈ Nx ⊂ 1, n and β ∈ Ny ⊂ 1,m. Making use of the equations (11) and (12), one has
that [

(I −X)(DfX −XDf ) +Kf (I −X) + (I −X)Kf

]
xα = (I −X)dxα/dt,[

(I − Y )(DgY − Y Dg) +Kg(I − Y ) + (I − Y )Kg

]
= (I − Y )dyβ/dt,

where, by definition, matrices Kf ∈ EndEn, Kg ∈ EndEm and denote the corresponding out
commutative parts of first two equations in (11). As a result of simple computations one gets that

(I −X)(DfX −XDf )xα + (I −X)Kfxα = (I −X)dxα/dt,

(I − Y )(DgY − Y Dg)yβ + (I − Y )Kgyβ = (I − Y )dyβ/dt.
(13)

From (13) one finds easily that

dxα/dt = (DfX −XDf )xα + (I −X)Kfxα +Xz(f)α ,

dyβ/dt = (DgY − Y Dg)yβ + (I − Y )Kgyβ + Y z
(g)
β

(14)
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for some vectors z(f)α ∈ En and z(g)β ∈ Em for all α ∈ Nx ⊂ 1, n and β ∈ Ny ⊂ 1,m. Since, in
general, tr(dX/dt) 6= 0 and tr(dY/dt) 6= 0, we deduce that the integers rankX and rankY are
changing in time. On the other hand, since trX = n(x) ∈ N and trY = n(y) ∈ N are integers, we
see that our the dynamical system possesses very interesting properties related with jumping of
the integers n(x) and n(y) ∈ N at some fixed whiles of time. This phenomenon can be interpreted
naturally as a result of activation (dis-activation) of available receptor strings characterizing our
interacting clonal populations during the interaction process. Returning back to equations (14)
one can observe that vectors z(f)α ∈ En and z(g)β ∈ Em must satisfy the conditions

〈z(f)α , xα′〉 = 0, 〈z(g)β , yβ′〉 = 0,

〈Dfxα, xα′′〉+ 〈Kfxα, xα′′〉 = 0, (15)

〈Dgyβ, yβ′′〉+ 〈Kgyβ, yβ′′〉 = 0

for α, α′ ∈ Nx ⊂ 1, n, α′′ /∈ Nx ⊂ 1, n, and for β, β′ ∈ Ny ⊂ 1,m, β′′ /∈ Ny ⊂ 1,m.

Relationships (15) can be used as some criterion for the corresponding ranks of the projector
matrices X ∈ EndEm and Y ∈ EndEm, evolving with respect to the dynamical system (4), to
become jumped.

6. Clonal network simulation. So far introduced mathematical clonal network model has
been written as a formal system of matrix nonlinear differential equations. In order to check
the characteristic features of this system we have performed computer simulations of the model
for several values of n,m ∈ N and as well as for different initial conditions and forms of
the corresponding constant matrices entering the system. The model is composed in general of
n(n + 1)/2 + m(m + 1)/2 + nm ∈ N scalar differential equations, i.e., of the inhibitor share
equations, excitor share equations and equations describing interaction between these shares. The
integration of this system requires simultaneous integrations of these scalar differential equations,
each of which is a first order ODE. Let us now illustrate the dynamic behavior of our system by
computer simulation at some simple starting data. We rewrite down governing equations (11) in
a new equivalent form which was used for computer simulation:

dX/dt = [[Df , X], X] +X(XZᵀY Z + 2I)−1X(ZᵀY Dh − ZᵀY ZXDf )(I −X)+

+ (I −X)(Dᵀ
hY Z −DfXZ

ᵀY Z)X(XZᵀY Z + 2I)−1X,

dY/dt = [[Dg, Y ], Y ] + (I − Y )(DhXZ
ᵀ −DgY ZXZ

ᵀ)Y (Y ZXZᵀ + 2I)−1Y+

+ Y (2I + Y ZXZᵀ)−1Y (ZDᵀ
h − ZXZ

ᵀY Dg)(I − Y ),

dZ/dt = −DhX − Y ZXDfX2(Y − I)(DhX −DgY Z)X(XZTY Z + 2I)−1X+

+ Y ZX(XZTY Z + 2)−1X(ZᵀY Dh − ZᵀY ZXDf )(I −X).

(16)

Here when writing down the system (16) we took into account constraints (4) in order to get
matrix paths always lying on the corresponding projector parts of the manifold M. We used
Matlab software to perform our simulation of equations (16). Despite the complex structure of
equations describing our immune clonal network, its dynamical behavior is fairly interesting and
good modeling some real ones.
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Fig. 1. Behavior of the diagonal elements of matrix X — dashed line, Y — solid line (a), traces of the matrices X

and Y — (b). Here Dg =

(
−1 0.5

0.5 −1

)
, Df =


0.5 −0.15 0.5 0.4

−0.15 1 0.3 0.1

0.5 0.3 1 0.7

0.4 0.1 0.7 1

. Initial conditions: Z(t0) =

=

(
0.05 −0.02 0.0 0.0

0 0 0 0

)
, x1 = (1, 0, 0, 0)T , x2 = (0, 1, 0, 0)T , x3 = x4 = (0, 0, 0, 0)T ; y1 = (1, 0)T ,

y2 = (0, 0)T .

In Fig. 1 we plotted the outcome of numerical simulations for the case dimX = 4, dimY = 2 .
The plots in Fig. 1 show that the simulations recover perfectly the clonal network behavior
predicted by both qualitative and some analytic considerations. For simplicity, we first consider
the matrix Dh being zero. Figure 1 displays a dynamics of inhibitory network X and excitatory
Y at the conditions and parameters indicated in the capture of the figure. The behavior of the
diagonal elements (receptors mapping antigen concentration) of the of the excitor are displayed
by solid line and inhibitory receptors are displayed by dashed line. The displayed dynamics has a
simple physical meaning. The receptor of activator network responsible for antigen state is getting
depressed (equal to zero) due to activation of inhibitory one (Fig. 1 (b)). At certain value of time
the state of the inhibitory network is tending to zero also.

It should be noted that the displayed plot strongly depends on the parameters of the matrices
describing the network evolution. By adjusting values of the elements of the matrices we can
get different network dynamics. This can correspond to real situation in living organisms when
immune system extinct the antigens or it doesn’t and there are many of natural parameters
regulating immune system dynamics.

In Fig. 2 we plotted the outcome of numerical simulations for the case dimX = 4 = dimY.

As in the previous case, for simplicity, we consider the matrix Dh being zero. The numerical
solution of the dynamical system obtained for certain Dg and Df also corresponds to the case
when interaction between clonal variables X and Y is completely determined by matrices Dg

and Df and, namely, they change the adaptive interaction of themainmatrix variables through the
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Fig. 2. Behavior of the diagonal elements of matrix Y (a), X (b), traces of the matrices X and Y (c),

and plot of all solutions of matrices X, Y and Z (d). Here Dg = −


1 0.5 1 0.4

0.5 1 0.4 1

1 0.4 2 0.5

0.4 1 0.5 1

,

Df =


0.5 −0.1 0.5 0.4

−0.1 1 0.3 0.1

0.5 0.3 1 0.7

0.4 0.1 0.7 a

. Initial conditions: Z(t0) =


0.0522 0.0092 −0.0040 0.0087

0 0 0 0

0 0 0 0

0.0097 −0.0269 0.0086 0.0202

,

X(t0) =


0.9448 0.1090 −0.0534 0.1937

0.1090 0.6655 −0.2193 −0.4033

−0.0534 −0.2193 0.0726 0.1280

0.1937 −0.4033 0.1280 0.3172

, x1 = (0.9262,−0.1382, 0.0276, 0.3497)T , x2 =

= (0.2948, 0.8040,−0.2680,−0.4415)T , x3 = (0, 0, 0, 0)T , x4 = (0, 0, 0, 0)T ; y1 = (1, 0, 0, 0)T , y2 = y3 =

= (0, 0, 0, 0)T , y4 = (0, 0, 0, 1)T .
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matrix variable Z . Examination of the solutions obtained reveals that dynamics of the diagonal
elements of the matrices X and Y ∈ EndE4 — (a) and (b) and traces of these matrices (c) is
essentially nonlinear. After some quasi-stationary dynamics of the traces we have their sharp flips
to new integer values. During the system evolution a new increase or decrease of X -components
can happen which may change essentially its trace dynamics. For initial conditions we used two
dimensional subspace of the matrices X and Y . Concerning inhibitor X we chose arbitrary
orthogonal vectors x1, x2 and concerning activator vectors we chose two orthonormal vectors.
These vectors form matrices X, Y as well at some given values of coefficients zαβ do the matrix
Z . The specific data of these procedure are presented in caption for Fig. 2. From the reported
plot we can see that nondiagonal phase trajectories (Fig. 2 (d)) of the matrices X, Y and Z have
practically linear behavior and are relatively stable for large values of time (t ∼ 1000) .

In Fig. 3 we report the numerical simulation of all components of matrices X (a) and Y (b)
and corresponding trace dynamics of these matrices X (c) and Y (d) for the case with new initial
data and all matrices being nonequal to zero. In particular, we took the rank of the matrix X in
initial conditions equal to be constant 1 and that of the matrix Y equal to 2 and initial vectors
are standard orthogonal vectors (see Fig. 3).

The form of the matrix Dh plays essential role in interaction of the clonal network. From the
reported plot we can see that phase trajectories of activator Y are stabilized at certain value of
t ∈ R+ and the values of Y practically doesn’t change in time. The simulations run until the time
when the system either destroys owing computational errors or stabilizes.

In Fig. 4 we present the numerical simulation of the diagonal components of matrices X (a)
and Y (b) and the corresponding trace dynamics of these matrices (c) for the network dynamics
stimulated by combination of two Lyapunov functions (9), (12) and (10), (13). In these cases new
matrices in equations are determined as

D̃g = kgDg +D(1,2)
g , D̃f = kfDf +D

(1,2)
f , D̃h = khDh +D

(1,2)
h

but equations of the clonal dynamics are persist evidently to be the same as (16). The first upper
index (1) corresponds to Lyapunov function (12) and the second upper index (2) corresponds
to Lyapunov function (13). The results of computer simulations for first index are presented
on Fig. 4 (a) – (c) and the second one on the Fig. 4 (d). In this case the diagonal elements X
(a) diagonal elements of matrix Y (b) and traces of these two matrices (c) demonstrate a very
interesting nonlinear dynamics. For simplicity of representation and in order to grasp some
characteristic features of the clonal network dynamics we used practically the same matrices as in
the previous simulations. All parameters of matrices Df , Dg, Dh, D

(1)
f = D

(2)
f and D(1)

g = D
(2)
g

are presented on captions to this figure. With our simulations we studied the effects of the
combination influence of these two Lyapunov potentials.

It was established within these simulations that coefficients before the medication matrices
influence sufficiently the network dynamics. It should be noted that the behavior of the system
with Lyapunov potential combinations of these two potentials (9) and (12), (13) are much more
stabilized and we have many opportunities by taking coefficients kg, kf , kh small enough
to obtain different trace dynamics of the system. Analyzing behavior of the traces describing
our immune clonal network we can conclude that small variations of the parameters do not
change seriously the clonal dynamics. In this case there exists some region of attraction when
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Fig. 3. Clonal immune system dynamics for matrix Y (a), for matrix X (b), Trace of the matrices X and Y

(c), (d) correspondingly. Here Dg = −3


1 0.5 1 0.4

0.5 1 0.4 1

1 0.4 2 0.5

0.4 1 0.5 1

, Df =


0.5 0 0.5 0.4

0 1 0.3 0.1

0.5 0.3 1 0.7

0.4 0.1 0.7 a

, Dh =

= −


0.3 0.6 0.2 0.9

0.5 1 0.03 0.4

0.2 0.5 0.1 −0.5

−0.5 0.03 0.04 1

. Initial conditions: Z(t0) =

0.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 −0.3 0.0 0.0

, x1 = x3 = x4 =

= (0, 0, 0, 0)T , x2 = (0, 1, 0, 0)T , y1 = (1, 0, 0, 0)T , y2 = (0, 1, 0, 0)T , y3 = y4 = (0, 0, 0, 0)T .
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Fig. 4. The behavior of the diagonal elements of the matrix Y (a) and X (b). Traces of the matrices X and

Y for indexes (1) and (2) — (c), (d) correspondingly. Here Dg = −0.2


1 0.5 1 0.4

0.5 1 0.4 1

1 0.4 2 0.5

0.4 1 0.5 1

, Df =

= 0.2


0.5 0.15 0.5 0.4

0.15 1 0.3 0.1

0.5 0.3 1 0.7

0.4 0.1 0.7 1

, βg =


1 0.0 0.0 0.0

0.1 1 0.1 0.0

0.0 0.0 1 0.1

0.0 0.0 0.0 1

, βf =


1 0.0 0.0 0.0

0.1 1 0.2 0.0

0.0 0.0 1 0.1

0.0 0.2 0.0 1

. Initial

conditions: Z(t0) =


0.0 0.2 0.03 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 −0.3 0.02 0.0

, x1 = x4 = (0, 0, 0, 0)T , x2 = (0, 1, 0, 0)T , x3 =

= (0, 0, 1, 0)T , y1 = (1, 0, 0, 0)T , y4 = (0, 0, 0, 1)T , y2 = y3 = (0, 0, 0, 0)T .
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the solutions persist the same form. But at some values of elements of matrices these solutions
change drastically. This is the case happening in the real immune systemdynamicswhen inhibitory
receptors possess many of parameters which behave precisely in order to depress antigens from
the clonal network.

7. Conclusions. Within our models of an immune clonal system the matrix trace trY ∈ N
of the matrix Y, being integer, counts the number of activated excitatory receptors strings at the
moment of time t ∈ R+ during the interaction of excitatory clonal sub-network with inhibitory
clonal sub-network, described at the same moment by the matrix trace trX ∈ N of the matrix
X, being also an integer and counting, respectively, the number of activated inhibitory receptors
strings during the interaction. As one can see, during the interaction between inhibitory and
excitatory clones at some moments of time there are switched some new excitatory and inhibitory
receptors strings, and further at next whiles of time during their interactions, some of excitatory
receptors strings become depressed and some inhibitory receptors either appear or become dis-
activated too. This event can be interpreted, for instance, as follows: our inhibitory clonal network
solved its immune task to dis-activate the excitatory clonal sub-network, and next at some later
while of time becomes idle too, leaving itself in the initial awaiting state.

Thereby, one can state that the models studied in this paper possesses many of properties
suitable for possible responses of a real clonal network. The stimulation of the interaction
between excitatory and inhibitory sub-systems demonstrates their expectable direct self-similar
and complementary behavior. This model is obviously not still completely satisfactory because
it needs many of external parameters accounting for the main important features of real clonal
network dynamics. But we believe that the work presented in this paper is an alternative step
towards better understanding the essence and nature of immune network dynamics. Since the
realistic immune networks do involve much more than several receptor strings elements, such an
analysis is a new step to a completely novel approach to understanding the functioning of real
clonal immune networks.
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