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This paper deals with existence, oscillation, and nonoscillation of solutions to some classes of Caputo
fractional q -difference equations and inclusions. The technique of proof employs set-valued analysis, fixed
point theory, and the method of upper and lower solutions.

Для деяких класiв рiвнянь та включень дробового порядку з q -рiзницевою похiдною Капуто дослi-
джено iснування, осциляцiю та неосциляцiю розв’язкiв. При доведеннi використано багатозначний
аналiз, теореми про нерухому точку та метод верхнього й нижнього розв’язкiв.

1. Introduction. Fractional differential equations and inclusions have been applied in various
areas of engineering, mathematics, physics, and other applied sciences (see [1 – 8], and the
references therein). Recently, considerable attention has been given to the existence of solutions
of initial and boundary value problems for fractional differential equations and inclusions with
Caputo fractional derivatives; for example, see [2, 9]. Themethod of upper and lower solutions has
been successfully applied to study the existence of solutions to a variety of differential equations
and inclusions; see, for example, [10 – 15] and the references therein.

The study of fractional q -difference equations was initiated early in the 20-th century [16, 17]
and has received significant attention in recent years [18, 19]. Some interesting details concerning
initial and boundary value problems for q -difference and fractional q -difference equations can
be found in [19 – 23] and the included references.
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In recent years there has been much research activity concerning the oscillation and nonosci-
llation of solutions of different types of dynamic equations and inclusions. We refer the reader to
the papers [24 – 26] and the references cited therein. In this paper, we discuss the existence and
the oscillatory and nonoscillatory behavior of solutions to the fractional q -difference equation(

cDα
q u
)
(t) = f(t, u(t)), t ∈ I := [0, T ], (1)

with the initial condition
u(0) = u0 ∈ R, (2)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × R → R is a given continuous function, and cDα
q is

the Caputo fractional q -difference derivative of order α (as defined below).
We also investigate the existence and the oscillatory and nonoscillatory behavior of solutions

to the fractional q -difference inclusion(
cDα

q u
)
(t) ∈ F (t, u(t)), t ∈ I, (3)

with the initial condition (2) , where F : I × R → P(R) is a multivalued map and P(R) is the
family of all nonempty subsets of R.

This paper initiates the study of the oscillation and nonoscillation of solutions to Caputo
q -fractional difference equations and inclusions.

2. Preliminaries. Consider the Banach space C(I) := C(I,R) of continuous functions from
I into R equipped with the supremum (uniform) norm

‖u‖∞ := sup
t∈I
|u(t)|.

As usual, L1(I) denotes the space ofmeasurable functions v : I → R that are Lebesgue integrable
with the norm

‖v‖1 =

T∫
0

|v(t)| dt.

We now recall some definitions and properties from the fractional q -calculus. For a ∈ R set

[a]q =
1− qa

1− q
.

The q analogue of the power (a− b)n is

(a− b)(0) = 1, (a− b)(n) = Πn−1
k=0(a− bqk), a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aαΠ∞k=0

(
a− bqk

a− bqk+α

)
, a, b, α ∈ R.

Definition 2.1 [27]. The q -gamma function is defined by

Γq(ξ) =
(1− q)(ξ−1)

(1− q)ξ−1
for ξ ∈ R− {0,−1,−2, . . .}.
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Notice that the q -gamma function satisfies Γq(1 + ξ) = [ξ]qΓq(ξ).

Next, we give definitions of different types of q -derivatives and q -integrals and indicate some
of their properties.

Definition 2.2 [27]. The q -derivative of order n ∈ N of a function u : I → R is defined by
(D0

qu)(t) = u(t),

(Dqu)(t) := (D1
qu)(t) =

u(t)− u(qt)

(1− q)t
, t 6= 0, (Dqu)(0) = lim

t→0
(Dqu)(t),

and

(Dn
q u)(t) = (DqD

n−1
q u)(t), t ∈ I, n ∈ {1, 2, . . .}.

We set It := {tqn : n ∈ N} ∪ {0}.
Definition 2.3 [27]. The q -integral of a function u : It → R is defined by

(Iqu)(t) =

t∫
0

u(s) dqs =

∞∑
n=0

t(1− q)qnf(tqn),

provided that the series converges.
We note that (DqIqu)(t) = u(t), while if u is continuous at 0, then

(IqDqu)(t) = u(t)− u(0).

Definition 2.4 [28]. The Riemann – Liouville fractional q -integral of order α ∈ R+ :=

:= [0,∞) of a function u : I → R is defined by (I0qu)(t) = u(t), and

(Iαq u)(t) =

t∫
0

(t− qs)(α−1)

Γq(α)
u(s) dqs, t ∈ I.

Lemma 2.1 [29]. For α ∈ R+ := [0,∞) and λ ∈ (−1,∞), we have

(Iαq (t− a)(λ))(t) =
Γq(1 + λ)

Γ(1 + λ+ α)
(t− a)(λ+α), 0 < a < t < T.

In particular,

(Iαq 1)(t) =
1

Γq(1 + α)
t(α).

Definition 2.5 [30]. The Riemann – Liouville fractional q -derivative of order α ∈ R+ of a
function u : I → R is defined by (D0

qu)(t) = u(t), and

(Dα
q u)(t) = (D[α]

q I [α]−αq u)(t), t ∈ I,

where [α] is the integer part of α.
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Definition 2.6 [30]. The Caputo fractional q -derivative of order α ∈ R+ of a function u :
I → R is defined by

(
CD0

qu
)
(t) = u(t) and(
CDα

q u
)
(t) = (I [α]−αq D[α]

q u)(t), t ∈ I.

As a simple illustration, we have the following example.
Example 2.1. Let α > 0 and β > [α]. Then for each t > 0, we have

(
CDα

q

)
(tβ−1) = tβ−α−1

Γq(β)

Γq(β − α)
, β 6∈ N,(

CDα
q

)
(tβ−1) = 0, β ∈ {1, 2, . . . , [α]− 1}.

Lemma 2.2 [30]. Let α ∈ R+. Then the following equality holds:

(
Iαq

CDα
q u
)
(t) = u(t)−

[α]−1∑
k=0

tk

Γq(1 + k)
(Dk

qu)(0).

In particular, if α ∈ (0, 1), then(
Iαq

CDα
q u
)
(t) = u(t)− u(0).

For a given Banach space (X, ‖ · ‖), we define the following subsets of P(X) :

Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact},
Pcv(X) = {Y ∈ P(X) : Y is convex},
Pcp,cv(X) = Pcp(X) e Pcv(X).

The following properties of multivalued maps will be needed.
Definition 2.7. A multivalued map G : X → P(X) is said to be convex (closed) valued

if G(x) is convex (closed) for all x ∈ X. A multivalued map G is bounded on bounded sets
if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e., supx∈B{sup{|y| : y ∈ G(x)}
exists).

Definition 2.8. A multivalued map G : X → P(X) is called upper semi-continuous (u.s.c.)
on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and for each open set
N ⊂ X containing G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊂ N.

Definition 2.9. The multivalued map G : X → P(X) is said to be completely continuous if
G(B) is relatively compact for every B ∈ Pb(X).

Definition 2.10. Let G : X → P(X) be completely continuous with nonempty compact
values. Then G is u.s.c. if and only if G has a closed graph (i.e., xn → x∗, yn → y∗, yn ∈ G(xn)

imply y∗ ∈ G(x∗)).
Definition 2.11. A multivalued map G : X → P(X) has a fixed point if there is x ∈ X such

that x ∈ G(x).

We denote by FixG the set of fixed points of the multivalued operator G.
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Definition 2.12. A multivalued map G : J → Pcl(R) is said to be measurable if for every
y ∈ R, the function

t→ d(y,G(t)) = inf
{
|y − z| : z ∈ G(t)

}
is measurable.

The following relationship between upper semi-continuous maps and closed graphs is well
known.

Lemma 2.3 [31]. Let G be a completely continuousmultivaluedmapwith nonempty compact
values. Then G is u.s.c. if and only if G has a closed graph.

Definition 2.13. A multivalued map F : I × R→ P(R) is said to be Carathéodory if:
(i) t→ F (t, u) is measurable for each u ∈ R;

(ii) u→ F (t, u) is upper semicontinuous for almost all t ∈ I.
Moreover, F is said to be L1 -Carathéodory if (1), (2), and the following condition hold:

(iii) For each q > 0, there exists ϕq ∈ L1(I,R+) such that

‖F (t, u)‖P = sup
{
|v| : v ∈ F (t, u)

}
≤ ϕq for all |u| ≤ q and for a.e. t ∈ I.

For each u ∈ C(I,R), we define the set of selections of F by

SF◦u =
{
v ∈ L1(I,R) : v(t) ∈ F (t, u(t)) a.e. t ∈ I

}
.

Let (X, d) be a metric space induced from the normed space (X, | · |). The function Hd :
P(X)× P(X)→ R+ ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
is known as the Hausdorff–Pompeiu metric. For more details on multivalued maps, see the
monograph of Hu and Papageorgiou [31].

3. Caputo fractional q -difference equations. We begin by defining what we mean by a
solution, an upper solution, and a lower solution to the problem (1), (2).

Definition 3.1. A function u ∈ C(I) is said to be a solution of problem (1), (2), if u(0) = u0
and CDα

q u(t) = f(t, u(t)) on I.
Definition 3.2. A function w ∈ C(I) is said to be an upper solution of (1), (2) if w(0) ≥ u0

and CDα
q w(t) ≥ f(t, w(t)) on I. Similarly, a function v ∈ C(I) is said to be a lower solution of

(1), (2) if v(0) ≤ u0, and CDαv(t) ≤ f(t, v(t)) on I.
In the sequel, we will need the following fixed point theorem.
Theorem 3.1 (Schauder’s fixed point theorem [32]). Let B be a closed, convex, and nonempty

subset of a Banach space X. Let N : B → B be a continuous mapping such that N(B) is a
relatively compact subset of X. Then N has at least one fixed point in B.

3.1. Existence of solutions. We now present an existence result for the problem (1), (2).
Theorem 3.2. Assume that:
(H) There exist v and w ∈ C, lower and upper solutions for the problem (1), (2) respectively,

such that v ≤ w.
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Then the problem (1), (2) has at least one solution u such that

v(t) ≤ u(t) ≤ w(t) for all t ∈ I.

Proof. Consider the modified problem
(
cDα

q u
)
(t) = g(t, u(t)), t ∈ I := [0, T ],

u(0) = u0,
(4)

where

g(t, u(t)) = f(t, h(t, u(t))) and h(t, u(t)) = max
{
v(t),min{u(t), w(t)}

}
for each t ∈ I. A solution of problem (4) is a fixed point of the operator N : C → C defined by

(Nu)(t) = u0 +

t∫
0

(t− qs)(α−1)

Γq(α)
f(s, u(s)) dqs.

Notice that the functions f, v, and w are continuous, and from the definition of the function g,
we have

|g(t, u(t))| ≤ sup
t∈I

∣∣f(t,max
{
v(t),min{u(t), w(t)}

})∣∣ := M.

Set

η = |u0|+
MT (α)

Γq(1 + α)
,

and

D =
{
u ∈ C : ‖u‖C ≤ η

}
.

Clearly, D is a closed, bounded convex subset of C and that N maps D into itself. We shall
show that N satisfies the assumptions of Theorem 3.1. The proof will be given in several steps.

Step 1. N is continuous and N(D) is bounded. It is clear that N(D) is bounded since
N(D) ⊂ D and D is bounded.

Next, let {un} be a sequence such that un → u in D. Then

|(Nun)(t)− (Nu)(t)| ≤
t∫

0

(t− qs)(α−1)

Γq(α)

∣∣g(s, un(s))− g(s, u(s))
∣∣ dqs ≤

≤
t∫

0

(t− qs)(α−1)

Γq(α)
sup
s∈I

∣∣g(s, un(s))− g(s, u(s))
∣∣ dqs.

ISSN 1562-3076. Нелiнiйнi коливання, 2020, т. 23, № 2



OSCILLATION AND NONOSCILLATION RESULTS FOR CAPUTO FRACTIONAL q -DIFFERENCE EQUATIONS . . . 153

For each t ∈ I, set (g ◦ u)(t) := g(t, u(t)). Thus,

(Nun)(t)− (Nu)(t)| ≤
t∫

0

(t− qs)(α−1)

Γq(α)
sup
s∈I

∣∣(g ◦ un)(s)− (g ◦ u)(s)
∣∣ dqs ≤

≤
t∫

0

(t− qs)(α−1)

Γq(α)
‖g ◦ un − g ◦ u‖C dqs ≤

≤ T (α)

Γq(1 + α)
‖g ◦ un − g ◦ u‖C .

From Lebesgue’s dominated convergence theorem and the continuity of the function g, we see
that ∣∣(Nun)(t)− (Nu)(t)

∣∣→ 0 as n→∞.

Step 2. N(D) is equicontinuous. Let t1, t2 ∈ I with t1 < t2, and let u ∈ D. Then,

‖(Nu)(t2)− (Nu)(t1)‖ ≤
t2∫
t1

(t2 − qs)(α−1)

Γq(α)
|g(s, u(s))| dqs+

+

t1∫
0

∣∣∣∣∣(t2 − qs)(α−1)Γq(α)
− (t1 − qs)(α−1)

Γq(α)

∣∣∣∣∣ |g(s, u(s))| dqs ≤

≤M
t2∫
t1

(t2 − qs)(α−1)

Γq(α)
dqs+

+M

t1∫
0

∣∣∣∣∣(t2 − qs)(α−1)Γq(α)
− (t1 − qs)(α−1)

Γq(α)

∣∣∣∣∣ dqs.
As t1 → t2, the right-hand side of the above inequality tends to zero.

As a consequence of the above two steps and the Arzelà-Ascoli theorem, we can conclude
that N is a continuous and completely continuous operator. An application of Theorem 3.1 yields
that N has a fixed point u that in turn is a solution of problem (4).

Step 3. The solution u of (4) satisfies

v(t) ≤ u(t) ≤ w(t) for all t ∈ I.

Let u be the above solution to (4). We wish to show that

u(t) ≤ w(t) for all t ∈ I.

Assume that u− w attains a positive maximum on I at t ∈ I, that is,

(u− w)(t) = max{u(t)− w(t) : t ∈ I} > 0.

We distinguish the following cases.
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Case 1. If t ∈ (0, T ) then, there exists t∗ ∈ [0, t) such that

0 < u(t)− w(t) ≤ u(t)− w(t) for all t ∈ [t∗, t]. (5)

From the definition of h, (
cDα

q u
)
(t) = g(t, u(t)), (6)

for all t ∈ [t∗, t], where

g(t, u(t)) = f(t, w(t)), t ∈ [t∗, t].

An integration of (6) yields

u(t) = u0 +

t∫
t∗

(t− qs)(α−1)

Γq(α)
f(s, w(s)) dqs.

Using the fact that w is an upper solution to (1), (2) we get

u(t)− u(t∗) ≤ w(t)− w(t∗)−
t∫

t∗

(t− qs)(α−1)

Γq(α)
f(s, w(s)) dqs < w(t)− w(t∗). (7)

Thus from (5) and (7), we obtain the contradiction

u(t)− w(t) < u(t∗)− w(t∗) for all t ∈ [t∗, t ].

Case 2. If t = 0, then

w(0) < u(0) ≤ w(0)

which is a contradiction. Thus,

u(t) ≤ w(t) for all t ∈ I.

Analogously, we can prove that

u(t) ≥ v(t) for all t ∈ I.

This shows that the problem (4) has a solution u satisfying v ≤ u ≤ w that is also a solution of
problem (1), (2).

3.2. Nonoscillation and oscillation of solutions. Our next theorem gives sufficient conditi-
ons to ensure the nonoscillation of solutions of problem (1), (2). We begin with the definition of
an oscillatory solution.

Definition 3.3. A solution u ∈ C of problem (1), (2) is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise, u is called nonoscillatory.

Theorem 3.3. In addition to condition (H), assume that:
(H ′) v is an eventually positive nondecreasing lower solution, or w is an eventually negative

nonincreasing upper solution of (1), (2).
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Then every solution u of (1), (2) such that u ∈ [v, w] is nonoscillatory.
Proof. Assume that v is an eventually positive. Thus there exists Tv > 0, such that

v(t) > 0 for all t > Tv.

Hence, u(t) > 0 for all t > Tv. This means that y is nonoscillatory.
Analogously, if w is an eventually negative, then there exists Tw > 0, such that u(t) < 0; for

all t > Tw, which means that u is nonoscillatory.
The following theorem concerns the oscillatory behavior of the solutions of problem (1), (2).
Theorem 3.4. In addition to condition (H) assume that:
(H ′′) v and w are oscillatory lower and upper solutions, respectively, of (1), (2).

Then every solution u of (1), (2) such that u ∈ [v, w] is oscillatory.
Proof. Assume that problem (1), (2) has a nonoscillatory solution u on I. Then there exists

Tu > 0 such that u(t) > 0 or u(t) < 0 for all t > Tu. In the case where u(t) > 0 for all
t > Tu, we have w(t) > 0 for all t > Tu, which is a contradiction since w is an oscillatory upper
solution. Analogously, if u(t) < 0 for all t > Tu, we have v(t) < 0 for all t > Tu, which again
is a contradiction since v is an oscillatory lower solution.

4. Caputo fractional q -difference inclusions. We begin by defining what we mean by a
solution of the fractional inclusion problem (2), (3).

Definition 4.1. A function u ∈ AC(I) is said to be a solution of problem (2), (3) if u(0) = u0,

and there exists a function f ∈ SF◦u such that CDα
q u(t) = f(t) a.e. t ∈ I.

Definition 4.2. A function w ∈ AC(I) is said to be an upper solution of (2), (3) if w(0) ≥ u0,
and there exists a function v1 ∈ SF◦w such that CDα

q w(t) ≥ v1(t) a.e. t ∈ I. Similarly, a function
v ∈ AC(I) is said to be a lower solution of (2), (3) if v(0) ≥ u0 and there exists a function
v2 ∈ SF◦v such that CDαv(t) ≤ v2(t) a.e. t ∈ I.

We will need the following fixed point theorem.
Theorem 4.1 (Martelli’s fixed point theorem [33]). Let X be a Banach space and N :

X → Pcl,cv(X) be an upper semicontinuous and condensing multivalued operator. If the set
Ω := {u ∈ X : λu ∈ N(u) for some λ > 1} is bounded, then N has a fixed point.

4.1. Existence of solutions.
Theorem 4.2. Assume that the following conditions hold:
(H1) F : I × R→ Pcp,cv(R) is Carathéodory;
(H2) There exist v, w ∈ AC(I) which are lower and upper solutions, respectively, of

problem (2), (3) such that v ≤ w ;
(H3) There exists l ∈ L1(I,R+) such that

Hd(F (t, u), F (t, ū)) ≤ l(t)|u− ū| for all u, ū ∈ R,

and

d(0, F (t, 0)) ≤ l(t) a.e. t ∈ I.

Then the problem (2), (3) has at least one solution u defined on I such that

v ≤ u ≤ w.

ISSN 1562-3076. Нелiнiйнi коливання, 2020, т. 23, № 2



156 S. ABBAS, M. BENCHOHRA, J. R. GRAEF

Proof. Consider the multivalued operator N : C(I)→ P(C(I)) defined by

N(u) =

h ∈ C(I) : h(t) = u0 +

t∫
0

(t− qs)(α−1)

Γq(α)
v(s) dqs, v ∈ SF◦u

 .

Clearly, the fixed points of N are solutions of the problem (2), (3).
Consider the following modified problem:

CDα
q u(t) ∈ F

(
t, τ(u(t))

)
, for a.e. t ∈ I, (8)

u(0) = u0, (9)

where

τ(u(t)) = max
{
v(t),min{u(t), w(t)}

}
,

and

u(t) = τ(u(t)).

A solution to (8), (9) is a fixed point of the operator N : C(I)→ P(C(I)) defined by

N(u) =
{
h ∈ C(I) : h(t) = u(0) + (Iαq ν)(t)

}
,

where

ν ∈
{
x ∈ S̃1

F◦τ(u) : x(t) ≥ v1(t) on A1 and x(t) ≤ v2(t) on A2

}
,

S̃1
F◦τ(y) =

{
x ∈ L1(I) : x(t) ∈ F (t, (τu)(t)) a.e. t ∈ I

}
,

A1 =
{
t ∈ I : u(t) < v(t) ≤ w(t)

}
, A2 =

{
t ∈ I : v(t) ≤ w(t) < u(t)

}
.

Remark 4.1. (i) For each u ∈ C(I), the set S̃1
F◦τ(u) is nonempty. In fact, (H1) implies that

there exists v3 ∈ S1
F◦τ(u) so we set

v = v1χA1 + v2χA2 + v3χA3 ,

where

A3 =
{
t ∈ I : v(t) ≤ u(t) ≤ w(t)

}
.

Then by decomposability, x ∈ S̃1
F◦τ(u).

(ii) From the definition of τ, it is clear that F (·, τu(·)) is an L1 -Carathéodory multi-valued
map with compact convex values and there exists φ1 ∈ C(I,R+) such that∥∥F (t, τu(t))

∥∥
P ≤ φ1(t) for each u ∈ R.

ISSN 1562-3076. Нелiнiйнi коливання, 2020, т. 23, № 2



OSCILLATION AND NONOSCILLATION RESULTS FOR CAPUTO FRACTIONAL q -DIFFERENCE EQUATIONS . . . 157

Now set

R := |u0|+
‖φ1‖∞T (α)

Γq(1 + α)
,

and consider the closed and convex subset of C(I) given by

B = {u ∈ C(I) : ‖u‖∞ ≤ R}.

We shall show that the operator N : B → Pcl,cv(B) satisfies all the assumptions of Theorem 4.1.
The proof will be given in steps.

Step 1. N(u) is convex for each u ∈ B. Let h1, h2 belong to N(u) ; then there exist
ν1, ν2 ∈ S̃1

F◦τ(u) such that, for each t ∈ I and i = 1, 2, we have

hi(t) = u(0) + (Iαq νi)(t).

Let 0 ≤ d ≤ 1. Then, for each t ∈ I, we have

(
dh1 + (1− d)h2

)
(t) = u(0) +

t∫
0

(t− qs)(α−1)

Γq(α)

[
dν1(s) + (1− d)ν2(s)

]
dqs.

Since SF◦τ(u) is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(u).

Step 2. N maps bounded sets into bounded sets in B. For each h ∈ N(u), there exists
ν ∈ S̃1

F◦τ(u) such that

h(t) = u(0) +

t∫
0

(t− qs)(α−1)

Γq(α)
ν(s) dqs.

From conditions (H1) – (H3), for each t ∈ I, we have

|h(t)| ≤ |u(0)|+

∣∣∣∣∣∣
t∫

0

(t− qs)(α−1)

Γq(α)
|ν(s)| dqs

∣∣∣∣∣∣ ≤
≤ |u0|+

‖φ1‖∞T (α)

Γq(1 + α)
.

Thus,

‖h‖∞ ≤ R.

Step 3. N maps bounded sets into equicontinuous sets of B. Let t1, t2 ∈ I with t1 < t2, and
let u ∈ B and h ∈ N(u). Then

∣∣h(t2)− h(t1)
∣∣ =

∣∣∣∣∣∣
t1∫
0

∣∣(t2 − qs)(α−1) − (t1 − qs)(α−1)
∣∣

Γq(α)
ν(s) dqs+
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+

t2∫
t1

(t2 − qs)(α−1)

Γq(α)
ν(s) dqs

∣∣∣∣∣∣ ≤
≤

t1∫
0

∣∣(t2 − qs)(α−1) − (t1 − qs)(α−1)
∣∣

Γq(α)
|ν(s)| dqs+

+

t2∫
t1

∣∣(t2 − qs)(α−1)∣∣
Γq(α)

|ν(s)| dqs ≤

≤ ‖φ1‖∞

t1∫
0

∣∣(t2 − qs)(α−1) − (t1 − qs)(α−1)
∣∣

Γq(α)
dqs+

+ ‖φ1‖∞

t2∫
t1

|(t2 − qs)(α−1)|
Γq(α)

dqs→ 0 as t1 → t2.

As a consequence of the three steps above, we can conclude from the Arzelà –Ascoli theorem
that N : C(I)→ P(C(I)) is continuous and completely continuous.

Step 4. N has a closed graph. Let un → u∗, hn ∈ N(un), and hn → h∗. We need to show
that h∗ ∈ N(u∗). Now hn ∈ N(un) implies there exists νn ∈ S̃1

F◦τ(un) such that, for each t ∈ I,

hn(t) = u(0) +

t∫
0

(t− qs)(α−1)

Γq(α)
νn(s) dqs.

We must show that there exists ν∗ ∈ S̃1
F◦τ(u∗) such that, for each t ∈ I,

h∗(t) = u(0) +

t∫
0

(t− qs)(α−1)

Γq(α)
ν∗(s) dqs.

Since F (t, ·) is upper semi-continuous, for every ε > 0, there exists a natural number n0(ε) such
that, for every n ≥ n0(ε), we have

νn(t) ∈ F (t, τun(t)) ⊂ F (t, u∗(t)) + εB(0, 1) a.e. t ∈ I.

Since F (·, ·) has compact values, there exists a subsequence νnm(·) such that

νnm(·)→ ν∗(·) as m→∞,

and

ν∗(t) ∈ F (t, τu∗(t)) a.e. t ∈ I.

For every w ∈ F (t, τu∗(t)), we have∣∣νnm(t)− ν∗(t)
∣∣ ≤ |νnm(t)− w|+ |w − ν∗(t)|.
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Hence, ∣∣νnm(t)− ν∗(t)
∣∣ ≤ d(νnm(t), F (t, τu∗(t)

)
.

We obtain an analogous relation by interchanging the roles of vnm and v∗ to obtain∣∣νnm(t)− ν∗(t)
∣∣ ≤ Hd

(
F (t, τunm(t)), F (t, τu∗(t))

)
≤ l(t)‖unm − u∗‖∞.

Thus,

∣∣hnm(t)− h∗(t)
∣∣ ≤ t∫

0

∣∣(t− qs)(α−1)∣∣
Γq(α)

∣∣νnm(s)− ν∗(s)
∣∣ dqs ≤

≤ ‖unm − u∗‖∞

t∫
0

∣∣(t− qs)(α−1)∣∣
Γq(α)

l(s) dqs.

Therefore,

‖hnm − h∗‖∞ ≤ ‖unm − u∗‖∞

t∫
0

∣∣(t1 − qs)(α−1)∣∣
Γq(α)

l(s) dqs→ 0 as m→∞,

so Lemma 2.3 implies that N is upper semicontinuous.
Step 5. The set Ω = {u ∈ C : λu ∈ N(u) for some λ > 1} is bounded. Let u ∈ Ω. Then,

there exists f ∈ λ(S̃F◦g(u)) such that

λu(t) = |u0|+
t∫

0

(t− qs)(α−1)

Γq(α)
|f(s)| dqs.

As in Step 2, this implies that for each t ∈ I, we have

‖u‖C ≤
R

λ
< `.

This shows that Ω is bounded. As a consequence of Theorem 4.1, N has a fixed point that in
turn is a solution of (2), (3) on I.

Step 6. Every solution u of (8), (9) satisfies v(t) ≤ u(t) ≤ w(t) for all t ∈ I. Let u be a
solution of (8), (9). To prove that v(t) ≤ u(t) for all t ∈ I, suppose this is not the case. Then
there exist t1, t2, with t1 < t2, such that v(t1) = u(t1) and v(t) > u(t) for all t ∈ (t1, t2). In
view of the definition of τ,

CDα
q u(t) ∈ F (t, v(t)) for all t ∈ (t1, t2).

Thus, there exists y ∈ SF◦τ(v) with y(t) ≥ v1(t) a.e. on (t1, t2) such that

CDα
q u(t) = y(t) for all t ∈ (t1, t2).

An integration on (t1, t], with t ∈ (t1, t2), yields
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u(t)− y(t1) =

t∫
t1

(t− qs)(α−1)

Γq(α)
ν(s) dq.

Since v is a lower solution of (2), (3),

v(t)− v(t1) ≤
t∫

t1

(t− qs)(α−1)

Γq(α)
v1(s)dq, t ∈ (t1, t2).

From the facts that u(t0) = v(t0) and ν(t) ≥ v1(t), it follows that

v(t) ≤ u(t) for all t ∈ (t1, t2).

This is a contradiction, since v(t) > u(t) for all t ∈ (t1, t2). Consequently,

v(t) ≤ u(t) for all t ∈ I.

Similarly, we can prove that

u(t) ≤ w(t) for all t ∈ I.

This shows that

v(t) ≤ u(t) ≤ w(t) for all t ∈ I.

Therefore, the problem (8), (9) has a solution u that is also a solution of (2), (3) and satisfies
v ≤ u ≤ w.

4.2. Nonoscillation and oscillation of solutions. As in Theorems 3.3 and 3.4, the following
results ensure the nonoscillation and oscillation of solutions of problem (2), (3).

Theorem 4.3. In addition to conditions (H1) – (H3), assume that:
(H4) v is an eventually positive nondecreasing lower solution, or w is an eventually negative

nonincreasing upper solution of (2), (3).
Then every solution u of (2), (3) such that u ∈ [v, w] is nonoscillatory.

Theorem 4.4. In addition to conditions (H1) – (H3), assume that:
(H5) v and w are oscillatory lower and upper solutions, respectively, of (2), (3).

Then every solution u of (2), (3) such that u ∈ [v, w] is oscillatory.
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