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We investigate the optimal control problem with respect to coefficients of the degenerate parabolic variati-
onal inequality. Since problems of this type can have the Lavrent’ev effect, we consider the optimal control
problem in a class of so-called H-admissible solutions. We substantiate the attainability of H-optimal
pairs via optimal solutions of some nondegenerate perturbed optimal control problems under the condition
of solvability of the original degenerate problem.

Дослiджено задачу оптимального керування в коефiцiєнтах для виродженої параболiчної варiацiй-
ної нерiвностi. Оскiльки в задачах такого типу може виникати ефект Лаврентьєва, ми розглядаємо
задачу в класi так званих H-допустимих розв’язкiв. Обґрунтовано доступнiсть H-оптимальних
пар оптимальними розв’язками деяких невироджених збурених задач оптимального керування за
умови розв’язностi вихiдної виродженої задачi.

1. Introduction. The purpose of this paper is to investigate optimal control problem associated
with a degenerate parabolic inequality. The control is a matrix of coefficients in the main part of
elliptic operator. It is well known that degenerate control problems of this type may admit non-
uniqueness of admissible solution classes, which implies non-uniqueness of optimal solutions of
particular kind and the optimal control problem in the coefficients can be stated in different forms
depending on the choice of the class of admissible solutions (for example W- or H-solutions if
we consider the weight Sobolev space W or its subspace H as the phase space, correspondingly)
(see [1 – 5]).

Note, that optimal control problems in coefficients for PDE are not new in the literature, and
as F. Murat shows in [6], in general, such problems have no solution even if the original elliptic
equation is non-degenerate. But such problems are widely studied by many authors since this
topic includes optimal shape design problems, optimization of certain evolution systems, some
problems originating in mechanics and others. We could mention Butazzo and Dal Maso [7],
Lions [8], Murat [9] and others.

Taking into account a wide spectrum of application of the optimal control theory, in particular,
we deal with possibilities of some types of approximation of original problems by those that are
better researched and converge to the original problems by suitable way. For example, we refer
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to [10] and references there, where the authors justify the application of the averaging method
to optimal control problems for systems of differential equations on the half-line, for optimal
control problems for systems of differential equations linear in the control the authors prove
the existence of optimal controls for the exact and averaged problems and show that an optimal
control in the averaged problem is ε-optimal in the exact problem. It is known that rather popular
in such class of problems is the problem of approximation of controls. In [11] for a problem of
optimal control for a parabolic equation, in the case of bounded control, the authors construct
and justify an approximate averaged control in the form of feedback. In [12] the authors construct
approximations of optimal bounded controls for optimal control synthesis in a parabolic problem
with fast oscillatory coefficients and prove their convergence to the exact values. As for problem
studied in the given paper, in application a degenerate weight ρ occurs as the limit of a sequence of
non-degenerate weights ρε for which the corresponding “approximate” optimal control problem
is solvable. Thus, naturally, it arises the question: if limit points of the family of admissible
solutions to the perturbed problems appear to be admissible solutions to the original problem,
whether all optimal solutions are attainable in this sense? Note that for some optimal control
problems the attainability and approximability questions remain in the focus of attention. In
particular, similar questions were raised in [1, 3] for the degenerate boundary value problems
without controls. In [13] the author studies the attainability issue for optimal control problem in
coefficients for degenerate variational inequality of monotone type in the class of H-admissible
solutions. In [5] the authors prove the existence of W-solutions to the optimal control problem
and provide way for their approximation.

Here we concentrate on the optimal control problem in coefficients in the so-called class of
H-admissible solutions. Moreover, we are interested about attainability of H-optimal solutions to
degenerate problems via optimal solutions of non-degenerate problems. The paper is organized
as follows. In Section 2 we give the collection of preliminary results. In Section 3 we state the
problem of optimal control in coefficients and prescribe the solvability of degenerate variational
inequality that gives us the regularity of the original problem. Section 4 is devoted to the
attainability of H-optimal solutions via the optimal solutions to the special perturbed problems
for non-degenerate variational inequalities.

2. Notations and Preliminaries. 2.1. Weighted Sobolev Spaces. Let Ω be a bounded
subset of RN (N ≥ 1) with a Lipschitz boundary. Let χE be the characteristic function of a
subset E ⊆ Ω, i.e., χE(x) = 1 if x ∈ E, and χE(x) = 0 if x /∈ E. The space W 1,1

0 (Ω) is the
closure of C∞0 (Ω) in the classical Sobolev space W 1,1(Ω). For any subset E ⊂ Ω we denote by
|E| its N -dimensional Lebesgue measure LN (E).

Hereinafter by a weight we mean a locally integrable function ρ on RN such that ρ(x) > 0 for
a.e. x ∈ RN . As a matter of fact every weight ρ gives rise to a measure on the measurable subsets
of RN through integration. This measure will also be denoted by ρ. Thus ρ(E) =

∫
E
ρ dx for

measurable sets E ⊂ RN . Wewill use the standard notation L2(Ω, ρ dx) for the set of measurable
functions f on Ω such that

‖f‖L2(Ω,ρ dx) =

∫
Ω

f2ρ dx

1/2

< +∞.
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Definition 1. We say that a weight function ρ :RN → R+ is degenerate on Ω if

ρ+ ρ−1 ∈ L1
loc(RN ) (1)

and the sum ρ+ ρ−1 does not belong to L∞(Ω).

With each of the degenerate weight functions ρ we will associate two weighted Sobolev
spaces W (Ω, ρ dx) and H(Ω, ρ dx), where W (Ω, ρ dx) is the set of functions y ∈ W 1,1

0 (Ω) for
which the norm

‖y‖ρ =

∫
Ω

(
y2 + ρ|∇y|2

)
dx

1/2

(2)

is finite, and H(Ω, ρ dx) is the closure of C∞0 (Ω) in W (Ω, ρ dx)-norm. Note that due to the
compact embedding W 1,1

0 (Ω) ↪→ L1(Ω) and estimates

∫
Ω

|y| dx ≤ |Ω|1/2
∫

Ω

|y|2 dx

1/2

≤
√
|Ω|‖y‖ρ,

∫
Ω

|∇y| dx ≤

∫
Ω

|∇y|2ρ dx

1/2∫
Ω

ρ−1dx

1/2

≤ C‖y‖ρ,

we come to the following result (we refer to [3, 14] for the details):
Theorem 1. Let ρ :RN → R+ be a degenerate weight on Ω. Then
(i) the spaces H(Ω, ρ dx) and W (Ω, ρ dx) are complete with respect to the norm ‖ · ‖ρ;
(ii) H(Ω, ρ dx) ⊆W (Ω, ρ dx), and W (Ω, ρ dx), H(Ω, ρ dx) are Hilbert spaces;
(iii) H(Ω, ρ dx) ⊂W 1,1

0 (Ω), W (Ω, ρ dx) ⊂W 1,1
0 (Ω), and the estimate

‖v‖
W 1,1

0 (Ω)
≤

√|Ω|+
∫

Ω

ρ−1dx

1/2
‖v‖ρ

is valid for every element v ∈ H(Ω, ρ dx) ∪W (Ω, ρ dx);
(iv) the embeddings H(Ω, ρ dx) ↪→ L1(Ω) and W (Ω, ρ dx) ↪→ L1(Ω) are compact.
If ρ is non-degenerate weight function, that is, ρ is bounded between two positive constants,

then it is easy to verify that W (Ω, ρ dx) = H(Ω, ρ dx). However, for a “typical” degenerate
weight ρ the space of smooth functions C∞0 (Ω) is not dense in W (Ω, ρ dx). Hence the identity
W (Ω, ρ dx) = H(Ω, ρ dx) is not always valid (for the corresponding examples we refer to [15, 16].

We recall that by Riesz Representation Theorem the dual space
(
H(Ω, ρ dx)

)∗ of weighted
Sobolev space H(Ω, ρ dx) can be characterized as follows: if g ∈

(
H(Ω, ρ dx)

)∗ then there exist
functions g0 ∈ L2(Ω) and ~g1 ∈ L2(Ω, ρ dx)N such that

〈g, y〉 =

∫
Ω

g0y dx+

∫
Ω

(~g1,∇y)RNρ dx ∀y ∈ H(Ω, ρ dx), (3)
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where by 〈·, ·〉 we denote the duality between elements of
(
H(Ω, ρ dx)

)∗ and H(Ω, ρ dx), respecti-
vely. Furthermore,

‖g‖(H(Ω,ρ dx))∗ = inf


∫

Ω

|g0|2dx+

∫
Ω

‖~g1‖2RNρ dx

1/2

: g satisfies (3)

 .

Remark 1. Note that under some additional suppositions Theorem 1 can be specified as
follows: assume that there exists v ∈ (N/2,+∞) such that ρ−v ∈ L1(Ω). Then

∥∥|y|∥∥ =

∫
Ω

ρ|∇y|2dx

2

is a norm defined on H(Ω, ρ dx) and it’s equivalent to (2) and that, the embedding H(Ω, ρ dx) ↪→
↪→ L2(Ω) is compact [17, p. 46].

To conclude this section we recall some results concerning variational triplets. Let V− =

= H(Ω, ρ dx), V = L2(Ω) and let V ∗− =
(
H(Ω, ρ dx)

)∗
. Let X = L2(0, T ;V−). Then the dual

space of X is X ∗ = L2(0, T ;V ∗−). For any y ∈ X , let y′ denotes the generalized derivative of
y(t) = y(t, ·), , i.e.,

T∫
0

y′(t)ϕ(t) dt = −
T∫

0

y(t)ϕ′(t) dt ∀ϕ ∈ C∞0 ([0, T ]).

Then we have the following result (see [18]):
Lemma 1. Assume that there exists v ∈ (N/2,+∞) such that ρ−v ∈ L1(Ω). Then V− ⊆

⊆ V ⊆ V ∗− is an evolution triple, i.e., the embeddings V− ↪→ V ↪→ V ∗− are continuous, and the
embedding V− ↪→ V is compact. Moreover, W = {y ∈ X , y′ ∈ X ∗} equipped with the norm

‖y‖W = ‖y‖X + ‖y′‖X ∗ := ‖y‖L2(0,T ;H(Ω,ρdx)) + ‖y′‖L2(0,T ;(H(Ω,ρ dx))∗)

is a Banach space such that:
(i) the embedding W ↪→ C

(
[0, T ];L2(Ω)

)
is continuos;

(ii) the embedding W ↪→ L2
(
0, T ;L2(Ω)

)
is compact.

2.2. Conditions for operator A. Let V and H will be real Hilbert spaces, V is a dense
subspace of H and

V ⊂ H ⊂ V ∗

algebraically and topologically and let K be some closed convex subset of V. We shall denote
by | · | and ‖ · ‖ the norms in H and V, respectively, and by (·, ·) the scalar product in H and the
pairing between V and its dual V ∗. The norm of V ∗ will be denoted ‖ · ‖∗.

We are given a linear continuous and symmetric operator from V to V ∗ satisfying for some
ω > 0, and real α, the coercivity condition

(Ay, y) + α|y|2 ≥ ω‖y‖2 for all y ∈ V. (4)
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Assume in addition that for some ω1 > 0

(Av, v) ≥ ω1‖v‖2 ∀v ∈ V (5)

Referring to [19] we make use the following assumption.
Hypothesis A. There exists h ∈ H such that

(I + εAH)−1(v + εh) ∈ K for all ε > 0 and all v ∈ K, AHy = Ay ∩H.

2.3. Smoothing. Throughout the paper ε denotes a small parameter which varies within
a strictly decreasing sequence of positive numbers converging to 0. When we write ε > 0, we
consider only the elements of this sequence, while writing ε ≥ 0, we also consider its limit ε = 0.

Definition 2. We say that a weight function ρ with properties (1) is approximated by non-
degenerate weight functions {ρε}ε>0 on Ω if:

ρε(x) > 0 a.e. in Ω, ρε + (ρε)−1 ∈ L∞(Ω) ∀ε > 0, (6)

ρε → ρ, (ρε)−1 → ρ−1 in L1(Ω) as ε→ 0. (7)

Remark 2. The family {ρε}ε>0 satisfying properties (6), (7) is called the non-degenerate
perturbation of the weight function ρ.

Examples of such perturbations can be constructed using the classical smoothing. For instance,
let Q be some positive compactly supported function such that Q ∈ L∞(RN ),

∫
RN

Q(x) dx = 1,

and Q(x) = Q(−x). Then, for a given weight function ρ ∈ L1
loc(RN ), we can take ρε = (ρ)ε,

where

(ρ)ε(x) =
1

εN

∫
RN

Q

(
x− z
ε

)
ρ(z) dz =

∫
RN

Q(z)ρ(x+ εz) dz.

In this case, we say that the perturbation
{
ρε = (ρ)ε

}
ε>0

of the original degenerate weight
function ρ is constructed by the “direct” smoothing scheme.

Lemma 2 [1]. If ρ, ρ−1 ∈ L1
loc(RN ), then the “direct” smoothing

{
ρε = (ρ)ε

}
ε>0

possesses
properties (6), (7).

2.4. Weak Compactness Criterion in L1(Ω). Throughout the paper we will often use the
concepts of the weak and strong convergence in L1(Ω). Let {aε}ε>0 be a bounded sequence in
L1(Ω).We recall that {aε}ε>0 is called equi-integrable if for any δ > 0 there exists τ = τ(δ) such
that

∫
S
|aε| dx < δ for every ε > 0 and every measurable subset S ⊂ Ω of Lebesgue measure

|S| < τ. Then the following assertions are equivalent:
(i) a sequence {aε}ε>0 is weakly compact in L1(Ω) ;
(ii) the sequence {aε}ε>0 is equi-integrable;
(iii) given δ > 0 there exists λ = λ(δ) such that supε>0

∫
{|aε|>λ}

|aε| dx < δ.

Theorem 2 (Lebesgue’sTheorem). If a bounded sequence {aε}ε>0 ⊂ L1(Ω) is equi-integrable
and aε → a almost everywhere on Ω, then aε → a in L1(Ω).
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2.5. Radon measures and convergence in variable spaces. By a nonnegative Radon
measure on Ω wemean a nonnegative Borel measure which is finite on every compact subset of Ω.

The space of all nonnegative Radonmeasures on Ω will be denoted byM+(Ω). If µ is nonnegati-
ve Radon measure on Ω, we will use Lr(Ω, dµ), 1 ≤ r ≤ ∞, to denote the usual Lebesgue space

with respect to the measure µ with the corresponding norm ‖f‖Lr(Ω,dµ) =

(∫
Ω
|f(x)|r dµ

)1/r

.

Let {µε}ε>0, µ be Radon measures such that µε ∗→ µ inM+(Ω) ; that is,

lim
ε→0

∫
Ω

ϕdµε =

∫
Ω

ϕdµ ∀ϕ ∈ C0(RN ),

where C0(RN ) is the space of all compactly, supported continuous functions. A typical example
of such measures is dµε = ρε(x) dx, dµ = ρ(x) dx, where 0 ≤ ρε ⇀ ρ in L1(Ω). Let us recall
the definition and main properties of convergence in the variable L2 -space [2].

1. A sequence
{
vε ∈ L2(Ω, dµε)

}
is called bounded if

lim sup
ε→0

∫
Ω

|vε|2 dµε < +∞.

2. A bounded sequence
{
vε ∈ L2(Ω, dµε)

}
converges weakly to v ∈ L2(Ω, dµ) if

lim
ε→0

∫
Ω

vεϕdµε =

∫
Ω

vϕ dµ

for any ϕ ∈ C∞0 (Ω) and we write vε → v in L2(Ω, dµε).

3. The strong convergence vε → v in L2(Ω, dµε) means that v ∈ L2(Ω, dµ) and

lim
ε→0

∫
Ω

vεzε dµε =

∫
Ω

vz dµ as zε ⇀ z in L2(Ω, dµε). (8)

The following convergence properties in variable spaces hold:
(a) Compactness criterium: if a sequence is bounded in L2(Ω, dµε), then this sequence is

compact with respect to the weak convergence.
(b) Property of lower semicontinuity: if vε → v in Lp(Ω, dµε), then

lim inf
ε→0

∫
Ω

|vε|2 dµε ≥
∫
Ω

v2 dµ.

(c) Criterium of strong convergence: vε → v if and only if vε → v in L2(Ω, dµε) and

lim
ε→0

∫
Ω

|vε|2 dµε =

∫
Ω

v2 dµ.

Concluding this section, we recall some well-known results concerning the convergence in
the variable space L2(Ω, ρε dx) :
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Lemma 3 [1, 2]. If {ρε}ε>0 is a non-degenerate perturbation of theweight function ρ(x) ≥ 0,

then:
(A1) (ρε)−1 → ρ−1 in L2(Ω, ρε dx);
(A2)

[
vε → v in L2(Ω, ρε dx)

]
=⇒

[
vε → v in L1(Ω)

]
;

(A3) If a sequence
{
vε ∈ L2(Ω, ρε dx)

}
ε>0

is bounded, then the weak convergence vε ⇀ v

in L2(Ω, ρε dx) is equivalent to the weak convergence ρεvε ⇀ pv in L1(Ω);
(A4) If a ∈ L∞(Ω) and vε ⇀ v in L2(Ω, ρε dx), then avε ⇀ av in L2(Ω, ρεdx).

2.6. Variable Sobolev spaces. Let ρ(x) be a degenerate weight function and let {ρε}ε>0

be a non-degenerate perturbation of the function ρ in the sense of Definition 1. We denote by
H(Ω, ρεdx) the closure of C∞0 (Ω) with respect to the norm ‖ · ‖ρε . Since for every ε the function
ρε is non-degenerate, the space H(Ω, ρεdx) coincides with the classical Sobolev space W 1,p

0 (Ω).

Definition 3. We say that a sequence
{
yε ∈ H(Ω, ρεdx)

}
ε>0

converges weakly to an element
y ∈W (Ω, ρ dx) as ε→ 0, if the following hold:

(i) this sequence is bounded;
(ii) yε ⇀ y in L2(Ω);
(iii) ∇yε ⇀ ∇y in L2(Ω, ρεdx)N .

2.7. Compensated compactness lemma in variable Lebesgue and Sobolev spaces. Let
{ρε}ε>0 be a non-degenerate perturbation of a weight function ρ. We associate to every ρε the
space

Xρε =
{
~f ∈ L2

(
0, T ;L2(Ω, ρεdx)N

) ∣∣ div(ρε ~f ) ∈ L2
(
0, T ;L2(Ω)

)}
∀ε > 0

and endow it with the norm

‖~f‖Xρε =
(
‖~f‖2L2(0,T ;L2(Ω,ρεdx)N ) + ‖ div(ρε ~f )‖2L2(0,T ;L2(Ω))

)1/2
.

We call a sequence
{
~fε ∈ Xρε

}
ε>0

bounded if

lim
ε→0
‖~fε‖Xρε < +∞.

Also let us consider the space Hε =
{
y ∈ H(Ω, ρεdx)

∣∣ y′ ∈ L2
(
0, T ;L2(Ω)

)}
. Composing

suggestions of [20] (Lemma 4) and [21] (Theorem 2) we obtain the next result, which is rather
useful for investigating of the attainability.

Lemma 4. Let {ρε}ε>0 be a non-degenerate perturbation of a weight function ρ(x) > 0.

Let
{
~fε ∈ L2

(
0, T ;L2(Ω, ρεdx)N

)}
ε>0

and {gε ∈ Hε}ε>0 be such that {~fε}ε>0 is bounded in
the variable space Xρε ,

~fε ⇀ ~f in L2
(
0, T ;L2(Ω, ρεdx)N

)
as ε → 0, {gε}ε>0 is bounded in

the variable space Hε, gε ⇀ g in L2
(
0, T ;L2(Ω)

)
, and ∇gε ⇀ ∇g in L2

(
0, T ;L2(Ω, ρεdx)N

)
,

g′ε ⇀ g′ in L2
(
0, T ;L2(Ω)

)
as ε→ 0. Then

lim
ε→0

T∫
0

∫
Ω

ϕ
(
~fε,∇gε

)
RNρ

εψ dx dt =

T∫
0

∫
Ω

ϕ(~f,∇g)RNρψ dx dt,

∀ϕ ∈ C∞0 (Ω), ψ ∈ C∞0 (0, T ).
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3. Setting of the Optimal Control Problem (OCP). Let ρ be given element of L1(Ω)

satisfying the conditions

0 < ρ(x) a.e. in Ω, ρ−ν ∈ L1(Ω) for some ν ∈ (N/2,+∞).

Then in view of the estimate

∫
Ω

ρ−1 dx ≤

∫
Ω

ρ−ν dx

1/ν∫
Ω

dx

1/ν∗

= ‖ρ−ν‖1/ν
L1(Ω)

|Ω|1/ν∗ ,

where ν∗ = ν/(1−ν) is the conjugate of ν, we have: ρ−1 ∈ L1(Ω), i.e.„ ρ is a degenerate weight
in the sense of Definition 1.

Let K be a non-empty convex closed subset of the space L2
(
0, T ;H(Ω, ρ dx)

)
) such that

0 ∈ K, yad, f ∈ L2
(
0, T ;L2(Ω)

)
be given elements. Consider the next OCP in coefficients for

degenerate variation parabolic inequality:

I(U, y) =

T∫
0

∫
Ω

|y − yad|2 dx dt→ inf, (9)

T∫
0

∫
Ω

y′(v − y) dx dt+

T∫
0

 N∑
i,j=1

∫
Ω

(
ai,j(x)

∂y

∂xj

)
∂(v − y)

∂xi
ρ dx+

∫
Ω

y(v − y) dx

dt ≥

≥
T∫

0

∫
Ω

f(v − y) dx dt, ∀v ∈ K, (10)

U ∈ Uad, y ∈ K, y′ ∈ L2
(
0, T ;L2(Ω)

)
, (11)

y(0, x) = 0, x ∈ Ω. (12)

Here

Uad =
{
U = [ ~a1, . . . , ~aN ] ∈Mα,β

2 (Ω)
∣∣ ∣∣div(ρ~ai)

∣∣ ≤ γi, a.e. in Ω ∀i = 1, . . . , N
}
,

where γ = (γ1, . . . , γN ) ∈ RN is a strictly positive vector, Mα,β
2 (Ω) (0 < α ≤ β < +∞) is a set

of all symmetric matrices U(x) = {ai,j(x)}1≤i,j≤N in L∞(Ω;RN ×RN ) such that the following
conditions are fulfilled:

|ai,j(x)| ≤ β a.e. in Ω ∀i, j ∈ {1, . . . N}, (13)

(U(x)(ξ − η), ξ − η)RN ≥ 0 a.e. in Ω ∀ξ, η ∈ RN , (14)

(U(x)ξ, ξ)RN =

N∑
i,j=1

ai,j(x)ξiξj ≥ α|ξ|2 a.e. in Ω. (15)
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Definition 4. We say that y ∈ K, for which the inequality (10)–(12) takes place is called an
H-solution.

For every fixed control U ∈ Mα,β
2 (Ω) let us consider the linear operator A :H(Ω, ρ dx) →

→
(
H(Ω, ρ dx)

)∗ defined as

〈A(y), v〉 =
N∑

i,j=1

∫
Ω

(
ai,j(x)

∂y

∂xj

)
∂v

∂xi
ρ dx+

∫
Ω

yv dx for v ∈ H(Ω, ρ dx). (16)

It can be shown that taking into account (13)–(15) we obtain (4), and as a corollary (5).
Hereinafter we shall suggest that the Hypothesis A is fulfilled for V = H(Ω, ρ dx), H =

= L2(Ω), A :H(Ω, ρ dx)→
(
H(Ω, ρ dx)

)∗
, defined by (16).

Note, that the set of optimal solutions for the problem (9)–(12) is nonempty (see for details
[22] (Theorem 5)).

4. Attainability of H-optimal solutions. In this section we show that H-optimal solutions
of (9)–(12) can be attained by optimal solutions of perturbed problems considering an appropriate
non-degenerate perturbation for the original OCP.

Let ρ be a degenerate weight function with properties (1), and let {ρε}ε>0 be a direct
smoothing of a degenerate weight function ρ(x) ≥ 0.

Definition 5. We say that a bounded sequence

{(Uε, yε)}ε>0 ∈ Yε = L∞(Ω;RN×N )×Hε

w -converges to

(U, y) ∈ L∞(Ω;RN×N )×H =
{
y ∈ L2(0, T ;H(Ω, ρ dx)) | y′ ∈ L2

(
0, T ;L2(Ω)

)}
in the variable space Yε as ε→ 0, if

Uε → U weakly-∗ in L∞(Ω;RN×N ), yε ⇀ y in L2
(
0, T ;L2(Ω)

)
,

∇yε ⇀ ∇y ∈ L2(0, T ; (L2(Ω, ρεdx))N ), (yε)
′ ⇀ y′ in L2

(
0, T ;L2(Ω)

)
.

Similarly to [13] (Definition 8) and [23] (Definition 5.13) we consider the next concept.
Definition 6. We say that a minimization problem〈

inf
(U,y)∈ΞH

I(U, y)

〉
(17)

is a weak variational limit (or variational w -limit) of the sequence{〈
inf

(Uε,yε)∈Ξε
Iε(Uε, yε)

〉
; Ξε ∈ Yε, ε > 0

}
, (18)

with respect to w -convergence in the variable space Yε, if the following conditions are satisfied:
(i) if {εk} is a subsequence of {ε} such that εk → 0 as k →∞, and a sequence {(Uk, yk) ∈

∈ Ξεk}ε>0 w -converges to a pair (U, y), then

(U, y) ∈ ΞH : I(U, y) ≤ lim
k→∞

Iεk(Uk, yk); (19)

ISSN 1562-3076. Нелiнiйнi коливання, 2020, т. 23, № 2



ATTAINABILITY ISSUE FOR OPTIMAL CONTROL PROBLEM IN COEFFICIENTS . . . 209

(ii) for every pair (U, y) ∈ ΞH and any value δ > 0 there exists a realizing sequence{
(Ûε, ŷε) ∈ Yε

}
ε>0

such that

(Ûε, ŷε) ∈ Ξε ∀ε > 0, (Ûε, ŷε)
w→ (Û , ŷ),

‖U − Û‖L∞(Ω;RN×N ) + ‖y − ŷ‖L2(0,T ;H(Ω,ρdx)) + ‖y′ − ŷ′‖L2(0,T ;L2(Ω)) ≤ δ,

I(U, y) ≥ lim
ε→0

Iε(Ûε, ŷε)− δ.

Applying similar suggestions to [13] (Theorem 4) and [23] (Theorem 5.4) we obtain the next
result.

Theorem 3. Assume that (17) is a weak variational limit of the sequence (18), and the
constrainedminimization problem (17) has a solution. Suppose

{
(U0

ε , y
0
ε) ∈ Ξε

}
ε>0

is a sequence
of optimal pairs to (18). Then there exists a pair (U0, y0) ∈ ΞH such that (U0

ε , y
0
ε)

w→ (U0, y0)

and

inf
(U,y)∈ΞH

I(U, y) = I(U0, y0) = lim
ε→0

inf
(Uε,yε)∈Ξε

Iε(Uε, yε).

Let us consider the sequence {Kε}ε>0 of non-empty closed and convex subsets, which
sequentially converges to the set K in the sense of Kuratovski as ε→ 0 with respect to the weak
topology of the space L2

(
0, T ;H(Ω, ρεdx)

)
. Taking into account Theorem 3, we consider the

following collection of perturbed OCPs in coefficients for non-degenerate parabolic variational
inequalities:

Minimize

Iε(U, y) =

T∫
0

∫
Ω

(y(x, t)− yad(x, t))2 dx dt

 , (20)

〈y′, v − y〉L2(0,T ;H(Ω,ρεdx))+

+ 〈−div(ρεU∇y) + y, v − y〉L2(0,T ;H(Ω,ρεdx)) ≥

≥ 〈f, v − y〉L2(0,T ;H(Ω,ρεdx)) ∀v ∈ Kε, (21)

U ∈ U εad, y ∈ Kε, y′ ∈ L2
(
0, T ;L2(Ω)

)
, (22)

y(0, x) = 0, x ∈ Ω, (23)

U εad =
{
U = [~a1, . . . ,~aN ] ∈Mα,β

2 (Ω)
∣∣ |div(ρε~ai)| ≤ γi, a.e. in Ω ∀i = 1, . . . , N

}
, (24)

where the elements yad, f ∈ L2
(
0, T ;L2(Ω)

)
and γ = (γ1, . . . , γN ) ∈ RN are the same as for the

original problem (9)–(12). For every ε > 0 we define Ξε as a set of all admissible pairs to the
problem (20)–(24), namely (U, y) ∈ Ξε if and only if the pair (U, y) satisfies (20)–(24).

Note that each of perturbed OCPs (20)–(24) is solvable provided {ρε}ε>0 is a non-degenerate
perturbation of ρ > 0, in particular, for “direct” smoothing of ρ > 0 (see for details [19]
(Proposition 5.1) taking into account properties of variable Sobolev Spaces).
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Remark 3. Let us recall that sequential K-upper and K-lower limits of a sequence of sets
{Ek}k∈N are defined as follows, respectively:

Ks − limEk =
{
y ∈ X : ∃σ(k)→∞, ∃yk → y ∀k ∈ N : yk ∈ Eσ(k)

}
,

Ks − limEk =
{
y ∈ X : ∃yk → y, ∃k ≥ k0 ∈ N : yk ∈ Ek

}
.

The sequence {Ek}k∈N sequentially converges in the sense of Kuratovski to the set E (shortly,
Ks -converges), if E = Ks − limEk = Ks − limEk.

We are now in position to show that each optimal solution to the problem (9)–(12) can be
attained by admissible solutions to perturbed problems (20)–(24), however there exists at least
one optimal solution (U0, y0) ∈ ΞH which can be attained by optimal solutions to perturbed
problems (20)–(24). Namely, the next results take place.

Lemma 5. Let {ρε = (ρ)ε}ε>0 be a “direct” smoothing of a degenerate weight function
ρ(x) > 0. Let

{
(Uε, yε) ∈ Ξε

}
ε>0

be a sequence of admissible pairs to the problem (20)–(24).
Then there exists a pair (U∗, y∗) and a subsequence

{
(Uεk , yεk)

}
k∈N of

{
(Uε, yε) ∈ Ξε

}
ε>0

such
that (Uεk , yεk)

w→ (U∗, y∗) as k →∞ and (U∗, y∗) ∈ ΞH .

Proof. Let us consider the relation:

〈y′ε, vε − yε〉L2(0,T ;H(Ω,ρεdx))+

+ 〈−div(ρεUε∇yε) + yε, vε − yε〉L2(0,T ;H(Ω,ρεdx)) ≥

≥ 〈f, vε − yε〉L2(0,T ;H(Ω,ρεdx)) ∀vε ∈ Kε. (25)

As follows from (24) the sequence {Uε}ε>0 is bounded in L∞(Ω;RN×N ). Let us suppose that
the sequence {y′ε}ε>0 is bounded in L2

(
0, T ;L2(Ω)

)
and prove the boundedness of {yε}ε>0 in

L2(0, T ;H(Ω; ρεdx)). By contradiction, suppose that ‖yε‖L2(0,T ;H(Ω,ρεdx)) → ∞, ε → 0. Then
on the one hand〈
−div(ρεUε∇yε) + yε, yε − vε

〉
L2(0,T ;H(Ω,ρεdx))

≤

≤ 〈−y′ε + f, yε − vε〉L2(0,T ;H(Ω,ρεdx) ≤

≤
(
‖y′ε‖L2([0,T ]:L2(Ω)) + ‖f‖L2(0,T ;L2(Ω))

)
‖yε − vε‖L2(0,T ;H(Ω,ρεdx) ∀vε ∈ Kε ∀ε > 0.

(26)

On the other hand, for arbitrary fixed elements v ∈ K let us consider the sequence {vε ∈ Kε}ε>0

such that vε ⇀ v in L2(0, T ;L2(Ω; ρεdx)) (such sequence always exists provided K = Ks −
− limKε ), and then taking into account properties for operator A :H(Ω, ρ dx) →

(
H(Ω, ρ dx)

)∗
and definition of norm in L2

(
0, T ;H(Ω, ρ dx)

)
, we can consider the next estimation for A :

L2
(
0, T ;H(Ω, ρ dx)

)
→ L2

(
0, T ;

(
H(Ω, ρ dx)

)∗) : for every fixed U ∈Mα,β
2 (Ω)

〈A(U, y), y − v〉 ≥ min{α, 1}‖y‖2L2(0,T ;H(Ω,ρdx))−

−max{β, 1}‖v‖L2(0,T ;H(Ω,ρdx))‖y‖L2(0,T ;H(Ω,ρdx)),
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v ∈ L2
(
0, T ;H(Ω, ρ dx)

)
.

Thus, we obtain the following relations:

〈−div(ρεUε∇yε) + yε, yε − vε〉L2(0,T ;H(Ω,ρεdx))

‖yε − vε‖L2(0,T ;H(Ω,ρεdx))
≥

≥
〈− div(ρεUε∇yε) + yε, yε − vε〉L2(0,T ;H(Ω,ρεdx))

‖yε‖L2(0,T ;H(Ω,ρεdx)) + ‖vε‖L2(0,T ;H(Ω,ρεdx))
≥

≥
min{α, 1}‖y‖2L2(0,T ;H(Ω,ρεdx)) −max{β, 1}‖v‖L2(0,T ;H(Ω,ρεdx))‖y‖L2(0,T ;H(Ω,ρεdx))

‖yε‖L2(0,T ;H(Ω,ρεdx)) + ‖vε‖L2(0,T ;H(Ω,ρεdx))
=

= ‖yε‖L2(0,T ;H(Ω,ρεdx))

(
min{α, 1} −

max{β, 1}‖vε‖L2(0,T ;H(Ω,ρεdx))

‖yε‖L2(0,T ;H(Ω,ρεdx))

)
(

1 +
‖vε‖L2(0,T ;H(Ω,ρεdx))

‖yε‖L2(0,T ;H(Ω,ρεdx))

) →∞, ε→ 0,

since the sequence {vε}ε>0 is bounded in L2
(
0, T ;H(Ω, ρεdx)

)
. The obtained contradiction with

(26) implies that {yε}ε>0 is bounded in L2
(
0, T ;H(Ω, ρεdx)

)
.

Hence, there exists a subsequence {εk} of the sequence {ε}, converging to 0 and elements
U∗ ∈ Mα,β

2 (Ω), y∗ ∈ L2
(
0, T ;L2(Ω)

)
, ~v ∈ L2

(
0, T ; (L2(Ω, ρ dx))N

)
and ~ξ ∈ L2

(
0, T ;

(L2(Ω, ρεdx))N
)
such that: Uεk → U∗ weakly-∗ in L∞(Ω;RN×N ), yεk ⇀ y∗ in L2

(
0, T ;L2(Ω)

)
,

∇yεk ⇀ ~v in L2
(
0, T ; (L2(Ω, ρεdx))N

)
, y′εk ⇀ (y∗)′ in L2

(
0, T ;L2(Ω)

)
, Uεk∇yεk =: ~ξk ⇀ ~ξ in

L2
(
0, T ; (L2(Ω, ρεdx))N

)
as k →∞.

By [13] (Theorem 3), taking into account properties of the Bochner integral and Definition of
equivalent functions (see [24] (Definition 1.6) and [24] (Definition 1.8)), we have that y∗ ∈
∈ L2

(
0, T ;H(Ω, ρ dx)

)
, and v = ∇y∗, and, moreover, we have y∗ ∈ K, (y∗)′ ∈ L2

(
0, T ;L2(Ω)

)
.

Following arguments of the proof of [13] (Lemma 11), we obtain that U∗ ∈ Uad.
In what follows, we consider the relation (25) for (Uεk , yεk) and pass to the limit in it as

k →∞.
Let us prove that〈

−div(ρεk~ξεk), yεk
〉
L2(0,T ;H(Ω,ρεkdx))

→
〈
−div(ρ~ξ ), y∗

〉
. (27)

Taking into account (5) andHypothesisA, in viewof [22] (Proposition 1),we have −div
(
ρεk~ξεk

)
+

+ yεk ∈ L2
(
0, T ;L2(Ω)

)
∀k ∈ N and, obviously, div ρεk~ξεk ∈ L2

(
0, T ;L2(Ω)

)
∀k ∈ N.

The following relation
T∫

0

∫
Ω

ϕdiv(ρεk~ξεk)ψ dx dt =

= −
T∫

0

∫
Ω

(~ξεk ,∇ϕ)RNψρ
εk dx → −

T∫
0

∫
Ω

(~ξ,∇ϕ)RNρψ dx dt

ISSN 1562-3076. Нелiнiйнi коливання, 2020, т. 23, № 2



212 N. V. KASIMOVA

∀ϕ ∈ C∞0 (Ω), ψ ∈ C∞0 (0, T ), k →∞,

means that div(ρεk~ξεk) → div(ρ~ξ ) weakly in L2
(
0, T ;L2(Ω)

)
. Therefore, the sequence{

div(ρεk~ξεk)
}
k∈N is bounded in L2

(
0, T ;L2(Ω)

)
and {~ξεk}k∈N is bounded in Xρεk . Taking

into account Lemma 4 we obtain (27).
Let us now prove that

T∫
0

∫
Ω

y′εk(vεk − yεk) dx dt→
T∫

0

∫
Ω

(y∗)′(v − y∗) dx dt, k →∞.

Having put zεk := vεk − yεk , zεk ∈ L2
(
0, T ;H(Ω, ρεkdx)

)
we rewrite this relation in the form:

〈y′εk , zεk〉L2(0,T ;H(Ω,ρεkdx)) → 〈(y∗)′, z〉, k →∞, (28)

where v ∈ L2
(
0, T ;H(Ω, ρ dx)

)
is the weak limit of the sequence {vεk}k∈N in L2(0, T ;

H(Ω, ρεdx)) as k →∞ and z = v − y∗, z ∈ L2
(
0, T ;H(Ω, ρ dx)

)
.

Let us consider the left hand side of (28):

T∫
0

∫
Ω

y′εkzεk dx dt±
T∫

0

∫
Ω

y′εkz dx dt =

=

T∫
0

∫
Ω

y′εk(zεk − z) dx dt+

T∫
0

∫
Ω

y′εkz dx dt = I1 + I2.

It is obvious, that

I2 →
T∫

0

∫
Ω

(y∗)′z dx dt, k →∞.

Let us consider now I1. Since the sequence
{
y′εk ∈ L2

(
0, T ;L2(Ω)

)}
is bounded and

y′εk ⇀ (y∗)′ in L2
(
0, T ;L2(Ω)

)
as k → ∞, we have that y′εk ⇀ (y∗)′ in L1

(
[0, T ];L1(Ω)

)
.

Hence the family {y′εk}k∈N is equi-integrable on ([0, T ]) × Ω. Let us show that an element
z ∈ L2

(
0, T ;L2(Ω)

)
can be interpreted as the strong limit of the sequence

{
zεk ∈ L2(0, T ;

H(Ω, ρεkdx))
}
k∈N in L1

(
[0, T ];L1(Ω)

)
. Indeed, as follows from initial assumptions and esti-

mates

T∫
0

∫
Ω

|zεk | dx dt ≤
T∫

0

∫
Ω

|zεk |
2 dx

1/2

|Ω|1/2dt ≤
T∫

0

C|Ω|1/2dt = TC|Ω|1/2,

T∫
0

∫
Ω

|∇zεk |2 dx dt ≤
T∫

0

∫
Ω

|∇zεk |
2
2ρ
εkdx

1/2∫
Ω

(ρεk)−1dx

1/2

dt ≤
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≤
T∫

0

C

∫
Ω

(ρεk)−1dx

1/2

dt = CT

∫
Ω

(ρεk)−1dx

1/2

,

the family {zεk}k∈N is equi-integrable on (0, T )×Ω and bounded in L1
(
[0, T ];W 1,1(Ω)

)
. Hence

by compact embedding L1
(
[0, T ];W 1,1(Ω)

)
↪→ L1

(
[0, T ];L1(Ω)

)
we can assume that there exists

an element z∗ ∈ L1
(
[0, T ];L1(Ω)

)
such that zεk → z∗ in L1

(
[0, T ];L1(Ω)

)
. Taking into account

that zεk ⇀ z in L2
(
0, T ;L2(Ω)

)
we obtain

lim
ε→0

T∫
0

∫
Ω

ϕzεkψ dx dt =

T∫
0

∫
Ω

ϕz∗ψ dx dt

and

lim
ε→0

T∫
0

∫
Ω

ϕzεkψ dx dt =

T∫
0

∫
Ω

ϕzψ dx dt ∀ϕ ∈ C∞0 (Ω), ψ ∈ C∞0 (0, T ).

We get z = z∗ almost everywhere on (0, T )×Ω. It means that up to a subsequence zεk → z a.e.
in (0, T )× Ω.

Therefore, because of boundedness of {zεk − z}k∈N the sequence {(zεk − z)y′εk}k∈N is equi-
integrable on (0, T ) × Ω as well. Using that fact that zεk → z a.e. in (0, T ) × Ω, the Lebesgue
Theorem implies that (zεk − z)y′εk → 0 in L1

(
[0, T ];L1(Ω)

)
. Thus, we have (28).

Therefore, as a result of limit passage in (25), we obtain〈
(y∗)′, v − y∗

〉
L2(0,T ;H(Ω,ρ dx))

+
〈
− div(ρ~ξ ), v − y∗

〉
L2(0,T ;H(Ω,ρ dx))

+

+ 〈y∗, v〉L2(0,T ;H(Ω,ρ dx)) − lim
k→∞
〈yεk , yεk〉L2(0,T ;H(Ω,ρεkdx)) ≥

≥ 〈f, v − y∗〉L2(0,T ;H(Ω,ρ dx)), ∀v ∈ K. (29)

It is left to show that ~ξ = U∗∇y∗. However it can be done in a similar manner as we did it proving
[22] (Theorem 4).

Now, let us show that

lim
k→∞
〈yεk , yεk〉L2(0,T ;H(Ω,ρεkdx)) = lim

k→∞

T∫
0

∫
Ω

|yεk |
2 dx dt =

T∫
0

∫
Ω

|y∗|2 dx dt.

On the one hand, in view of the property of lower semicontinuity, weak convergence yεk → y∗

in L2
(
0, T ;L2(Ω)

)
as k →∞ implies that:

T∫
0

∫
Ω

|y∗|2 dx dt ≤ lim
k→∞

T∫
0

∫
Ω

|yεk |
2 dx dt.
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On the other hand, from (29), taking into account the representation of the vector-function ξ, we
obtain:

lim
k→∞

T∫
0

∫
Ω

|yεk |
2 dx dt ≤

≤
〈
(y∗)′ − div(U∗(x)ρ(x)∇y∗)− f, v − y∗

〉
L2(0,T ;H(Ω,ρ dx))

+

+ 〈y∗, v〉L2(0,T ;H(Ω,ρ dx)) ∀v ∈ K.

Having put in the last inequality v = y∗, we get

lim
k→∞

T∫
0

∫
Ω

|yεk |
2 dx dt ≤

T∫
0

∫
Ω

|y∗|2 dx dt.

Hence, taking into account the chain of inequalities

T∫
0

∫
Ω

|y∗|2 dx dt ≤ lim
k→∞

|yεk |
2 dx dt ≤ lim

k→∞
|yεk |

2 dx dt ≤
T∫

0

∫
Ω

|y∗|2 dx dt

we obtain that yεk → y∗ in L2
(
0, T ;L2(Ω)

)
as k →∞.

Therefore, variational inequality (29) can be represented in the form〈
(y∗)′, v − y∗

〉
L2(0,T ;H(Ω,ρ dx))

+

+
〈
−div(ρU∗∇y∗) + y∗, v − y∗

〉
L2(0,T ;H(Ω,ρ dx))

≥

≥ 〈f, v − y∗〉L2(0,T ;H(Ω,ρ dx)) ∀v ∈ K.

Thus, w -limit pair (U∗, y∗) is admissible to the problem (9)–(12). Hence, (U∗, y∗) ∈ ΞH .

As an evident consequence of these suggestions and the lower semicontinuity property of the
cost functional (20) with respect to w -convergence in variable space Yε, we have the following
conclusion: let {εk} be a subsequence of indices {ε} such that εk → 0 as k → ∞, and
let

{
(Uk, yk) ∈ Ξεk

}
k∈N be a sequence of admissible solutions to corresponding perturbed

problems (20)–(24) such that (Uk, yk)
w→ (U, y). Then properties (19) are valid.

Theorem 4. Let
{
ρε = (ρ)ε

}
ε>0

be a “direct” smoothing of a degenerate weight functi-
on ρ(x) > 0. Then the minimization problem (9)–(12) is a weak variational limit of the
sequence (20)–(24) as ε→ 0 with respect to the w -convergence in the variable space Yε.

Proof. Under preconditions of the theorem let (U, y) ∈ ΞH be any admissible pair. Firstly,
let us show that there exists a realizing sequence

{
(Ûε, ŷε) ∈ Yε

}
ε>0

such that

(Ûε, ŷε) ∈ Ξε ∀ε > 0, Ûε → U weakly-∗ in L∞(Ω;RN×N );

div(ρε~aiε) ⇀ div(ρ~ai) in L2
(
0, T ;L2(Ω)

)
∀i ∈ {1, . . . , N};
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ŷε → y in L2
(
0, T ;L2(Ω)

)
; ∇ŷε ⇀ ∇y in L2(0, T ; (L2(Ω, ρεdx))N );

ŷ′ε ⇀ y′ in L2
(
0, T ;L2(Ω)

)
.

To begin with, we assume that a given control U is such that U = [~a1, . . . ,~aN ] ∈ Mα,β
2 (Ω) and

|div(ρ~ai)| ≤ γi, a.e. in Ω, ∀i = 1, . . . , N. Further we construct the sequence
{

(Ûε, ŷε)
}
ε>0

as
follows:

Ûε(x) = (U)ε(x) =
[
(~a1)ε(x), . . . , (~aN )ε(x)

]
=

∫
RN

Q(z)U(x+ εz) dz,

ŷ ∈ L2
(
0, T ;H(Ω, ρ dx)

)
is an H-solution of (21) corresponding to U = Ûε. Applying similar

suggestions to [13] (Lemma 12) it can be shown that for every ε > 0 the pair (Ûε, ŷε) is admissible
to the corresponding optimal control problem (20)–(24). As a result, following arguments of the
proof of Lemma 5, we have that

ŷε → y in L2
(
0, T ;L2(Ω)

)
, ∇ŷε ⇀ ∇y in L2(0, T ; (L2(Ω, ρεdx))N ),

ŷ′ε ⇀ y′ in L2
(
0, T ;L2(Ω)

)
,

and

Ûε∇ŷε ⇀ U∇y in L2
(
0, T ; (L2(Ω, ρεdx))N

)
,

where y = y(U), for any subsequence of {ŷε ∈ Hε}ε>0 and, hence, for the entire sequence. Here
(U, y) ∈ ΞH is a given H-admissible solution to problem (9) – (12).

Note that in view of 5 we have that I(U, y) = limε→0 Iε(Ûε, ŷε).

Taking into account Definition 6, Lemma 5 and previous suggestions we obtain the statement
of the theorem.
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