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A nonlinear system of delay differential equations (DDEs) is considered. We obtain some new results of
the asymptotic stability of a zero solution of the considered system by using well-known inequalities and
Lyapunov—Krasovskii functionals. Two numerical examples illustrate applications of the obtained results.
The results of this paper make contributions to the qualitative theory of DDEs and improve some known
results in the modern literature.

PosristHyTO HENMiHIHY crucTeMy m¥ibepeHIiaIbHIX PiBHSIHD i3 3aImi3HeHHIM. OTpUMaHO HOBI pe3yJbTa-
TU IIPO ACUMIITOTUYHY CTiMKiCTh HYJIBOBOIO PO3B’ 3Ky HOCIIXKYBAaHOI CUCTEMU 3a JOIIOMOIOI0 IEIKMX
BiIOMHUX HepiBHOCTel Ta ¢yHKIioHamB JIsmyHosa — Kpacoscbkoro. HaBemeHo mBa 4uMCIIOBI MPUKIIAaIH,
SK1 UTFOCTPYIOTh 3aCTOCYBaHHS 3100yTUX pe3yabTaTiB. Pe3ynbpTaTy 1€l CTaTTi JOMOBHIOKOTE SIKICHY TEO-
pifo gudepeHIiaJbHIUX PIBHIHD 13 3ali3HEHHSIM, a TaKOX ITOKpAIIYIOTh BIIOMI B CydacHIil JiTepaTypi
pe3ybTaTH.

1. Introduction. It can be followed from the relevant literature that the problems related to the
qualitative analysis of solutions, in particular, stability analysis of solutions of time delay systems
of first order are very effective in the qualitative theory of solutions in the literature due to that
kind of problems with time delays can be frequently encountered in various engineering systems
such as long transmission lines in pneumatic systems, nuclear reactors, rolling mills, hydraulic
systems, manufacturing processes, population dynamics, control theory and so on. For instance,
we would like to suggest the reader to look at [1—23] and references therein).

It is notable that, in 2016, Alla et al. [1] considered the following linear differential system
with time-varying delay:

&(t) = Az(t) + Agz(t — d(t)).

By means of a Lyapunov — Krasovskii functional, which is appropriately chosen, and the Wirtin-
ger’s inequality, the authors derived some new delay dependent asymptotic stability criteria in
terms of linear matrix inequalities for the above system.
Later, in 2017, Alla et al. [2] considered the following singular system with time-varying
delay:
Ei(t) = Az(t) + Aqz(t — d(t)).
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In [2], the authors proposed new delay-dependent stability criteria for this singular system by
using Jensen’s and Wirtinger’s inequalities. The proposed delay-dependent stability criteria have
been derived in terms of linear matrix inequalities by use of a common augmented Lyapunov —
Krasovskii functional.

In this paper, in particular, motivated by Alla et al. [1, 2] and the works in the references
of this paper, we consider the following system of nonlinear DDEs, which include two variable
delays:

2

2
B(t) = Az(t) + > Agx(t—di(t) + > Fi(t,z(t - di(t))), "
=1 =1

z(t) = o(t), te[-r,0, r>0, reR,

where ¢ € [—r,0), r is constant delay, x € R" is the state vector, ¢(¢) is a continuous initial
function defined on [—r,0],A € R™*" is a negative definite real constant matrix and Ay, €
€ R are real constant matrices and d; (t),ds(t) € C* (RT, RT) are variable delays, bounded.
In addition, F; € C (R x R",R™) with F;(¢,0) = 0 and they satisfy the Lipschitz condition,
that is,

| Fs(t, z0) — Fi(t,m0)|| < 1Ui(wo — wo)ll, Vt€RY, Vao,yo € R, 2)

such that U; are some known matrices.
Notations. Through this article, R"” denotes the n-dimensional Euclidean space, R"™*" is

the set of all n x m real matrices. The notation [I: J\]\ﬂ stands for [ M] The notation

MT N

P >0 (P >0), for P R, means that P is symmetric and positive definite (positive semi
definite) and P < 0 (P < 0), for P € R™*", means that P is symmetric and negative definite
(negative semi definite).

Lemma 1.1 (Schur complement [6, p. 37]). For a given symmetric matrix S = [SH 512] ,

*  Soo
where S11 € R"™*", the following conditions are equivalent:

(1°) S < 0;

(2°) Sy1 < 0,82 — ST557S12 < 0;

(3°) Saz < 0,811 — S12585' ST < 0.

Lemma 1.2 (Jensen inequality [10]). For any matrix Z > 0 and a vector function x:
[a,b] — R the following inequality holds:

b b b
(b—a)/xT(s)Za:(s)ds > /a:T(s)ds Z /a:(s)ds

provided that the given integrals are well-defined.

Lemma 1.3 (Wirtinger inequality [11]). Let R € R"*" be any constant symmetric matrix

and x: [a,b] — R"™ be a continuously differentiable function. Then,the following inequality
holds:

/ 7 (5) Ri(s)ds > - ! ~[o(b) — ()] Rla(6) — (a)] + % QT RO,

a
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where

Q = 2(a) + 2(b) — (b 2 a) /bm(s)ds.

2. Stability criteria. Firstly, we present sufficient criteria for the asymptotic stability of the
zero solution of the system of DDEs (1).
A. Assumptions. (A1) Itis assumed that the following inequalities hold:
Ogdl(t) <7 T >0, Ti E%,

r = max{71, T2}

(A2) We have positive definite symmetric matrices P € R"*" R; € R"*" Z € R™*™ and

some U; known matrices with appropriate dimensions such that the following matrix inequality
holds:

¥ Zog Egz 0 0 Hog Zor

[1]
Il
*
*
*

=44 0 0 0 | <O,

* * * * *  Zgg =67

where
2 2 2
En=ATP+PA+Y nATZA-Y r'Z+) R,
=1 =1 =1
=1 = PAdl + (7’1 + TQ)ATZAdl, =13 = PAd2 + (7‘1 + TQ)ATZAC[2,
=14 :Tflz,Ew :7-2’12, =16 :P+(Tl+T2)ATZ, 517:P+(71+T2)ATZ,
Ego = (11 + 7‘2)1451214011 — (1 — p1)Ry + e, UL Uy,
523 = (7’1 + TQ)A?IZAdQ, E26 = (7’1 + TQ)A?IZ,
o7 = (7'1 + 7—2>A§127 =33 = (7‘1 + TQ)AZI;ZACIQ — (1 — ILLQ)RQ + 62U2TU2,
Esg = (11 + TQ)AZ—;Z, Esr = (11 + TQ)AZ;Z, =44 = —71‘12,
S5 = —7y ' Z, Ee6 = (11 +12)Z — el o7 = (11 +™2)Z,
Err=(n+7m)Z — el,

here I is (n x n)-identity matrix.
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Theorem 2.1. The zero solution of the system of DDEs (1) is asymptotically stable if
assumptions (Al) and (A2) hold.

Proof. Let
::c(t—i-/@’), —r < B <0.

We define a Lyapunov — Krasovskii functional by

9 t t
V(t,x¢) = T (t)Px(t) + a)Zz(a) dadf + 2T (o) Riz(a) do.
>/ [ >/

By the derivative of the functional V' = V (¢, z;) along the system of DDEs (1) and by using the
Newton — Leibnitz formula and Jensen inequality, that is, Lemma 2, we obtain:

2 2 2
ATP+ PA+Y mATZA- 7' Z+ ) Ri|x(t)+
=1 =1 =1

2
AL P+ (Z n) AT ZA

=1

V(t, xt) < xT(t)

2

+) T (t - di(t))

=1

x(t)+

+> 2"

z(t—di(t))+

2
PAdi + (ZTZ) ATZAdi

i=1

2
ZTiZ

=1

+ (i 2T (t - di(t))Agi>

2
(Z Ag(t - dz‘@))) -
=1
_ ZwT(t — di()) (1 — pg) Ri (t — di(t)) +

+ZxT(t—TZ 1 Zx(t) Z:c (t — 1)1 Za(t —73)+
i=1

2

+ZwT

=1

2
+ (Z 2 (t - dl-(t))AZl;)
i=1

2
+Y) F(tx(t - di(t))

2
)| P+ nATZ
=1

Fi (t, x(t - dl(t)))‘f‘

2
ZTiZ
i=1

(g Ei(t,x(t - di(t)))> +

x(t)+

(5

i=1

ISSN 1562-3076. Heninitinu koaueanus, 2020, m. 23, Ne 3
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Li=1

+ (22: El(t,z(t - di(t)))) -iTZ’Z: (g Agx(t — di(t))> +

+ (i Fl(ta(t - di(t)))> 22: TZ‘Z_ (22: Fi(t,z(t — d,-(t)))) : 3)

i=1 Li=1 =1

For nonlinear functions F;(.) endowed with ¢; > 0, ¢ = 1,2, we can derive
0< —eF (ta(t—di(t))E(tz(t — dit)) + a2’ (t — di () U Uz (t — di (). (D)
Next, by the inequalities (3) and (4), it follows that
V< [mT(t) 2l (t —di(t)) 2T (t—da(t)) 2T (t—7) 27(t—m)

FT(ta(t - di(t))  FF (ta(t - da(t)) | x

E11 Z12 Z13 Zu Z15 Ee Zi7 (1)
x  Hoo o3 0 0 Zog Eor x(t —di(1))
x o+« Hz3 0 0 Ess Har x(t — da(t))
x| * x Z4 0 x(t — 1) ;
* * * x Hss 0 0 x(t — 1)
* * * * x  Zgs Zerl| |4 (t, x(t —dy (t)))
| x * * * * * S| | P (t,:c(t—dg(t)))_

where
2 2 2
Ell = ATP + PA + ZTlATZA - ZTile + ZRZ’
i=1 i=1 =1
B2 = PAd1 + (7’1 + TQ)ATZAdl, 513 = PAd2 + (7’1 + TQ)ATZAdQ,
514 - 7'1_1Z, El5 = T2_12, 516 = P + (7'1 + 7'2)‘14TZ7 517 = P + (7-1 -+ 7-2)AT27
oo = (1 + 1) Al Z A4 — (1 — )Ry + U Uy,
E23 = (7'1 + 7'2)143;1Z_/4d27 E26 = (7'1 —+ TQ)AZ—;Z,

527 = (7’1 + TQ)AZI;Z, 533 = (7‘1 + TQ)AZZ;ZAdz — (1 — ,LLQ)RQ + €2U2TU2,

Z3g = (7’1 + TQ)AZ;Z, Egr = (7’1 + TQ)AZ;Z,
544:—7-1_1Z7E55:—7’2_1Z, 566:(71+72)Z_61[7 =67 = (7’1+T2)Z,

=7 = (7'1 +7‘2)Z —eol.
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ON THE ASYMPTOTIC STABILITY OF SOLUTIONS OF NONLINEAR DELAY DIFFERENTIAL EQUATIONS 423

Hence, we can easily obtain the following inequality:

V(t, xt) < {T(t)Ef(t),
where

fT(t):[:I:T(t) 2Tt —di(t) 2T(t—dao(t)) 2T (t—7) 2T (t—m)

F (ta(t = di(t) B (b o(t = o)) ]

[E11 Z12 Ei3 B4 Zis Zie i)
¥  Zop Eaz 0 0 Zog Zo7
* * =Z33 0 0 E3z Za7
== | * * * 2y 0 0 0
* * * * Hzs 0 0
* * * * * =66 =67
* * * * * *  Drr

Applying the Schur complement [6], that is, Lemma 1.1, we can show that V(t,z;) < 0. In
this case, we can conclude the zero solution of the system of DDEs (1) is asymptotically stable
provide that = < 0.

Example 2.1. For the particular case of the system of DDEs (1), when n = 2, let us consider
the following delay differential system:

() I Pt
dt \ |zo(t)] ) |0 —5] |aa(t)

[—1 0] [ml (t—20_1(1+sint))]
+ x +

0 0 z (t — 2071 (1 4 sint))
z1 (¢t —2071(1 +sint)) ¢~ 21 (t=207" (1+sint)) . 1 5)
x9 (t _ 20—1(1 + sin t)) e—x%(t—20*1(1+sint)) ’ — 10

When we compare the system of DDEs (5) with the system of DDEs (1), it is derived the following

relations:
-6 0 -1 0
, Ag= ,
0 -5 0 0

o (t _ 1+ Slnt) e_x%(t_wzs(i)nz)

A=

20 1
Fi(t,z(t —d(t))) = , ==,
A= 2D
i) 20 &
1+ sint
e=1.15, 0<d(t)=d(t) = J;zm <0.1=m,
L) = dit) = < < 0.0 <1 0.05
—_ = = — . = = T = . .
dt 1 20 i M M1 )
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Firstly, it is clear that assumption (A1) of Theorem 2.1 is satisfied. Next, we choose the
matrices P, R, Z, and U as the following:

3 0 1 0 -1 0
’ Z = y U= .
0 4 0 2 0 -1

For this particular case, the Lyapunov — Krasovskii functional, which is given in Theorem 2.1,
takes the following form:

20
0 3

P=

]a R=Ry =

xl(a)] [3 0] [ (a)]
+ [ da.
th(t) za () 0 4| |z2(a)

If we calculate the time derivative of this functional along the system of DDEs (5) and follow the
way of Theorem 2.1, we can easily arrive the following inequality:

V(t,z) < T (1)Z1E(1),

where

(274 0 —14 10 0 1.4

0

0 -4 0 0 0 20 0
~-14 0 -16 0

0o 0 0 -2

0 0 0 0

0 20 0 0 0 -20 0

14 0 -01 0 0 0 -105

0 2 0 0 0 0 0 —095

Hence, we can verify that the matrix =; is symmetric and negative definite. In addition, the
eigenvalues of the matrix =, can be derived as A\ = —53.1449, A, = —32.0602, \3 = —8.0605,
Ay = —b5.5957, A5 = —2.6500, A\ = —1.5501, A\; = —0.8441, A\g = —0.7447. Thus, secondly, it
is clear that assumption (A2) of Theorem 2.1 is satisfied. Then, all assumptions of Theorem 2.1
are hold. From this point, we can conclude that the zero solution of the system of DDEs (5) is
asymptotically stable (see also Fig. 1).

We now present an additional assumption for the next theorem. Coming theorem also includes
new stability criteria for the system of DDEs (1). Here, the proof of the next theorem is given by
using the Wirtinger inequality.

(1]
|

0
2
0
—-2.65 0 0 0 0
0
0
0
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g . : — 11(0)275
) N O S M —x2(0)=2.5
[ _______________________________________________________ ________________ _
S O A |
= : :
) RSN < NP SIS SN—_———_————— —— 4
2+ -------------------------------------------------------- ---------------- 4
| i | | i
0 2 4 6 8 10 12
time, sec x 10*
Fig. 1. Trajectories of the solution z(t) of the system of DDEs (5) when d(t) = 20 *(1 + sint)

(A3) We have symmetric positive definite matrices P € R"*", R; € R"*" Z € R™*™ and
some U; known matrices with appropriate dimensions such that the following matrix inequality
holds:

Hi1 Zi2 E13 Ziu Ei15 Eig Zir E18 =

*  Zog =93 0 0 Z9 Zo7 O 0
* * Egg 0 0 536 537 0 0
* * * =4 0 0 0 Z4i O

(1]

Il
*
*

*
*

§55 0 0 0 §59 <0,

* * * * x Zg Zer O 0
* * * * * * =77 0 0
* * * * * * x* Hgg 0
* * * * * * * N

where

2 2 2
En=A"P+PA+> 7ATZA-D 477" Z 4> R,
=1 i=1

i=1
1o = PAg, + (11 + 1) AT Z Ay,
B3 = PAg, + (11 + TQ)ATZAdZ,
B4 = —27’1_1Z, B = —27‘2_12,
2 2
=P+ Z AT Z, =P+ Z AT Z,

i=1 =1
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— 67 = 67
218 = PR =19 = R
T )

EQQ = (7’1 =+ TQ)Agl ZAd1

223 = (7’1 + TQ)Az;lZAdZ,

— (1 = )Ry + UL Uy,

EQG = (Tl + TQ)Az;lZ

§27 = (’7’1 + Tg)Ang

E33 = (11 + Tz)AdTQZAdz

§36 = (7’1 + TQ)AZ;Z

— (1= p2) Ry + 2U3 Us,

§37 = (7’1 + TQ)AZ;Z

= 47 67

D44 = D48 = 9
T1 7'1

= 47 67

=55 = T, =59 = 2 )
T2

EGG = (7'1 +7’2>Z —el,

)

Eﬁ? = (7'1 -+ TQ)Z,

= _ 127 127
Err=(n+m)Z —el, Ess = ——5-, I —
Tl 7'2

Theorem 2.2. The zero solution of the system of DDEs (1) is asymptotically stable if

assumptions (Al) and (A3) hold.

Proof. We now define a Lyapunov — Krasovskii functional by

Vi(t,z) =z (t)Px(t) + Z / 7 (a)Rix

=h_di)

a)da+i/0 /:bT

t

Zi(a)dadp.
=1 t+p

Calculating the derivative of Vj(t,z;) along the system of DDEs (1) and using the Wirtinger
inequality, that is, Lemma 1.3, we get the following inequality:

+Z:L’

Vilt,zy) < a7 () AT Px(t) + 27 (t) P Az (t (t)PAgx(t — di(t))+

(AT Z Ax(t

+ZTZ

ATZE:Adxt—d@»+
=1
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+ Z rix’ (t)ATZ (Z Fy(t,z(t - di(t)») +

i=1

'(
+3on (- a)ah )2 S At ao) )
+ gn (g FzT(t,x(t - dz(t)))>ZAm(t)+
e3 o (A ote- ) ) 2( 3t o))
e3 o (LA ate- a0 )2 SRt ) -

+ 2Tt - Tl)% z(t) + 27 (t — Ti)ga@(t —Ti)—

Ti Ti

¢ t
_xT(t)% ( / x(s)ds) _xT(t—TZ-)GTf ( / x(s)ds) -

—Ti —Ti

t T t T
(L) - oe) e

—Ti —T;

+ ( /tx(s)ds)T1if ( /tm(s)ds) . (6)

—Ti —Ti

For nonlinear functions F;(.) endowed with ¢; > 0, ¢ = 1,2, we can obtain
0< —E (ta(t—di())Fi(t,z(t — di(t))) + ez’ (t — i) Ul U (t — di(2)).  (7)
By the inequalities (6) and (7), it follows that

Vilt,z) <& (t)EE(b), @®)
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where
[Z11 Zi2 Z13 S Z15 Z16 217 218 Zag
* =99 §23 0 0 §26 §27 0 0
* * §33 0 0 ESG §37 0 0
* * * Zaa 0 0 0 Z48 O
== % * * x Zs5 0 0 0 Zxol,
* * * * x Zg Zer O 0
* * * * * x = 0 0
* * * * * * x Zgg 0
| * * * * * * * *  Zog
€)=

2T (t) 2Tt —di(t)) 2Tt —da(t)) 2T(t—11) 2T(t —m)

—Ty

FI(ta(t — du(t))  FE(t 2(t — do(t))) (/t;lx(s)ds>T (/tt x(s)ds)T],

2 2 2
En=A"P+PA+> 7ATZA-D 477 Z 4> R,

=1 =1 =1
§12 = PAd1 + (7’1 + TQ)ATZAdl,
Elg = PAd2 + (7’1 + TQ)ATZAdQ,
§14 — —27’1_1Z’ §15 = —27'2_1Z,
2 2
EIG =P+ ZTZATZ, EN =P+ ZTZ‘ATZ,
=1 =1
= 62 =  6Z
—18 — 7_12) —=19 — 7_223

Hoo = (11 + 72)AdTlZAd1 — (1= )Ry + e UL Uy,

Hog = (1 + 72)A£12Ad27

[1]]

26 = (11 + 1) A} Z, Zor = (11 + m) A} Z,

Eg3 = (11 + 72) A, ZAg, — (1 — p2)Ro + e2U; Us,

(11|

56 = (11 +12) AL Z, Egr = (11 +72) Al Z,

= 47 62
=44 = T, =48 = 5
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- 67

—59 — 7_22 ’
\_66—(71+T2)Z—61[ \—67—(7-1""7'2)2
_ _ 127 — 127
Err = (11 +72)Z — el Egs = ——5, Egg = ——5

71
By using the Schur complement, that is, Lemma 1.1, we have V;(¢,z;) < 0. It is now notable
that the inequality (8) is considered as a quadratic form. Here, the matrix = < 0 is symmetric
and negative definite. Then, it can be written that
-T —_
Vi(t,z) <& (t)EE(t) <0

stable. This fact completes the proof of Theorem 2.2

£(t) #0.
Thus, we can conclude that the zero solution of the system of DDEs (1) is asymptotically

Example 2.2. Let us consider the system of DDEs (1) for the particular case given below
d [ [z1(t) -6 0
dt \ |zot)| )

1+sint
][xl(t)] ~1 0] 1 (t—
_|_
0 —5||xa(t) 0

0

o)
. +
1+ sint
T2 t—
(-55")
ot 1+sint e*mf(t* Lisint)
; 2 i> L ©)
( 1+Slnt> (t 1+51nt) ’ - 10
xo |t — 20
20
When we compare the system of DDEs (9) with the system of DDEs (1), it follows that
-6 0 -1 0
A= 5 Ad = )
0 -5 0
( 1 + sint
x
Fi(t,z(t —d(t))) =

0

2 1+sm t

< 1 +s1nt
X2

P>
> t 1+51nt ’ - 10,
1+ sint
€= 060, 0<d(t)=d(t) = —2
d
d(t
4 =

cost
di(t) =

<0l=r
20 B b
— < 0.05 = 1

n=pur <

As before, we see that assumption (A1) of Theorem 2.2 is satisfied. From this point, for the
next step, we choose the matrices P, R, Z, and U as the following
2 0
P= Ri=R=

r = 0.05.
10
0 3|

, U=
0 0.01

—1

0
0 —1|

001 O
7 =
0 2
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For the above choices, the Lyapunov — Krasovskii functional given in Theorem 2.2 takes the form

t

t 0
Vit ) = a7 (t) Px(t) + / 27 () Ryz(a da—i—/ /mT )Zi(a) dadf =
dy(

t) —T1t+0
z1() g [
_|_
_/ Lﬂ(ﬂ]
/ / ! a] [001 0 ]Fl(a)]dadﬁ.
(@) 0.01] [Z2(«)

—T1 t+8

(e} —
[\] [a)
| E—
1
8 8
no -
Q L

If we calculate the time derivative of this Lyapunov —Krasovskii functional along the system of
DDEs (9) and follow the way of Theorem 2.2, we can easily derive the following inequality:

where
[—23.364 0 -1994 0 -02 0 1.994 0 6 0 ]
0 —28.375 0 0 0 -02 0 2.995 0 6
—1.994 0 —-0.349 0 0 0 —0.001 0 0 0
0 0 0 -13 0 0 0 0 0 0
_ —0.2 0 0 0 —-04 O 0 0 6 0
== < 0.
0 —0.2 0 0 0 -04 0 0 0 6
1.994 0 —0.001 0 0 0 —0.599 0 0 0
0 2.995 0 0 0 0 0 —-0.599 0 0
6 0 0 0 6 0 0 0 —-120 0
0 6 0 0 0 6 0 0 0 —120

Then, the eigenvalues of the matrix =; can be calculated as

A1 = —120.6909, A2 = —120.6708, A3 = —28.3074,
Ag = —23.3406, A5 = —1.3000, Ag = —0.5147,

A7 = —0.2770, As = —0.1062, Ag = —0.0988, A10 = —0.0798.

From this point, we see that assumption (A3) of Theorem 2.2 is held. Then, all assumptions of
Theorem 2.2 hold. Thus, for the considered particular case, we can conclude that the zero solution
of the system of DDEs (9) is asymptotically stable (see also Fig. 2).
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Fig. 2. Trajectories of the solution x(t) of the system of DDEs (9) when d(t) = 207" (1 + sint).
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