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We investigate the exponential stability of a linear system of neutral-type with variable time lags. With the
help of the Newton — Leibniz formula and a Lyapunov — Krasovskii functional, we prove two results of the
exponential stability of solutions. The stability criteria are stated in the form of linear matrix inequalities
(LMIs). By using MATLAB-Simulink, we give two numerical examples that illustrate the applicability
of the assumptions. The obtained results extend and generalize the existing former ones in the related
literature.

HocaimKkeHO eKCIOHEHIIabHY CTIifKICTh JNHIAHOI CHCTeMM HEHTpaJbHOTO THIY 3i 3MIHHUMH Bil-
cTaBaHHSIMH 3a JacoM. 3a momomoroio ¢dopmynn HpiotoHa —JleibHina Ta ¢yHKIioHay JIstmyHOBa —
KpacoBchkoro noBeneHo aBa pe3yiabTaTh PO SKCITOHEeHIIIaabHY CTIMKICTh po3B’s13KiB. Kputepii cTiiikocTi
MOoNaHi y BUTJISIAI JTIHIMHUX MaTpUYHUX HeiHiiHocTel. 3 BukoprucTanuaM MATLAB-Simulink HaBeneHo
JIBa YMCJIOB1 IPUKJIAIH, SIKi TFOCTPYIOTh 3aCTOCOBHICTD IIPUITyIeHb. Onep>KaHi pe3yIbTaTH PO3IINPIOIOTh
1 y3araJbHIOIOTH BiIOMIi pe3yIbTaTH, ofepsKaHi paHille.

1. Introduction. Stability analysis of linear and nonlinear systems with variable time lags
is fundamental to many practical problems and has received considerable attention [1—4]. In
particular, it is well known that stability of linear systems of neutral-type with variable lags have
been an active research topic in last few decades. The main reason for this, neutral systems has
been growing commonly because of their successful applications in widespread fields of science
and engineering such as circuit theory, bioengineering, population dynamics, telecommunication,
automatic control [5] and so on. In addition, we note that neutral systems without or with time
varying lags and different models of functional differential equations often occur in many scientific
areas such as engineering techniques fields, physics, medicine and etc. (see [4, 6—26] and the
references therein).

When the relevant literature is examined, especially in the last few years, the problem of
stability has been addressed through different approaches for neutral systems. It is seen that
the stability method in most of the studies related to the stability of the systems in the control
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12 Y. ALTUN, CEMIL TUNC

theory is based on linear matrix inequality (LMI) and the classical Lyapunov stability theory.
For example, Altun and Tung [8] obtained some sufficient conditions for the solution of the
nonlinear delayed neutral system with periodic coefficient. In [2], by constructing an appropriate
Lyapunov — Krasovskii functional combined, new delay-dependent sufficient conditions for the
exponential stability of the systems are presented in terms of LMIs. By utilizing free-weight
matrices and constructing augmented Lyapunov functionals, some less conservative conditions
for asymptotic stability are derived in [19, 27] for systems with lags varying in an interval.
Therefore, the current study is worth investigating qualitative properties of solutions of that kind
of equations.

Throughout this work, R™ denotes n-dimensional Euclidean space with the scalar product
2Ty and the Euclidean norm ||.|| for vectors; D™*" denotes the space of all matrices of (n x r)-
dimensions; * denotes the elements below the main diagonal of a symmetric matrix; C! ([0, ¢], R")
means the set of all " -valued continuously differentiable functions on |0, ¢; z; is the state at
time t defined by x¢(s) = {z(t + s): se[~h,0]} with [[2¢| = supg_pq [|[2(t + s)||; AT means
the transpose of the matrix A; B is symmetric if B = BT; C is positive definite (C' > 0) if
(Cx,z) > 0 for all = # 0; the notation X > Y, where X and Y are symmetric matrices of same
dimensions, means that the matrix X — Y is positive definite; Apin(A4) and A\pax(A) denote the
minimal and maximal eigenvalue of the matrix A, respectively.

2. Problem description. In the current paper, motivated by [2, 5, 14, 15, 25] we consider a
neutral linear system with variable time lags:

2 2

B(t) — > Byt — 7i(t) = Aoz (t) + Y Ai(t)z(t — 7i(t)), (2.1)

i=1 =1

£>0, «(t)=¢(), te|-H0|,

where z(t) € R", H € R, H > 0, ¢(.) € C' (|- H,0],R") is the initial functions, Ay and B; €
€ D™*™ are known constant matrices, A;(t) € D™*" are a reel matrix functions, 7;(t), i = 1,2,
are differentiable variable time lags.

We deal two different cases for the variable time lags as follows:

Case I. The functions 7; are differentiable such that

0 <7113 < 7(t) < 7y, 7i(t) <éd <1, t>0, i=1,2, (2.2)

where 7;, 79;, and §; are real constants.
Case Il. The functions 7; are not differentiable or the upper bound of the derivatives of these
functions are unknown such that

OS’TH STi(t) STgi, tZO, 1= 1,2 (23)

Let H = {7’21,7’22}.

The main aim of this work is to do a contribution to the results of [2, 5, 14, 15, 25] and
the relevant literature. For example, if we consider the equation studied by Phat et al. [2] and
system (2.1), the contribution of this work is clearly seen as the following:
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(1) the delayed system studied by Phat et al. [2] has a linear and simple form and includes
one variable delay. However, the neutral system (2.1) has a more general form and two variable
delays;

(i1) the neutral system (2.1) includes and improve that discussed by Phat et al. [2];

(ii1) the results of this paper may be useful for researches working in engineering and sciences.
These are some brief contributions of this paper to the related ones.

Before state the exponentially results, the following basic definition and lemmas are needed.

Definition 2.1 [20]. System (2.1) is said to be exponential stable with convergence rate « if
there exist two positive constants « and \ such that

le@)] < A, t> 0.

Lemma 2.1 [25]. For any symmetric positive-definite matrix S € D™"*", a scalar v > 0 and
a vector function g: [0,~v] — R" if the integrations in the following inequality are well defined,

then we have
T

g v v
v [ @Sawis = | [ats)as| 5| [a(s)as|.
0 0 0

Lemma 2.2. Let ' € D™"*" be a symmetric positive-definite matrix and a,b € R". Then,

we have
’aTb’ <a'Fa+b"F b

3. Exponential stability. We now state the exponentially stability results of this paper such

that they are proved by the aid of LMIs.

<1

hold. In addition, let P, QQ, R, S, U be symmetric positive-definite matrices and the matrices
M;, i=1,2,...,5, are given such that the following LMI holds:

2
Theorem 3.1. Suppose that the assumptions of Case I and the inequality HZ,_l B;

M, M2 M3 M4 M5 1.6 m,7 m,8 1,9 1,10

x 1Mo 0 0 0 72,6 —M3As(t) My —MsB; —M3Bs

* * 3 0 0 —MyA(t) n3.7 My —MyB; —M3Bs

* %k myq 0 14,6 —MyAy(t) My —MBy —MBy

Rk * * x 55 —MaAq(t) 5,7 My —MoBy —MyBs “0

= * * * * * 16,6 Ne,7 16,8 16,9 76,10
* * * * * * nr,7 n7.8 n7.,9 17,10
* * * * * * * 18,8 18,9 718,10
* * * * * * * * 19,9 19,10

| * * * * * * * * * 710,10 |

3.1)
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Then, the zero solution of system (2.1) with (2.2) is «-exponential stable for o > 0, where

2 2
M = Aj P+ PAg+2aP +2Q — 2MAg — Y Y e g,
k=1 11=1

Mo = e 20T 8 — My Ay, ma = e~20m28 _ M, Ay, M4 = e~20m16 _ M, Ay,
N5 =e 29728 — My A, m,e = (P — M)A (t) — M3Ay,
m,7 = (P — My)As(t) — M3Ay, g = My — MyAo, e = (P — My)By — MsA,,
m,10 = (P — My)By — M5 Ay, oo = —e 20T G — gm2amy)
Mo = Mg =€ U — MyAy(t), g3 = —e 202G — ey,
37 =57 =€ 272U — MaAs(t), Mg = —e 2(S 4+ U), M55 = —€ OT2(5 4+ U),
Moo = —e 22[(1 - 01)Q + 2U] — 2M3A1(t),  ner = —Ms(A1(t) + Ax(t)),
ne,s = Mz — M4A(t), me9 = —(M3B1+ MsAi(t), ne,10= 17,00 = —(M3By + M5As(t)),
N7 = —e 20T2[(1 — 69)Q + 2U] — 2M3 Ay (t), Nrs = Mz — MyAs(t),
2 2 2
nr9 = —(MzB1 + M5As(t)), Mes =2My+ 2R+ D ThS+ > (12 — 1)U,
k=1 i=1 i=1
89 = Ms — MyBy,  mgi0=Ms—MyBy, g9 =—(1—&)e **™ R —2M;B,
no,10 = —Ms5(B1 + Ba), Moo = —(1 — d2)e 2*™ R — 2M5 Bs.

Proof. Define a Lyapunov —Krasovskii functional by

5
W(t,x) => Wi, (3.2)
k=1

where

Wy = 2T (t)Pz(t),

20T (§)Qu(s)ds,

S

Il
-M“’
—

-
Il
—
~
|
a
=
=
N

Ws =0T (§)Ri(s)ds,

I
Mw
—

1

i
t—Ti

—~

)

t

2 2 9
W4:ZZTM / /eQa(U_t)atT(U)Sat(U)dads,

k=1i=1 7 4%
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2 —T1; t

Ws =Y (2 — 713) / / 03T (Ui (o)dods.

=1 —T2; t+s

It is now easy to verify that
Mllz(®)? < W (t,ze) < Xoflz(t)]?,
where

>\1 — )\min(P)a

2

15

(3.3)

2 2
AZ = )\max(P) + ZT%}\maX(Q + R) + 2 Z TgiAmax(S) + Z(TZi - Tli)Q)\max(U)'

i=1 =1 =1

By the derivative of the functional W along the solutions of system (2.1), we get

Wy = 22T (t)Pi(t) =

2 2

=27 (t) [AJP + PAo) x(t) + 22T ()P~ Ai(t)a(t — 7i(t)) + 22" ()P Byi(t

i=1 i=1

2
Wy =227 (1)Qx(t) = > (1= 7i(t)e DT (t — 7(£))Qu(t — 7(t)) — 20y,
=1

2
Wy =237 () Ri(t) — > (1 — 7i(t)e Wi (t — () Rir(t — 7i(t)) — 2aWs,
=1

2 2 2 2 ¢
<SS AT 0sa) - 30 me 20 / $)ds — 2aWs,

—7i(t)),

k=1 i=1 k=1 i=1 t s
2 2 t— T14
Ws = Z(T% - 1)’ Z T9i — Tii) / 23T (Ui (s)ds — 2aWs <
=1 i=1 P
2%
2 2 t_TlrL
< Z(mz‘ — 713)°d Z (To; — T14)e 20T / i1 (s)Ui(s)ds — 2aWs.
= = t—Ta;

By the assumption (2.2), it follows that

2
Wy < 227 (1) Qu(t) — Zu — &)e2emigT(t — 1 (4)Qu(t — 75(t)) — 2aWs
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and

2
Wy < 27 () Ri(t) — > (1= &)e 2™ T (t — 7i(t)) Ri(t — 7(t)) — 2aWs.
=1

Applying the Newton —Leibniz formula and Lemma 2.1, we derive

and

V)
[\
~+

We note that

9 t—T1

3 / ;'UT(s)Uac(s)ds:i: / i (YU (s)ds + 3 / .jo(s)U:'U(s)ds.

i:]'t—'rQi i=1 t—To; = t*Ti(t)
By the aid of Lemma 2.1 we have

t—7; (t)

t—mi(t) T

2
2; /:t(s)ds U /g';(s)ds =

=4 t—Ta4

2

2
= Z[x(t —7i(t)) —x(t — TQi)]TU Z[w(t —7i(t)) — x(t — m2)].
i=1

i=1
Since 7o; — 7;(t) < T9; — 714, then

t—7; (t)

Z[T%—m] / il (s)Ui(s)ds >
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and
9 t—7;(t)
— [T2i — T14] ch(s)U:b(s)ds <
2 2
<= [t —mt) = a(t — 1)U ot - ni(t) — a(t — 2],
i=1 =1
Similarly, we derive that
2 t—T14
= [r2i — 71l / i1 (s)Ui(s)ds <
=1 t—7; (1)
2 2
<= [wlt =) — 2t —m@) U ot — i) — a(t — 7).
i=1 =1

Gathering up these results, we have

W () +2aW(-) < 2T (t)[AL P + PAg + 2aP + 2Q)x(t)+

2 2

+ 20T ()P Ai(t)x(t — (1) + 22T ()P Y Bid(t — 7ilt))—
=1 =1
2
= 31— dem T (- 7i(1)Qu(t — ()~
i=1
2
= (1= 6)e2miiT (¢ — 7 (8)) Rt — 7i(t))+
=1
2 2 2
+ j;T(t) 2R + Z ZTk%iS + Z(Tzi — Tli)2U z(t)—
k=1 1:=1 =1
2 2
= O e i (t) — w(t — 7j)] TS [ (t) — 2t — h) ] -
k=11=1

17

2
=Y et — ) — a(t — 7)) Ut — i) — 2t —7(t)]. (34)
i=1

By using the equality
2 2
(t) — ZBz‘ii(t —7i(t)) — Aox(t) — ZAi(t)ﬂf(t —7i(t)) =0,
i=1 i=1
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we have
2

207 (t) My (t) — 207 () M1 Y Biir(t — 75(t))—
=1

— 22T () My Agz(t) — 227 Mle x(t —7i(t)) =0,

2

2 2
DN 22T (t - 7)) Maie(t) = Y 0> 22T (t— i) Mz Y Bii(t — mi(t))—

k=1 1=1 k=1 1=1 =1
2 2 2 2
= 0> 20T (= mi) MaAow(t) = Y Y 20T (t — i) Mo Y Ai(t)a(t — 7i(t) = 0,
k=1 1=1 k=1 1=1 =1
2 2
22@« (t—7s(t) Mair(t) — > 27 (t — 75(t) M3 Y By (t — 7(t))—
=1 =1

2 2
- Z 227 (t — () Mg Ao (t) — Y 227 (t — 7i(t))Ms Y Ai(t)a(t — 7i(t)) = 0,
i=1 1=1

2

287 () Myir(t) — 227 () My » | By (t — 7i(t)—
=1

—2¢T () MyAgz(t) — 227 M4ZA z(t —7(t)) =0,

2
S 2 (t — 7i(t)) Msi(t sz (t—milt )Mngi:t(t—n(t))—
i=1

=1

2

2
= 2&"(t — 7i(t) M5 Agas(t) sz (t—7:(t) M5 Y A(t)a(t — m(t) = 0. (3.5)
=1

i=1
In view of (3.5) and (3.4), we deduce that
2

W) +2aW () <2T(t) | AT P + PAg + 2aP + 2Q — 2M; Ag —ZZe 2074 g |
=11=1

2 2
+ 227 Z Z 20Tk G MQA()) (t - Tki)+
k=1 1i=1

+ 227 Z [P — MiA(t) — M3Ao) x(t — 7i(t))+

2
=1
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2
+ 207 () (M — MiAo)i(t) + 227 (1) (P — My) S Bi(t — (1))~
=1
2
2T ()M Ay St — () -
i=1

2
Z Z xT t— Thi ( —20TkiG 4 e 2o‘mU) x(t — T )+
k=1 i=1

2 2
+2) 0 e migT(t — ) Ut — 7(t)) -

k=11=1
2 2
—Z 2:th—77ﬂ MQZA x(t — (1) +
k=1 i=1
2 2 2
+2Z xT(t — 733) Mot —QZZ:UTt—T;ﬂ ZB (t—m7(t)—
k=11=1 k=1 1=1 =1

2

=Y (et — m(t)[(1 - 6)Q + 2UNx(t — 7i(t))) —

i=1

2
—2% (¢ — (1) MSZA x(t —7i(t)+
+2Z:c (t = 7i(t))(Mz — MyA;(t))a(t)—

9 2
—23 2T (t— (1) Ms Y Bt — 7i(1)—
=1

=1

2
—2) @T(t - 7i(t) M5ZA z(t —7i(t)+
i=1

( ) 2M4+2R+ZZT’”S+Z T2i — 7—11 J}(t)—i-

k=11=1

+ZZ$ (t — () Msa(t —QZth—T, YMyz(t)—

2

= (1= 8)e i (¢ — () Ris(t — 7i(t))—

=1
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2 2
=2y @l (t—m(t)Ms Y Biit — (1)) = € (t)ng (1),
=1

i=1
where
&) = [x(t), x(t —711),2(t — T12), 2(t — 721), x(t — T22),
z(t —71(t), x(t — 72(t)), &(t), &(t — 71 (2)), &(t — 72(1))].
If the condition (3.1) holds, then
W(t, ;) < —2aW (t,x;), t>0. (3.6)
Integrating both sides of (3.6) from 0 to ¢, we have
W(t,z) < W(0,¢)e 2, t>0.
Furthermore, taking into account the inequality (3.3), we obtain

Mllz(t, @) < W(t,z¢) < W(0,0(0))e™* < Aoe™g]%.

A2
||$(t,¢)||§\/;€ Hlgll, t=>o0.

This ends the proof of the theorem.

Hence, it follows that

<1

hold. Further, we assume that there exist symmetric positive-definite matrices P, S, U and the
matrices M;, i = 1,2,...,5, such that the following LMI holds:

2
Theorem 3.2. Suppose that the assumptions of Case Il and the inequality HZ'—1 B;

(11 &2 &3 G4 G 16 §17 1,8 §1,9 &1,10
¥ &9 0 0 0 §2.6 —MAs(t) My —MyBy —MsBy
* * &3 0 0  —MyA(t) 3,7 My —MsBy —MyBy
% * «  &4a O €46 —MyAs(t) My —MyBy —MsBs
¢ ok %k L5 —MAg(t) 5,7 My —M;By —MyB; —0
I R £6,6 &6,7 Sos &6 &6,10 ’
koox ok ok * .7 §rs &9 &7.10
* ok ok ko k * * Es8 &89 €s,10
* * * * * * * x*  —2M5B; £9.10
| * * * * * * * * * —2M5Bs |
3.7)
where
2 2
€11 =AJP+ PAg+20P —2M1Ag — Y ) e 2S£ o= TS — MyA,,
k=1 i=1
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€13 = e 20728 — My Ay, £14 = € 2018 — My Ay, E15 =€ 2028 — My Ay,
§1.6 = (P — M1)Ai(t) — M3Ao, &1,7 = (P — M) As(t) — M3 Ay, 1,8 = My — My Ay,
&9 = (P — Mi)B1 — MsAy, €110 = (P — My)By — M5A,,

oo = —e 20TNG — gm0y o6 =E16 =€ 22U — MaA4(2),

33 = —e 20T2G _ em2om2]] E37 =& = e 2220 — My As(t),
bia=—€e 2 (S+U), &r=—e2(S+U), Eg=—c 22U —2M3A(2),
6,7 = —M3(A1(t) + Aa(1)), 6.8 = Mz — MyAq(t), 6,9 = —(M3B1 + M5 A1(t)),

€610 = 710 = —(M3Ba + M5 A(1)), &rr = —e 22U — 2M3As(t),
Er8 = Mz — My As(t), &9 = —(M3B1 + M5As(t)),
2 2 2

Ess =2My+ Y Y TS+ Y (i — 1)U, €89 = M5 — MyBy,

k=1 i=1 =1
€s,00 = M5 — My Bs, 9,100 = —M5(B1 + B2),

2 2
H1 = Amin(—P)7 H2 = Amax(P) + 2 ZTQQZ'AmaX(S) + Z(T% - Tli)QAmax(U)-
i=1

i=1

Then, the zero solution of system (2.1) with (2.3) is «-exponential stable for o > 0.
Proof. In the light assumptions of Theorem 3.2, we use the auxiliary functional given by
(3.2) provided that @ = R = 0. Hence, if LMI (3.7) holds, then we easily obtain

W(t,z) < —2aW (t,z;), t>0. (3.8)
Integrating both sides of (3.8) from 0 to ¢, we obtain
W (t,z;) < W(0,¢(0))e 2, ¢>0.
As before done, we derive that
pillz@)|? < W(t,2) < poflz(t)]?, t>0. 3.9)

Taking into account inequality (3.9), since the functional W (¢, z;) is decreasing, we have

palle(t, @)I* < W (t,ze) < W(0,6(0))e** < ppe™ %,

M2 _q
z(t, 9)|| < \/;e Hlgll, t>o0.

This ends the proof of Theorem 3.2.

Hence, it follows that
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4. Applications and simulation results. We give the following two examples with numerical
simulations to show the applicability of the results of this paper.

Example 4.1. For the case n = 2 and 4, k = 1, as a special case of system (2.1), we consider
the following linear neutral system with a variable time lag:

d
o [x(t) — Bia(t — 71(t))] = Aox(t) + Ar(t)x(t — 71(t)), t>0, 4.1)
where
x1 -5 0 —0.0025 0
r = ) AO - ) Al (t) - )
To 0 -3 0 —0.0045
0.01025 0
1= )
0 0.01012
and
0.4 <7(t) = 0.4+ 0.1sin?(t) < 0.5.
Let
6 0 165 0 0.0l 0
P = ) Q = ’ R = )
07 0 0.15 0 0.02
0.00102° 0 0.12035 0
S = —
0 0.00121 |’ [ 0 0.10365] ’
—0.152 0 [0.0102 0 0.001 0
Ml - 9 M2 - ) M = )
0 —0.275 0 —0.0203 0  0.004
—0.65 0.5 ] —0.0125 0
My = , Ms = .
0.02 —0.04] 0 0.03

Hence, for the this special case, the eigenvalues of matrix in (3.7) are found as —21.9939,
—8.2830, —5.2892, —7.5237, —0.4119, —0.2117, —0.0002, —0.0034, —0.0503, —0.0576, —0.0651
and —0.0666, respectively. Further, the solution ||z(t, ¢)|| of the system (4.1) satisfies

la(t, )] < 1.5948¢ 0% g]|, ¢ > 0.

Hence, it is followed that all the assumptions of Theorem 3.1 are satisfied. This discussion
implies that the zero solution of system (4.1) is exponentially stable.

We would like to mention that the graph given by Fig. 1 shows behaviors of the solutions of
the system (4.1), which have been solved by MATLAB-Simulink.
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1.5 —Xl(‘t) and xi(O):l.S-

-+ x2(t) and x2(0)= -1
1 \

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time(sec)

Fig. 1. The orbits of solutions of system (4.1).

Example 4.2. We now consider a particular case of neutral system (4.1) with

—4.35 0 —0.0025 0

Ag = Aq(t) = By =

0.01025 0 ]

0 —0.0045 |’ 0  0.01012

0 —4.38|’

and

7i(t) =0.1+03sin’(t) <04, if teI=|J[2kII, (2k + 1)IT],
k>0

m(t) =0, teRt/L

We note that the delay function 7 (¢) here is not differentiable. Next, let us choose

5 4.5 0.102 0 0.12035 0
P = 5 S = ) U= ’
45 5.5 0 0.121 0 0.10365
—0.52 0 [0.0102 0 [0.001 0
Ml = ; M2 - 3 M3 - 5
0 —0.75 0 —0.0203 0 0.004
—0.65 —0.75] —0.01015 0.012]
M, = , M; = .
0.02 —0.04) 0.10015  0.03 |

For the this special case, the eigenvalues of matrix in (3.7) are calculated as —79.3938,
—12.0819, —0.1159, —0.1159, —0.2597, —0.2405, —0.0006, —0.0006, —0.0448, —0.0503,
—0.1600 and —0.1568, respectively. Moreover, the solution of the give system satisfies

|z(t, ¢)|| < 3.6342¢7°% |||, ¢ > 0.

At the end, we conclude that all the assumptions of Theorem 3.2 are satisfied. This discussion
implies that the zero solution of the give system is exponentially stable.

We would also like to mention that the graph given by Fig. 2 shows behaviors of the solutions
of the system in Example 4.2, which have been solved by MATLAB-Simulink.
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2 —x1(t) and x1(0)=2
T Y A x2(t) and x1(0)=-1.5}

x(t)

158

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (sec)

Fig. 2. The orbits of solutions of the given equation.

5. Conclusion. In this work, we derive some new sufficient conditions to guarantee the

exponentially stability a linear system of neutral-type with variable time lags. The stability criteria
are by the aid of an auxiliary functional and LMIs. Benefited from by MATLAB-Simulink, two
numerical examples are presented to verify applicability of idea of this paper.
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