
UDC 517.956.3

ON PRACTICAL STABILITY OF DISCRETE INCLUSIONS
WITH SPATIAL COMPONENTS

ПРО ПРАКТИЧНУ СТIЙКIСТЬ ДИСКРЕТНИХ ВКЛЮЧЕНЬ
IЗ ПРОСТОРОВИМИ КОМПОНЕНТАМИ

V. V. Pichkur, Ya. M. Linder
Taras Shevchenko Nat. Univ. of Kyiv
Volodymyrska str., 64, Kyiv, 01601, Ukraine
e-mail: vpichkur@gmail.com

yaroslav.linder@gmail.com

M. S. Tairova
Odessa I. I. Mechnikov Nat. Univ.
Dvoryanska str., 2, Odessa, 65082, Ukraine
masonmas@gmail.com

We analyze properties of the maximal set of initial conditions of the problem of weak practical stability
of discrete inclusions with spatial components. We prove compactness and properties of the boundary and
interior of the maximal set of practical stability. In the linear case, we obtain the Minkowski function and
the inverse Minkowski function of the optimal set of initial conditions.

Проаналiзовано властивостi максимальної множини початкових умов задачi слабкої практичної
стiйкостi дискретних включень iз просторовою компонентою. Доведено компактнiсть та власти-
востi границi i внутрiшностi максимальної множини практичної стiйкостi. У лiнiйному випадку
отримано функцiюМiнковського та обернену функцiюМiнковського оптимальної множини почат-
кових умов.

1. Introduction. Theory of discrete systems is intensively developed over the past decades.
The reason of such advancement is a broad range of their application. Discrete systems are
used to describe behaviour of processes in technical, economic, chemical and many other fields.
Discrete systems have significant advantages in comparison with continuous ones. They are
simpler and can be used for solutions approximation to various classes of problems. Therefore,
mathematical approaches to the solution analysis of discrete systems are intensively developed.
Quantitative and qualitative research techniques for discrete systems, including conditions of
stability and practical stability, conditions of invariance and robustness are discussed in [1 – 8].
Dynamic systems with impulse impact are intermediary type of systems between the discrete
and continuous ones [9 – 11]. The focus of this work is on properties of maximal set of weak
practical stability for discrete system with set-valued right-hand side and spatial components
[2, 4, 12 – 14]. Set-valued systems with spatial components generalize control systems with
set-valued observations [15].
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We prove compactness and properties of boundary and interior of the maximal set of practical
stability. In the case of linear dynamic components, we obtain the Minkowski function and the
inverse Minkowski function of the optimal set of initial conditions.

Basic notations. As usual, we denote by Rn the n-dimensional Euclidean space and by ‖ · ‖
the Euclidean norm in it, while 〈·, ·〉 stands for the scalar product that generates the Euclidean
norm in Rn. The set of internal points and the boundary of the set A are written intA and ∂A
respectively. Denote also by S the unit sphere with center at origin and Kr(a) the closed ball
with radius r and center at a ∈ Rn. Let c(A,ψ) = supa∈A 〈a, ψ〉 with ψ ∈ Rn be the support
function of a set A ⊆ Rn, comp

(
Rn
)
stands for the set of all non-empty compact sets in Rn,

while conv
(
Rn
)
is the set of all non-empty convex compact sets in Rn, Aσ = A+Kσ(0) is the

σ -extension of the set A ⊆ Rn, α(·, ·) is the Hausdorff metric [16].
2. The maximal set of initial conditions. Let D be a bounded closed domain in Rm.

We consider a discrete inclusion together with a set-valued mapping Bk : Rm → comp
(
Rn
)
,

k = 0, 1, . . . , N, x(k + 1) ∈ fk(x(k)), k = 0, . . . , N − 1,

Bk(x(k)), k = 0, . . . , N.
(1)

Here x ∈ D, multifunctions fk : D → comp (D) are continuous, x(k) = x(k, x0) is a solution of
the discrete inclusion in (1) satisfying the initial condition x(0) = x0, k = 0, . . . , N. Denote by
X(k, x0) the corresponding attainability set at a discrete time k = 0, . . . , N. Multifunctions Bk
satisfy the Lipschitz condition on D. It means that there are numbers Lk > 0 such that

α (Bk(x), Bk(y)) ≤ Lk‖x− y‖

for any x, y ∈ D, k = 0, . . . , N. The first inclusion in (1) is called the dynamic component.
The mapping Bk is called the spatial component of system (1) associated with the dynamic
component.

Let Φ(k) ∈ comp
(
Rn
)
be a state constraint, Bk(x(k, 0)) ⊆ Φ(k), k = 0, . . . , N, I0 ⊆ Φ(0).

We say that r -condition takes place if there exists r > 0 such that for each x0 /∈ Kr(0) and for
any solution x(k, x0) of discrete inclusion in (1) there exists k ∈ {0, . . . , N} such that

Bk(x(k, x0)) 6⊆ Φ(k).

In particular, we can use a stronger condition Bk(X(k, x0)) ⊆ Rn/Φ(k).

Definition 1. System (1) is called {I0,Φ(k), 0, N}-weak stable if for any x0 ∈ I0 there exists
a solution x(k, x0) of discrete inclusion (1) such that Bk(x(k, x0)) ⊆ Φ(k), k = 0, . . . , N.

Definition 2. We say that I∗ ⊆ Φ(0) is the maximum set of weak practical stability of
system (1) with the state constraints Φ(k), k = 0, . . . , N, if system (1) is {I∗,Φ(k), 0, N}-weak
stable and I0 ⊆ I∗ for any set I0 ⊆ Φ(0) such that weak {I0,Φ(k), 0, N}-stability of the system (1)
takes place.

Consider the following theorems.
Theorem 1. If a sequence of solutions of system (1) is regular, then it tends to a solution of

the system (1).
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Proof. Suppose there exists a sequence Nm
k = Bk(xm(k)) so that

lim
m→∞

α (Nm
k , Nk) = 0, k = 0, . . . , N,

where Nk is a compact set, xm(k) is a solutions sequence of (1). The sequence xm(k) is bounded
on D and there exists some subsequence which we can denote by xm(k), limm→∞ xm(k) = x(k).

According to [17] x(k) is a solution of the inclusion in (1), k ∈ 0, . . . , N. Hence, from the
Lipschitz condition it follows that

α (Bk(xm(k)), Bk(x(k))) ≤ Lk ‖xm(k)− x(k)‖ → 0, m→∞.

Therefore, Bk(x(k)) = Nk.

Theorem 2. Suppose that Π is a set of solutions Bk(x(k)) of system (1) such that Bk(x(k)) ⊆
⊆ Φ(k), k ∈ 0, . . . , N. Then for any sequence from Π there exists a regular subsequence tending
to some point in Π.

Proof. Assume that Bk(xm(k)) is a sequence such that

Bk(xm(k)) ⊆ Φ(k), k = 0, . . . , N, m = 1, 2, . . . .

We perform the following procedure for all k ∈ 0, . . . , N in a sequential order. Since comp (Φ(k))

is compact space, from the sequence Bk(xm(k)) one can select a regular subsequence (see [16]).
Redefine Bk(xm(k)) as a subsequence of the sequence Bk(xm(k)) eliminating the members with
numbers not belonging to the regular subsequence of the sequence Bk(xm(k)). Therefore,

lim
m→∞

α (Bk (xm(k)) , Nk) = 0, Nk ∈ comp(Φ(k)), k = 0, . . . , N.

According to theorem 1 the equality Bk(x(k)) = Nk holds true.
Theorem 3. The maximum set of initial conditions I∗ is compact.
Proof. According to the r -condition I∗ ⊆ Kr(0). Thus, I∗ is bounded. Let us prove that I∗

is closed. Take a sequence xp ∈ I∗, limp→∞ xp = x0. By definition of the set I∗ for any point
xp ∈ I∗ there exists a solution xp(k, xp) of the discrete inclusion in (1) such that

Bk(xp(k, xp)) ⊆ Φ(k).

According to theorem 2 from a sequence of solutions (1) one can select a regular subsequence
tending to some solution in (1), and Bk(x(k, x0)) ⊆ Φ(k) for any k = 0, . . . , N. Therefore,
x0 ∈ I∗.

Theorem 4. Let x0 ∈ ∂I∗, x(k, x0) k = 0, 1, . . . , N, be a solution of the discrete inclusion
in (1) and Bk(x(k, x0)) ⊆ Φ(k), then there exists k̄ ∈ {0, . . . , N} such that

∂Bk̄(x(k, x0)) ∩ ∂Φ(k̄) 6= ∅.

Proof. By contradiction. Assume that there exists a solution x(k, x0) of the discrete inclusion
in (1) such that Bk(x(k, x0)) ⊆ Φ(k) and

∂B(x(k, x0)) ∩ ∂Φ(k) = ∅, k = 0, . . . , N.
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It means that there exists ε > 0 such that

(B(x(k, x0)))ε ⊆ Φ(k)

for any k ∈ 0, . . . , N. Taking into account the continuity property of the mapping z 7→
7→ Bk(x(k, z)), z ∈ D, there exists δ > 0 such that for z0 ∈ Kδ(x0) the following statement
holds true:

Bi(x(i, z0)) ⊆ (Bi(x(i, x0)))ε0 ,

where ε0 = min εi > 0, i = 0, 1, . . . , N. Thus, Bi(x(i, z0)) ⊆ Φ(i), i = 0, 1, . . . , N, z0 ∈ Kδ(x0).

Therefore Kδ(x0) ⊆ I∗. It means that x0 ∈ int I∗. This contradiction proves the theorem.
3. Practical stability of discrete systems with linear dynamic and spatial components.

Consider a linear discrete inclusion

x(k + 1) ∈ A(k)x(k) + U(k). (2)

Here A(k) is a nondegenerate matrix of dimension (n × n), U(k) ∈ conv (Rn) , 0 ∈ int U(k),

k = 0, . . . , N − 1. Consider further a set component Bk : Rm → conv
(
Rn
)
of the linear form

Bk(x) = Ξ(k)x+ V (k),

where Ξ(k) is a matrix of dimension (m × n), k = 0, . . . , N, V (k) ∈ conv (Rn) . Suppose
Φ(k) ∈ conv (Rn) is a set of state constraints, k ∈ 0, . . . , N. The attainability set of system (2) is
defined by [4]

X(k, x0) = Θ(k)x0 + Ω(k), k = 1, . . . , N,

where Θ(k) = Θ(0, k − 1), Θ(i, k) = Ak . . . Ai+1Ai,

Ω(k) =
k∑
i=1

Θ(i, k − 1)U(i− 1), k = 1, . . . , N.

Hence,
Bk(X(k, x0)) = Ξ(k)Θ(k)x0 + Ξ(k)Ω(k) + V (k).

The following theorem takes place.
Theorem 5. If Φ(k) ∈ conv

(
Rn
)
, then I∗ ∈ conv

(
Rn
)
.

Proof. Suppose that x0, y0 are arbitrary points from the set I∗. We show that for λ ∈ [0, 1]

the following inclusion λx0 + (1− λ)y0 ∈ I∗ holds true. According to the definition of the set I∗
there exist ω1(k) ∈ Ω(k), ω2(k) ∈ Ω(k) such that

Ξ(k)Θ(k)x0 + Ξ(k)ω1(k) + V (k) ⊆ Φ(k),

Ξ(k)Θ(k)y0 + Ξ(k)ω2(k) + V (k) ⊆ Φ(k), k = 0, . . . , N.

Since Ω(k), V (k) are convex, for λ ∈ [0, 1],

λ(Ξ(k)Θ(k)x0 + Ξ(k)ω1(k) + V (k))+

+ (1− λ)(Ξ(k)Θ(k)y0 + Ξ(k)ω2(k) + V (k)) ⊆ Φ(k).
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From Ω(k) ∈ conv (Rn) we have λω1(k)+(1−λ)ω2(k) ∈ Ω(k). Therefore, λx0 +(1−λ)y0 ∈
∈ I∗.

Theorem 5 is proved.
Denote by Σ(U), Σ(Ω) sets of selections of the maps U, Ω respectively. Suppose that for all

k = 0, 1, . . . , N and ψ ∈ S

c(Φ(k), ψ)− c (Ω(k),Ξ∗(k)ψ)− c
(
V (k), ψ

)
> 0 (3)

takes place.
Theorem 6. The Minkowski function m∗(x0) = inf {λ > 0: x0 ∈ λI∗} of the set I∗ is equal

to
min

w∈Σ(Ω)
max

k∈0,...,N
max
ψ∈S

〈x0,Θ
∗(k)Ξ∗(k)ψ〉

c(Φ(k), ψ)− c(V (k), ψ)− 〈w(k),Ξ∗(k)ψ〉

so that I∗ = {x0 ∈ Rn : m∗(x0) ≤ 1} .
Proof. Consider x0

λ
∈ I∗. There exists w(·) ∈ Σ(Ω) such that for all k = 0, 1, . . . , N

inclusion
Ξ(k)Θ(k)

x0

λ
+ Ξ(k)w(k) + V (k) ⊆ Φ(k)

holds. Therefore,

1

λ
〈Ξ(k)Θ(k)x0, ψ〉+ 〈Ξ(k)w(k), ψ〉+ c(Vk, ψ) ≤ c(Φ(k), ψ)

for all k ∈ 0, 1, . . . , N and ψ ∈ S. Taking into account equation (3), we obtain that there exists
w(·) ∈ Σ(Ω) such that

λ ≥ max
k∈0,...,N

max
ψ∈S

〈x0,Θ
∗(k)Ξ∗(k)ψ〉

c(Φ(k), ψ)− c(V (k), ψ)− 〈w(k),Ξ∗(k)ψ〉
.

Hence,
λ ≥ min

w∈Σ(Ω)
max

k∈0,...,N
max
ψ∈S

〈x0,Θ
∗(k)Ξ∗(k)ψ〉

c(Φ(k), ψ)− c(V (k), ψ)− 〈w(k),Ξ∗(k)ψ〉
.

From the Minkowski function definition, it follows that the theorem is proven.
Corollary 1. Suppose that for any solution x(k, x0) of inclusion (2) statement Bk(x(k, x0)) ⊆

⊆ Φ(k) takes place and there exists k̄ ∈ {0, . . . , N} such that ∂Bk̄(x(k̄, x0))∩ ∂Φ(k̄) 6= ∅. Then
x0 ∈ ∂I∗.

Corollary 2. The inverse Minkowski function of the set I∗

d∗(x0) = sup {λ > 0: λx0 ∈ I∗} =

= max
w∈Σ(Ω)

min
k∈0,...,N

min
ψ∈P (k)

c(Φ(k), ψ)− c(V (k), ψ)− 〈w(k),Ξ∗(k)ψ〉
〈x0,Θ∗(k)Ξ∗(k)ψ〉

,

where P (k) = {ψ ∈ S : 〈x0,Θ
∗(k)Ξ∗(k)ψ〉 > 0} . In this case,

I∗ = ∪e∈S
[
0, d∗(e)

]
e.
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4. Conclusion. In the paper practical stability of discrete inclusions with spatial components
was analyzed. Compactness and other properties of boundary and interior of the maximal set of
practical stability were proven. In the case of linear dynamic components, theMinkowski function
and the inverse Minkowski function of the optimal set of initial conditions were obtained.
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