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A series of results of existence of solutions of boundary-value problems for the Schrödinger equation
in the resonance (critical) case is proved. Iterative procedures for the construction of solutions of the
corresponding problems in the nonlinear case are proposed.

Доведено низку результатiв стосовно iснування розв’язкiв крайових задач для рiвнянняШредiнґера
у резонансному (критичному) випадку. Запропоновано iтеративнi алгоритми побудови розв’язкiв
вiдповiдних задач у нелiнiйному випадку.

Bifurcation conditions of solutions for boundary-value problems of Schrödinger equation.
In this part, the conditions of solvability and bifurcation of linear solutions of the boundary-value
problem for the evolutionary Schrödinger equation are given.

Statement of the problem. Investigate the conditions for the bifurcation of the boundary-
value problems of the evolutionary Schrödinger equation on the finite interval. In the Hilbert
space H the following boundary-value problem is considered:

dϕ(t)

dt
= −iH(t)ϕ(t) + εH1(t)ϕ(t) + f(t), t ∈ J, (1)

`ϕ(·) = α+ εl1ϕ(·), (2)

where for each t ∈ J ⊂ R the unbounded operator H(t) has the following representation
H(t) = H0 + V (t), where H0 = H∗0 is the unbounded self-adjoint operator with the domain
D = D(H0) ⊂ H, mapping t→ V (t) which is strongly continuous, H1(t) is a linear and bounded
operator for all t ∈ J, `, l1 are linear and bounded operators, which map the solutions (1) in the
Hilbert space H1. Let’s define operator-valued function in the same way as in [1]

Ṽ (t) = eitH0V (t)e−itH0 .

In this case, for Ṽ (t) it is fair to use Dyson’s representation [1, p. 311] and it is possible to
determine the evolutionary operator Ũ(t, s). If

* The publication contains the results of studies conducted by President’s of Ukraine grants for competitive
projects (Ф84/177-2019, 0119U002620; Ф82/201-2019, 0119U103434).

© D. Bihun, O. O. Pokutnyi, 2019
ISSN 1562-3076. Нелiнiйнi коливання, 2019, т. 22, № 4 439



440 D. BIHUN, O. O. POKUTNYI

U(t, s) = e−itH0Ũ(t, s)eisH0 ,

then ψs(t) = U(t, s)ψ is a weak (generalized) solution of homogeneous equation with the
condition that ψs(s) = ψ in the sense, that for each η ∈ D(H0) the function (η, ψs(t)) is
differentiable and

d

dt
(η, ψs(t)) = −i(H0η, ψs(t))− i(V (t)η, ψs(t)), t ∈ J.

Remark 1. It is true to state that if the operator-valued function t → [H0, V (t)] is strongly
continuous [1, p. 312], then ψs(t) is a strong solution.

For simplicity, we assume that D is a dense set in H and evolutionary operator U(t, s) is
bounded and defined on the entire space H (extended by continuity).

We look for a strong generalized solution for the boundary-value problem (1), (2) for those
right parts of f(t) in equation (1), for which unperturbed boundary-value problem (ε = 0) doesn’t
contain solutions. We should remark that asymptotic methods for solving equations are powerful
methods for the investigation of the boundary-value problem for differential operator equations
(see [2, 3] and bibliography).

Linear case (axillary result). For the calculation of the main problem we need to have the
conditions for solvability and the possibility to build solutions of unperturbed boundary-value
problem

dϕ(t)

dt
= −iH(t)ϕ(t) + f(t), (3)

`ϕ(·) = α. (4)

Using the results obtained by S. G. Krein [4], any weak solution of the equation (3) can be
represented in the following form:

ϕ(t, s) = U(t, s)ϕ(s, s) +

t∫
s

U(t, τ)f(τ) dτ (5)

(equality in the sense of scalar product).
Then, putting (5) into the boundary-value problem (4), we obtain operator equation for the

element ϕ(s, s) ∈ H :

Qϕ(s, s) = α− `
·∫

s

U(·, τ)f(τ) dτ, (6)

where Q := `U(·, s) is an operator, obtained by submitting the corresponding linear operator
U(t, s) into the equation (4). Let’s denote

ϕ := ϕ(s, s),

g := α− `
·∫

s

U(·, τ)f(τ) dτ.
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Then the operator equation (6) we can rewrite in the form

Qϕ = g. (7)

We should also describe the construction of the strong Moore – Penrose inverse operator,
which is used for the representation of the solutions [5, 6] of the operator equation (7).

We should distinguish between three types of solutions:
(i) Classical generalized solutions.
If operator Q is normally solvable (R(Q) = R(Q)), then the element g belongs to the sets of

values (g ∈ R(Q)) of the operator Q if and only PN(Q∗)g = 0 [2]; PN(Q∗) is an orthoprojector
onto the cokernel of the operator Q. In this case, there is Moore – Penrose pseudoinverse operator
Q+ and the set of solutions of the equation (7) has the form

ϕ = Q+g + PN(Q)c ∀ c ∈ H,

where PN(Q) is an orthoprojector onto the kernel of the operator Q.
(ii) Strong generalized solutions.
Consider the case, when a set of values of the operator Q is not a closed set, what means

that R(Q) 6= R(Q). We show that in this case Q can be extended to operator Q in such way that
operator Q is normally solvable [6].

Given that the operator Q is linear and bounded, the expansions of the spaces in the direct
sums are possible:

H = N(Q)⊕X, H1 = R(Q)⊕ Y.

Here, X = N(Q)⊥, Y = R(Q)
⊥
. It is possible to state that operators of orthogonal projections

PN(Q), PX and P
R(Q)

, PY on the corresponding subspaces exist. With H2 we denote quotient
space of the space H with kernel N(Q) (H2 = H/N(Q)). As it is known from [7, 8], there is
a continuous bijection p : X → H2 and projection j : H → H2. The triple (H,H2, j) is a local
trivial bundle with a typical layer PN(Q)H. Now we should define the operator

Q = P
R(Q)

Qj−1p : X → R(Q) ⊂ R(Q).

It is easy to see, that the operator is defined in this way is linear, injective, and continuous. By
using the process of completion [9] by norm ‖x‖X = ‖Qx‖F , where F = R(Q), we obtain the
new space X and the expanded operator Q. Then

Q : X → R(Q), X ⊂ X

and so the operator, which is built in this way, performs homeomorphism between the spaces X
and R(Q). Consider the extended operator Q = QPX : H → H1, where

H = N(Q)⊕X,

H1 = R(Q)⊕ Y.
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It is clear that Qx = Qx, x ∈ H and the operator Q would be normally solvable (in this case
R(Q) = R(Q)), that is why [2] is pseudoinvertible with pseudoinverse Q+

, which is called strong
pseudoinverse to the operator Q. This construction is easy to display by the following diagram:

H Q−−−−→ H1

j

y yI
H2 H1

p−1

y yPR(Q)

X
Q−−−−→ R(Q)⊂ R(Q)⋂ ⋂

H Q−−−−→ H1

.

Then the set of solutions of the equation (7) would have such form:

ϕ = Q
+
g + PN(Q)c ∀ c ∈ H.

(iii) Generalized pseudosolutions.
Consider the case, when g /∈ R(Q), which is equivalent to the condition PN(Q∗)g 6= 0. In this

case, there are elements from H, that minimize norm
∥∥Qϕ− g∥∥H for ϕ ∈ H,

ϕ = Q
+
g + PN(Q)c, c ∈ H.

These elements are called generalized (strong) pseudosolutions of the equation (7).
By using all the above we can formulate the following statement [5].
Theorem 1. Let the boundary problem (3), (4), be defined in the Hilbert spaces.
I. Strong generalized solutions exist if and only if

PN(Q
∗
)α− PN(Q

∗
)`

·∫
s

U(·, τ)f(τ) dτ = 0, (8)

if

α− `
·∫

s

U(·, τ)f(τ) dτ ∈ R(Q),

then the solutions would be classical generalized.
II. Generalized pseudosolutions exist if and only if

PN(Q
∗
)α− PN(Q

∗
)`

·∫
s

U(·, τ)f(τ) dτ 6= 0. (9)

III. If (8) or (9) holds, then generalized solutions (strong or pseudosolutions) of the boundary
problem (3), (4) look as following:

ϕ(t, s, c) = U(t, s)PN(Q)c+ U(t, s)Q
+
α+

(
G[f ]

)
(t, s), (10)
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where (
G[f ]

)
(t, s) =

t∫
s

U(t, τ)f(τ) dτ − U(t, s)Q
+
`

·∫
s

U(·, τ)f(τ) dτ

is generalized Green’s operator of the boundary problem (3), (4), c is the arbitrary element of
the space H.

Example. One of the examples of the considered above tasks can be the same one as
defined in [1, p. 318]. Let H0 = −∆ on L2(R3), and functions V1(t) and V2(t) are continuously-
differentiable with the values in the space L2(R3) and L∞(R3) respectively, V (t) = V1(t)+V2(t).

Then the proved in [1, p. 318] theorem X.71 gives us the possibility to use the defined theory
for this task. Particularly, as it follows from theorem X.71 [1, p. 318], the evolutionary operator
U(t, s) on L2(R3) exist, such that ϕs(t) = U(t, s)ϕ is strongly differentiable for any ϕ ∈ D(H0)

and satisfies the equation

d

dt
ϕs(t) = −iH(t)ϕs(t), ϕs(s) = ϕ. (11)

Now let consider generalized boundary condition

lϕs(·) = α. (12)

In the case when α = 0, we get homogeneous boundary problem. As before let us define operator
Q = lU(·, s).

Theorem 2. Boundary value problem (11), (12), which is considered in the Hilbert space
H = L2(R3), has:

I. Strong generalized solutions if and only if

PN(Q
∗
)α = 0; (13)

if α ∈ R(Q), then the solutions would be classical generalized solutions;
II. Generalized pseudosolutions if and only if

PN(Q
∗
)α 6= 0; (14)

III. If the conditions (13) or (14) hold, then the solutions of the boundary-value problem (11),
(12) have the form

ϕ(t, s, c) = U(t, s)PN(Q)c+ U(t, s)Q
+
α,

where c is an arbitrary element of the space H.
Let us consider two-point boundary-value condition

lϕs(·) := ϕs(T )− ϕs(s) = α. (15)

In the case α = 0, weobtain the problemabout periodic solutions. Subsetting it (ϕs(t) = U(t, s)ϕ)
into the equation (15), gives the operator equation

(I − U(T, s))ϕ = −α. (16)
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Due to the fact, that in general case the operator U(T, s) is nonexpanding [10, 11], then the
standard classical procedure for solvability of operator equation (16) can not be used. However,
it is possible to use the previous theorem. As operator Q, in this case, we should choose the
operator Q = I − U(T, s). In this way, we obtain corollary [5].

Corollary 1. Boundary-value problem (11), (15), which is considered in the Hilbert space
H = L2(R3), has:

I. Strong generalized solutions if and only if

P
N
(
(I−U(T,s))

∗)α = 0, (17)

if α ∈ R(I − U(T, s)), then solutions would be classical generalized;
II. Generalized pseudosolutions if and only if

P
N
(
(I−U(T,s))

∗)α 6= 0; (18)

III. If the conditions (17) or (18) hold then the solutions of the boundary-value problem (11),
(15) have the form

ϕ(t, s, c) = U(t, s)P
N(I−U(T,s)) c−

− U(t, s)(I − U(T, s))
+
α,

where c is an arbitrary element of the space H.
Remark 2. Theorem 1 holds also in the non-stationary case when operator H(t) depends

on time. Examples, that are considered above, explain this case.
Remark 3. Consider this boundary-problem at the whole axis t ∈ J = R. Then we obtain

the boundary-value problem with conditions on the infinity. There are a few examples of the
boundary conditions:

(a) lϕ0(·) = ϕ0(+∞)− ϕ0(−∞) = α;

(b) lϕ0(·) = ϕ0(+∞)−Aϕ0(−∞) = α,

where H = H1, operator A is a linear and bounded from the Hilbert space H into itself,
A ∈ L(H) ;

(c) lϕ0(·) = A1ϕ0(+∞)−A2ϕ0(−∞) = α,

A1, A2 are linear, bounded, and mapped from the Hilbert space H into the Hilbert space H1,

A1, A2 ∈ L(H,H1). The questions of a solution existence for evolutionary Schrödinger equation
with the conditions at infinity is the actual task with the application in physics (please see the
previous part of the paper).

Further, let’s obtain the conditions for the bifurcation of solutions for the respective boundary-
value problems.

Bifurcation of solutions. Assume that the boundary-value problem (3), (4) doesn’t have
strong generalized solutions, that means that the condition (9) holds. Let us find the conditions for
perturbations H1(t), l1, when perturbed boundary problem (1), (2) would have strong generalized
conditions. For this purpose, we would use an operator

B0 = PN(Q
∗
)

l1U(·, s)− `
·∫

s

U(·, τ)H1(τ)U(τ, s) dτ

PN(Q).
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We would search for solutions of the boundary-value problem (1), (2) in the form of the series
by degrees of the small parameter ε :

ϕ(t, ε) =

+∞∑
i=−1

εiϕi(t). (19)

Subsetting series (19) in the boundary-value problem (1), (2) and equating coefficients under
corresponding powers ε. The problem of the obtaining coefficient ϕ−1(t) at ε−1 series (19) goes
to this boundary-value problem:

dϕ−1(t)

dt
= −iH(t)ϕ−1(t), (20)

`ϕ−1(·) = 0. (21)

The set of solutions of operator boundary-value problem (20), (21) would have a form

ϕ−1(t, s, c−1) = U(t, s)PN(Q)c−1, t ∈ J,

for arbitrary element c−1 ∈ H, which is defined on the next step of the iteration process. The
problem of defining the coefficient ϕ0(t) at ε0 series (19) goes to such boundary-value problem:

dϕ0(t)

dt
= −iH(t)ϕ0(t) +H1(t)ϕ−1(t, s, c−1) + f(t), (22)

`ϕ0(·) = α+ l1ϕ−1(·, s, c−1). (23)

If the condition (8) holds, then the criteria for the solvability of the boundary-value problem (22),
(23) looks like this:

PN(Q
∗
)

{
α+ l1ϕ−1(·, s, c−1)−

− `
·∫

s

U(·, τ)
(
H1(τ)ϕ−1(τ, s, c−1) + f(τ)

)
dτ

}
= 0.

From it, we finally obtain the operator equation

B0c−1 = PN(Q
∗
)

−α+ `

·∫
s

U(·, τ)f(τ) dτ

. (24)

From here we assume PN(B
∗
0)
PN(Q

∗
) = 0. Here PN(B

∗
0)
, PN(Q

∗
) are orthoprojectors on

cokernel of operators B0, Q respectively. Then operator equation (24) would be solvable. The
set of strong generalized solutions (24)) would have the form:

c−1 = B
+
0 PN(Q

∗
)

−α+ `

·∫
s

U(·, τ)f(τ) dτ

+ PN(B0)cρ
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for the arbitrary element cρ ∈ H. For simplicity, we rewrite this equality in the following way

c−1 = c−1 + PN(B0)cρ,

where

c−1 = B
+
0 PN(Q

∗
)

−α+ `

·∫
s

U(·, τ)f(τ) dτ

.
Then the solutions set of the boundary-value problem (22), (23) has such representation

ϕ−1(t, s, cρ) = ϕ−1(t, s, c−1) +X−1(t, s)PN(B0)cρ,

where

ϕ−1(t, s, c−1) = U(t, s)PN(Q)c−1,

X−1(t, s) = U(t, s)PN(Q).

By using the set (10) and the linearity of the generalized Green’s operator, the set of the solution
of the boundary-value problem (22), (23) can be represented in such form:

ϕ0(t, s, c0) = U(t, s)PN(Q)c0+

+ U(t, s)Q
+ {

α+ l1ϕ−1(·, s, c−1)
}

+

+G
[
H1(·)ϕ−1(·, s, c−1) + f(·)

]
(t, s)+

+
(
U(t, s)Q

+
`X−1(·, s) +G

[
H1(·)X−1(·, s)

]
(t, s)

)
PN(B0)cρ,

where element c0 ∈ H would be defined on the next step of the iteration. Doing in the same way
further, we obtain the theorem [5].

Theorem 3. Assume that such condition holds: PN(B
∗
0)
PN(Q

∗
) = 0.

If unperturbed operator-valued boundary problem (3), (4) doesn’t have strong generali-
zed solutions, then the operator boundary problem (1), (2) has ρ — parametric set of strong
generalized solutions in the form of series

ϕ(t, s, ε, cρ) =

∞∑
i=−1

εi
[
ϕi (t, s, ci) +Xi(t, s)PN(B0)cρ

]
for any cρ ∈ H,

absolutely convergent for the small fixed parameter ε ∈ (0, ε∗]; here

ϕ−1(t, s, c−1) = U(t, s)PN(Q)c−1,

ϕ0(t, s, c0) = U(t, s)PN(Q)c0+

+ U(t, s)Q
+ {

α+ l1ϕ−1(·, s, c−1)
}

+

+G
[
H1(·)ϕ−1(·, s, c−1) + f(·)

]
(t, s),
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ϕi(t, s, ci) = U(t, s)PN(Q)ci + U(t, s)Q
+
l1ϕi−1(·, s, ci−1)+

+G
[
H1(·)ϕi−1(·, s, ci−1)

]
(t, s), i ∈ N;

ci = B
+
0 PY

{
l

·∫
s

U(·, τ)H1(τ)
{
U(τ, s)Q

+
l1ϕi−1(·, s, c0)+

+G
[
H1(·)ϕi−1(·, s, c0)

]
(τ, s)

}
dτ−

− l1(U(·, s)Q+
l1ϕi−1(·, s, c0) +G

[
H1(·)ϕi−1(·, s, c0)

]
(·, s))

}
,

Fi = B
+
0 PY

{
l

·∫
s

U(·, τ)H1(τ)
{
U(τ, s)Q

+
l1Xi−1(·, s)+

+G
[
H1(·)Xi−1(·, s)

]
(τ, s)

}
dτ −

− l1
(
U(·, s)Q+

l1Xi−1(·, s) +G
[
H1(·)Xi−1(·, s)

]
(t, s)

)
+ I

}
,

Xi(t, s) = U(t, s)PN(Q)Fi+

+ U(t, s)Q
+
l1Xi−1(·, s)+

+G
[
H1(·)Xi−1(·, s)

]
(t, s).

Boundary-value problems for a nonlinear nonstationary Schrödinger’s equation. We
establish the conditions of normal and generalized solvability of boundary-value problems for
Schrödinger’s equation.

In the Hilbert space H we consider only a nonlinear Schrödinger’s differential equation

dϕ(t, ε)

dt
= −iH(t)ϕ(t, ε) + εZ(ϕ(t, ε), t, ε) + f(t), t ∈ J, (25)

with operator boundary condition

`ϕ(·, ε) = α+ εJ(ϕ(·, ε), ε), (26)

where J ⊂ R is a finite interval. For every t the unbounded operator H(t) has a form H(t) =

= H0 + V (t) with self-adjoint operator H0 = H∗0 on D = D(H0) ⊂ H and strongly continuous
mapping t → V (t). Operator ` is linear and bounded that maps the set of solutions (25) into
the Hilbert space H1, α is an arbitrary element of the space H1. It is necessary to find such
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solution ϕ(t, ε) of the boundary-value problem (25), (26), that converts to one of solutions of the
following boundary-value problem:

dϕ0(t)

dt
= −iH(t)ϕ0(t) + f(t), t ∈ J, (27)

`ϕ0(·) = α (28)

for ε = 0. Operator-functions Z(ϕ(t, ε), t, ε), J(ϕ(t, ε), ε) hold such restrictions in the nei-
ghborhood of generating solution ϕ0(t) on a set of variables

Z(·, ·, ·) ∈ C1 [‖ϕ− ϕ0‖ ≤ q]× C(J,H)× C[0, ε0],

J(·, ·) ∈ C1 [‖ϕ− ϕ0‖ ≤ q]× C[0, ε0],

where q is positive constant.
Necessary and sufficient conditions for the solutions existence. Firstly, we need to find the

necessary condition for the existence of a strong generalized solution ϕ(t, s, ε) of the boundary-
value problem (25), (26), which at ε = 0 turns into a generating solution ϕ0(t, s, c) of the
form (10).We assume that the boundary-value problem (27), (28) has strong generalized solutions,
which means that the condition (8) is satisfied [12].

Theorem 4 (necessary condition). Assume the boundary-value problem (25), (26) has strong
generalized solution ϕ(t, s, ε), which for ε = 0 turns in one of solutions of generating boundary-
value-problem ϕ0(t, s, c

0) (10) with element c = c0. Then element c0 ∈ H satisfies the operator
equation for generating elements

F (c) = PN(Q
∗
)

{
J(ϕ0(·, s, c), 0)−

− `
·∫

s

U(·, τ)Z(ϕ0(τ, s, c), τ, 0) dτ

}
= 0. (29)

Remark 4. For obtaining results fromTheorem 4 from non-linearities Z(ϕ(t, ε), t, ε), J(ϕ(t,

s, ε), ε) it is sufficient to demand only continuity in the neighborhood of the generating solution.
To obtain a sufficient condition for the existence of a solution, we replace the variables in the

boundary-value problem (25), (26)

ϕ(t, s, ε) = ϕ0(t, s, c
0) + ψ(t, s, ε),

where ϕ0(t, s, c
0) is generated solution (10) with the element c0, which satisfies the operator

equation for the generated elements (29). Among the new variables, we search for the strong
generalized solution of the boundary-value problem

dψ(t, ε)

dt
= −iH(t)ψ(t, ε) + εZ(ϕ0(t, s, c

0) + ψ(t, ε), t, ε), (30)

`ψ(·, ε) = εJ
(
ϕ0(·, s, c0) + ψ(·, ε), ε

)
, (31)
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which in the case of ε = 0 turns to zero solution. The solvability of the boundary-value
problem (30), (31) is equivalent to the solvability of the boundary-value problem (25), (26).
By using the continuous differentiation of the non-linearity in the neighborhood of the generating
solution, we highlight left-hand side as ψ and the terms of zero-order as ε. Then we have the
following:

Z
(
ϕ0(t, s, c

0) + ψ(t, s, ε), t, ε
)

= Z
(
ϕ0(t, s, c

0), t, 0
)

+

+A1(t)ψ(t, s, ε) +R(ψ(t, s, ε), t, ε),

J(ϕ0

(
·, s, c0

)
+ ψ(·, s, ε), ε) = J

(
ϕ0

(
·, s, c0

)
, 0
)

+

+ l1ψ(·, s, ε) +R1(ψ(·, s, ε), ε),

where

A1(t) = A1(t, c
0) = Z(1)

ϕ (v, t, ε)
∣∣∣
v=ϕ0(t,s,c0),ε=0

,

l1 = J (1)(ϕ0, 0),

are Fréchet derivatives in the point ϕ = ϕ0(t, s, c
0), ε = 0, and in case of higher orders

R(ψ, t, ε),R1(ψ, ε) such equalities hold

R(0, t, 0) = 0, R(1)
ψ (0, t, 0) = 0,

R1(0, 0) = 0, R(1)
1ψ (0, 0) = 0.

Then, given the replacement, we consider the boundary-value problem

dψ(t, ε)

dt
= −iH(t)ψ(t, ε)+

+ ε
{
Z
(
ϕ0(t, s, c

0), t, 0
)

+A1(t)ψ(t, ε) +R(ψ(t, ε), t, ε)
}
,

`ψ(·, ε) = ε
{
J
(
ϕ0

(
·, s, c0

)
, 0
)

+ l1ψ(·, ε) +R1(ψ(·, ε), ε)
}
,

which has strong generalized solution

ψ(t, s, c) = U(t, s)PN(Q)c+ ψ (t, s, ε) , c ∈ H,

ψ(t, s, ε) = εU(t, s)Q
+ {

J
(
ϕ0

(
·, s, c0

)
, 0
)

+ l1ψ(·, s, ε) +R1 (ψ (·, s, ε) , ε)
}

+

+ εG [Z(ϕ0 (·, s, c0) , ·, 0) +A1(·)ψ(·, s, ε) +R(ψ(·, s, ε), ·, ε)](t, s),

if the following condition holds:

PN(Q
∗
)

({
J
(
ϕ0

(
·, s, c0

)
, 0
)

+ l1ψ (·, s, ε) +R1 (ψ(·, s, ε), ε)
}
−
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− `
·∫

s

U(·, τ)
{
Z
(
ϕ0

(
τ, s, c0

)
, τ, 0

)
+A1(τ)ψ(τ, s, ε) +R (ψ(τ, s, ε), τ, ε)

}
dτ

)
= 0.

Replacing the linear part of the last expression defined above ψ(t, s, ε) with the representation
U(t, s)PN(Q)c+ψ(t, s, ε) and given the condition (29), gives us the operator equation for c ∈ H :

B0c = PN(Q
∗
)`

·∫
s

U(·, τ)
{
A1(τ)ψ(τ, s, ε) +R (ψ(τ, s, ε), τ, ε)

}
dτ−

− PN(Q
∗
)
{
l1ψ(·, s, ε) +R1 (ψ (·, s, ε) , ε)

}
,

where operator B0 is defined as follows:

B0 := PN(Q
∗
)

l1U(·, s)− `
·∫

s

U(·, τ)A1(τ)U(τ, s)d

PN(Q).

By using all mentioned above we can obtain the statement [12].
Theorem 5. Suppose that the following condition holds for the operator B0 :

PN(B
∗
0)
PN(Q

∗
) = 0.

Then for an arbitrary element c = c0 ∈ H, which satisfies the equation for generating
elements (29), at least one strong generalized solution of the boundary-value problem (25), (26)
exists. This solution can be found using the iterative process

ψk+1(t, s, ε) = εU(t, s)Q
+
J
(
ϕ0

(
·, s, c0

)
+ ψk(·, s, ε), ε

)
+

+ εG [Z (ϕ0 (·, s, c0) + ψk(·, s, ε), ·, ε)](t, s),

ck = B
+
0

{
PN(Q

∗
)`

·∫
s

U(·, τ)
{
A1(τ)ψk(τ, s, ε) +R(ψk(τ, s, ε), τ, ε)

}
dτ−

− PN(Q
∗
)
{
l1ψk (·, s, ε) +R1 (ψk(·, s, ε), ε)

}}
,

ψk+1(t, s, c) = U(t, s)PN(Q)ck + ψk+1(t, s, ε),

ϕk(t, s, ε) = ϕ0(t, s, c
0) + ψk(t, s, ε), k = 0, 1, 2, . . . , ψ0(t, s, ε) = 0,

ϕ(t, s, ε) = lim
k→∞

ϕk(t, s, ε).

Connection between necessary and sufficient conditions. Let’s formulate the result, which
connects the necessary and sufficient conditions [12].
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Corollary 2. Assume operator F (c) has Fréchet derivative F (1)(c) for any element c0 from
the Hilbert space H, which satisfies the equation for the generating elements (29). If F (1)(c) has
bounded inverse, then the boundary-value problem (25), (26) has only one solution for each c0.

Proof. The proof directly comes from the theoremof superposition of differentiablemappings
and from equality

F (1)(c)[h] = PN(Q
∗
)

{
J (1)(v, ε)

∣∣∣
v=ϕ0,ε=0

[
ϕ
(1)
0 (·, s, c)[h]

]
−

− `
·∫

s

U(·, τ) Z(1)(v, τ, ε)
∣∣∣
v=ϕ0,ε=0

[
ϕ
(1)
0 (τ, s, c)[h]

]
dτ

}
= B0[h].

Due to the invertibility of the operator F (1)(c) operator B0 is also invertible. This is why the
equation (29) and the respective boundary-value problem (25), (26) have the only solution for
each element c = c0.

Two-point boundary-value problem for the Schrödinger equation with a constant opera-
tor. Consider the boundary-value problem for the Schrödinger equationwith the constant operator
in the Hilbert space HT :

dϕ(t)

dt
= −iH0ϕ(t) + f(t), t ∈ [0;w], (32)

ϕ(0)− ϕ(w) = α ∈ D, (33)

where HT = H ⊕ H, H is Hilbert space and vector-function f(t) is integrable; unbounded
operator H0 for every t ∈ [0;w] has a form [1, 13]

H0 = i

(
0 T

−T 0

)
= i

(
T 0

0 T

)(
0 I

−I 0

)
= i

(
0 I

−I 0

)(
T 0

0 T

)
.

In the general case operator H0 can have a form

H0 = iJ

(
T 0

0 T

)
= i

(
T 0

0 T

)
J, J = J∗ = J−1,

where T is a positive self-adjoint operator in the Hilbert space H. Since the operator T is closed,
then the domain D(T ) of the operator T is the Hilbert space with the scalar product (Tu, Tu).

Operator H0 is a is self-adjoint in the domain D = D(T )⊕D(T ) with the scalar product

(〈u, v〉, 〈u, v〉)HT = (Tu, Tu)H + (Tv, Tv)H

and an infinitesimal generator of a strongly continuous evolution group:

U(t) := U(t, 0) =

(
cos tT sin tT

− sin tT cos tT

)
,
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Un(t) =

(
cos ntT sin ntT

− sin ntT cos ntT

)
,

‖Un(t)‖ = 1, n ∈ N (nonexpanding group);

ϕ(t) = (ϕ1(t), ϕ2(t))
T , α = (α1, α2)

T , f(t) = (f1(t), f2(t))
T .

Weak solutions of the equation (32) can be represented in the form

ϕ(t) = U(t)c+

t∫
0

U(t)U−1(τ)f(τ) dτ

for an arbitrary element c ∈ HT . Substituting it in the condition (33), we obtain that the solvability
of the boundary-value problem (32), (33) is equivalent to the solvability of such operator equation:

(I − U(w))c = g1, (34)

where

g1 = α+ U(w)

w∫
0

U−1(τ)f(τ) dτ.

Consider the case, when the set I − U(w) is closed R(I − U(w)) = R(I − U(w)). The same as
in the papers [11, 13], the solvability of (34) can be defined, by using the operator

U0(w) = lim
n→∞

∑n

k=0
Uk(w)

n
= lim

n→∞

∑n

k=0
U(kw)

n
,

which is orthoprojector of the space HT on the subspace of 1 ∈ σ(U(w)). Equation (34) would
be solvable if and only if

U0(w)g1 = 0.

Under this condition the solutions of (34) would have the representation

c = U0(w)c+

 ∞∑
k=0

(µ− 1)k

{ ∞∑
l=0

µ−l−1(U(w)− U0(w))l

}k+1

− U0(w)

g3
for 0 < µ− 1 <

1

‖Rµ(U(w))‖
and for an arbitrary c ∈ HT . We obtain such result.

Lemma 1. Suppose the operator I − U(w) has the closed set of values

R(I − U(w)) = R(I − U(w)).

Then:
I. Generalized solutions of the boundary-value problem (32), (33) exist if and only if the

following condition holds:

U0(w)

α+

w∫
0

U−1(τ)f(τ) dτ

 = 0. (35)
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II. Under the condition (35) the solutions (32), (33) have the form

ϕ(t, c) = U(t)U0(w)c+ (G[f, α])(t), (36)

where

(G[f, α])(t) = U(t)

∞∑
k=0

(µ− 1)k

{ ∞∑
l=0

µ−l−1(U(w)− U0(w))l

}k+1

×

×

α+

w∫
0

U(w)U−1(τ)f(τ) dτ

−

− U(t)U0(w)

α+

w∫
0

U(w)U−1(τ)f(τ) dτ

+

+

t∫
0

U(t)U−1(τ)f(τ) dτ,

is generalized Green’s operator of the boundary-value problem (32), (33) for 0 < µ − 1 <

< 1/‖Rµ(U(w))‖.
Let us show how to remove the condition R(I −U(w)) = R(I − U(w)) from the lemma and

to make the boundary-value problem (32), (33) always solvable in the certain sense. Lets extend
all possible cases in detail and clarify a few aspects of some operators and spaces expansions.

(i) Classical generalized solutions.
If R(I−U(w)) = R(I − U(w)), then [2] g1 ∈ R(I−U(w)) if and only if PN((I−U(w))∗)g1 = 0

and the set of solutions (34) has a form [2] c = G[g1] + U0(w)c, c ∈ HT , where [10]

G[g1] = (I − U(w))+ g1 = (I − (U(w)− U0(w)))−1 − U0(w))g1

is generalized Green’s operator (or in the form of the convergent series).
(ii) Strong generalized solutions.
If R(I −U(w)) 6= R(I − U(w)) and element g1 ∈ R(I − U(w)), then operator I −U(w) can

be extended to the operator I − U(w) with the closed set of values.
Now we describe previously built theory in terms of the corresponding spaces and operators

[13]. Since the operator I −U(w) is bounded, then such expansion of the space HT on the direct
sums is fair:

HT = N(I − U(w))⊕X, HT = R(I − U(w))⊕ Y

with X = N(I − U(w))⊥ = R(I − U(w)) and Y = R(I − U(w))
⊥

= N(I − U(w)). Denoting
E = HT /N(I−U(w)) the quotient space of the space HT by the kernel N(I−U(w)), P

R(I−U(w))

and PN(I−U(w)) are orthoprojectors, which project the space HT on the R(I − U(w)) and
N(I − U(w)) respectively. Then the operator

I − U(w) = P
R(I−U(w))

(I − U(w))j−1p : X → R(I − U(w)) ⊂ R(I − U(w))
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is linear, continuous and injective. Here

p : X → E = HT /N(I − U(w)), j : HT → E

is a continuous bijection and projection accordingly. The triple (HT , E, j) is a locally trivial
bundle with typical fibre H1 = PN(I−U(w))H [8]. In this case [9, p. 26 – 29] we can define the
strong generalized solution of the equation

(I − U(w))x = g1, x ∈ X. (37)

Filling the space X by the norm ‖x‖X = ‖(I − U(w))x‖F , where F = R(I − U(w)) [9], we
obtain the new space X. Extended operator

I − U(w) : X → R(I − U(w)), X ⊂ X

is a homeomorphism between X and R(I − U(w)). Then the equation

(I − U(w))ξ = g1

has one solution (I − U(w))−1g1, which is traditionally called a strong generalized solution of
the equation (37).

Remark 5. We emphasize that such expansions of the spaces and the respective operators
exist:

p : X → E, j : HT → E, PX = PX : HT → X, G : R(I − U(w))→ X,

where

HT = N(I − U(w))⊕X, p(x) = p(x), x ∈ X, j(x) = j(x), x ∈ HT ,

PX(x) = PX(x), x ∈ HT
(
PX = P2

X = P∗X
)
,

G[g1] = G[g1], g1 ∈ R(I − U(w)).

Operator I − U(w) =
(
I − U(w)

)
PX : HT → HT is an extension of the operator I −U(w),

(I − U(w))c = (I − U(w))c for the arbitrary element c ∈ HT .
(iii) Strong pseudosolutions.
Consider element g1 /∈ R(I − U(w)). This is equivalent to the condition PN(I−U(w))∗g1 6= 0.

In this case, the elements from HT exist, which minimize the norm
∥∥∥(I − U(w))ξ − g1

∥∥∥
HT

:

ξ = (I − U(w))
−1
g1 + P

N(I−U(w))c ∀ c ∈ HT .

These elements are called strong pseudosolutions analogously to [2].
Let us formulate now complete theorem of solvability of two-point boundary-value problem

for Schrödinger’s equation [13].
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Theorem 6. Define the boundary problem (32), (33).
I (a) Classical or strong generalized solutions of the boundary problem (32), (33) exist if and

only if

U0(w)

α+

w∫
0

U−1(τ)f(τ) dτ

 = 0. (38)

If α+

w∫
0

U−1(τ)f(τ)dτ

 ∈ R(I − U(w)),

then the solutions of (32), (33) are classical generalized.
(b) If (38) holds, then the solutions (32), (33) have the form

ϕ(t, c) = U(t)U0(w)c+
(
G[f, α]

)
(t),

where
(
G[f, α]

)
(t) is an expansion of operator (G[f, α])(t).

II (a) Strong pseudosolutions of boundary-value problem (32), (33) exist if and only if

U0(w)

α+

w∫
0

U−1(τ)f(τ) dτ

 6= 0. (39)

(b) Under the condition (39) the strong pseudosolutions (32), (33) have the following view:

ϕ(t, c) = U(t)U0(w)c+
(
G[f, α]

)
(t),

where

(
G[f, α]

)
(t) = U(t)G[g1] +

t∫
0

U(t)U−1(τ)f(τ) dτ =

= U(t)(I − U(w))
−1
g1 +

t∫
0

U(t)U−1(τ)f(τ) dτ.

Nonlinear case. In the Hilbert space HT , which is defined above, consider the boundary-
value problem

dϕ(t, ε)

dt
= −iH0ϕ(t, ε) + εZ(ϕ(t, ε), t, ε) + f(t), (40)

ϕ(0, ε)− ϕ(w, ε) = α. (41)

We need to find the solution ϕ(t, ε) of the boundary-value problem (40), (41), which turns in one
of the solutions of generating equation (32), (33) ϕ0(t, c) of the form (36) with ε = 0.
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To find the necessary condition of the operator-valued function Z(ϕ, t, ε), we require conti-
nuity in the neighborhood of the generating solution

Z(·, ·, ·) ∈ C[‖ϕ− ϕ0‖ ≤ q]× C([0;w],HT )× C[0, ε0],

where q is some positive constant.
This problem can be solved by using the operator equation for generating amplitudes [13]:

F (c) := U0(w)

w∫
0

U−1(τ)Z(ϕ0(τ, c), τ, 0) dτ = 0. (42)

Theorem 7 (necessary condition). Assume a nonlinear boundary-value problem (40), (41)
has solution ϕ(·, ε), which turns in one of the solutions ϕ0(t, c) of generated problem (32), (33)
with element c = c0, ϕ(t, 0) = ϕ0(t, c

0) for ε = 0. Then this element is a root of the operator
equation for generating amplitudes (42).

Suppose that operator-function Z(ϕ, t, ε) is strongly differentiable in the neighborhood of
generating solution

Z(·, t, ε) ∈ C1 [‖ϕ− ϕ0‖ ≤ q] .

Sufficient condition can be obtained by using the following operator:

B0 :=
dF (c)

dc

∣∣∣∣
c=c0

= U0(w)

w∫
0

U−1(t)A1(t)dt : H → H,

where A1(t) = Z1(v, t, ε)
∣∣
v=ϕ0,ε=0

(derivative in the Fréchet sense).
Theorem 8 (sufficient condition). Suppose the operator B0 satisfies the following con-

ditions:
(i) B0 has Moore – Penrose pseudoinverse;
(ii) PN(B∗

0)U0(w) = 0.

Then for any element c = c0 ∈ HT , which satisfies operator equation for generating ampli-
tudes (42) there is at least one strong generalized solution (40), (41).

This solution can be found by using the iterative process

vk+1(t, ε) = εG
[
Z
(
ϕ0

(
τ, c0

)
+ vk, τ, ε

)
, α
]
(t),

ck = −B+
0 U0(w)

w∫
0

U−1(τ) {A1(τ)vk(τ, ε) +R(vk(τ, ε), τ, ε)} dτ,

R (vk(t, ε), t, ε) = Z
(
ϕ0(t, c

0) + vk(t, ε), t, ε
)
− Z

(
ϕ0(t, c

0), t, 0
)
−A1(t)vk(t, ε),

R(0, t, 0) = 0, R1
x(0, t, 0) = 0,

vk+1(t, ε) = U(t)U0(w)ck + vk+1(t, ε),

ϕk(t, ε) = ϕ0(t, c
0) + vk(t, ε), k = 0, 1, 2, . . . ,

v0(t, ε) = 0, ϕ(t, ε) = lim
k→∞

ϕk(t, ε).
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Corollary 3. Let the operator F (c) has Fréchet derivative F (1) (c) for every element c0 of
the Hilbert space H, which satisfies operator equation for generating amplitudes (42). If F (1) (c)

has bounded inverse, then boundary-value problem (40), (41) has the only solution for every c0.
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