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We study the exponential stability of a trivial invariant manifold of nonlinear extension of the dynamical
system on a torus with impulsive jumps at nonfixed moments of time. The derived sufficient conditions for
the exponential stability of the trivial torus take advantage of the information on qualitative properties of
the system dynamics on the invariant manifold and relax sufficient conditions available in the literature for
a wide class of dynamical systems. New theorems set constraints in a nonwandering set of the dynamical
system that guarantee the exponential stability of trivial manifold and are especially beneficial for the
stability analysis of extensions of dynamical systems with a simple structure of limit sets and recurrent
trajectories.

JHocaiaKeHo eKCIIOHEHIIIaIbHY CTIKICTh TPHMBiaJbHOIO iHBapiaHTHOTO MHOTOBMIY HEJIIHIHOTO PO3IIIK-
PEHHS TUHAMIYHOI CUCTEMHU Ha TOPi 3 IMITyJIbCHUMU 30ypeHHIMU B He(iKcoBaHi MOMeHTH Yacy. OnepxKaHi
MOCTATHI YMOBU €KCITOHEHIIIaIbHOI CTIKOCTI TPUBIaJIBHOTO TOpa CYTTEBMM UYMHOM BPaXOBYIOTH SIKICHY
MIOBEIHKY TPAEKTOPIM CUCTeMM Ha iHBapiaHTHOMY MHoroBui. HoBi Teopemu Ipo eKCIIOHEHITiaIbHy CTiii-
KiCTh TPUBiaJbHOTO TOPOIiMaJIbHOIO MHOTOBMIY BCTAHOBIIIOIOTH OOMEXEHHS Ha MHOXMHI HeOIyKaIOunX
TOYOK TMHAMIYHOI CMCTEMHM Ta MOXYTh OYTH 3aCTOCOBaHI, 30KpeMa, IJIsI aHaji3y CTIMKOCTI iHBapiaHT-
HUX TOPIB PO3IIMPEHb TMHAMIYHUX CHCTEM 3 IIPOCTOI0 CTPYKTYPOIO FPAHUYHMX MHOXKMH 1 peKypPeHTHUX
TPa€KTOPIi.

1. Introduction. Invariant toroidal manifold is the central object of investiga tions in the
qualitative theory of multifrequency oscillations. The existence of invariant tori is a necessary
condition for the existence of multifrequency oscillations, which are formed by quasiperiodic
solutions to a dynamical system [1]. Fundamental results on the existence of invariant toroi-
dal manifolds of linear systems in 7, x R", perturbation theory of invariant manifolds for
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nonlinear systems, smoothness, and stability properties of invariant tori have been developed by
A. M. Samoilenko and are summarized in [1]. In [2], the stability properties of invariant tori of
systems defined in the direct product of m-dimensional torus 7, and n-dimensional Euclidean
space R™ have been studied in terms of sign-definite quadratic forms. Sufficient conditions for
the existence and stability of invariant tori of linear extensions of dynamical systems on torus
that undergo impulsive perturbations [3 —5] have been derived in [6, 7].

In this paper, we derive new sufficient conditions for the exponential stability of trivial torus
of nonlinear extension of dynamical system on 7, that undergoes impulsive perturbations when
the trajectory on torus intersects a predefined submanifold of 7,,. We consider the invariant
manifold not just as a set of points, but rather as a set of trajectories of the dynamical system
and account for the system’s dynamics on the surface of the torus. This approach leads us to
sufficient conditions for the exponential stability of trivial torus in terms of quadratic forms which
are sign-definite not on the whole surface of 7,,, but only in non-wandering set of dynamical
system.

A similar technique for the stability analysis of invariant tori of linear extensions of dynamical
systems on 7, has been used in [8, 9] for the impulse-free case and in [10—13] for the systems
with impulsive perturbations. Sufficient conditions for the exponential stability and instability of
trivial torus of nonlinear extensions of dynamical systems on torus without impulses in terms of
sign-indefinite on 7, quadratic forms have been derived in [14].

Notation. By C(7T,,) we denote the space of continuous functions F' = F(p) defined on
torus 7, which are 2r-periodic with respect to each of the components ¢,, v = 1,...,m.
The subspace C'(T,,) C C(T,,) denotes the space of continuously differentiable functions
F € C(Tm). By C (T, x R™) we denote the space of continuous functions F' = F'(p, z) defined
on 7,, x R™ that are of class C(7,,) for every fixed € R™. Finally, C! (7,, x R") denotes the
space of continuously differentiable functions F' = F'(¢, x) defined on 7, x R™ that are of class
CY(T,,) for every fixed z € R™. For any r > 0 the r-neighbourhood of a set € is denoted by
0,(Q). For any matrix S the expressions S > 0, S > 0, S < 0, and S < 0 mean that S is
positive definite, positive semidefinite, negative definite, and negative semidefinite, respectively.

2. Problem statement. We consider a system of impulsive differential equations defined in
the direct product of m-dimensional torus 7, and n-dimensional Euclidean space R":

dﬁ_ (o), dx

= = P(p,2)s,

dt @2.1)
Az|per = I(p, 7)z,

where ¢ = (¢1,...,0m)" € Ty © = (21,...,2,)" € R", functions P,I € C (T, x R"),
a € C(T,). We assume that the following conditions hold true:
(A1) 3M > 0 such that V(p,z) € T, Xx R™

1P (g, )| < M; (2.2)
(A2) Vr >0 3L = L(r) > 0 such that V2/, 2", ||2/|| <, ||2"|| <7 Vo € T
1P (¢, 2") = P (oa) || < Lf|2" = ']
(A3) JA > 0 such that V', " € T,

lale”) — a(e)]| < All¢” — ¢ (2.3)
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Condition (2.3) guarantees that the system

de
= = av) 24)

generates a dynamical system on 7,,, which we shall denote by ¢;(y). For any set 2 C 7, let
wie() = U wi(e)-
peN

The impulsive set I" is defined by
I'={peTml|e(p) =0}

where ® € C(7,,). We assume that for any ¢ € T, there exist {¢;(¢)};°, C (0,+00) which are
the roots of the gather ®(¢;(¢)) = 0, and

3 6>0 VQO eT, Vi>1 ti+1((p) — ti((p) > 0. (25)

The latter condition excludes the occurrence of a so-called beating or Zeno phenomenon, which
is characterized by infinitely many impulsive jumps over a finite period of time. The Zeno
phenomenon leads to the loss of forward completeness of solutions to impulsive system and
complicates their asymptotic characterization. An attempt to prolong solutions beyond Zeno time
and to study the asymptotic properties of the prolonged solutions can be found in [15, 16].

Under the made assumptions (A1) —(A3) for any initial value 2° € R” there exists a unique
solution to the Cauchy problem

that depends on ¢ € 7, as a parameter. We denote this solution by z(t, p,z"). System (2.1)
possesses invariant toroidal manifold x = 0, ¢ € 7,,, which is called trivial.

In this paper, we aim to derive less restrictive compared to [2, 12] sufficient conditions for the
exponential stability of trivial invariant torus of system (2.1).

Definition 2.1 [1]. Trivial invariant torus

of the system (2.1) is called exponentially stable if there exist constants K > 0, v > 0, and § > 0
such that for all ¢ € Ty, and for all 2° € R", ||2°|| < & it holds that

Vi >0 HZL‘ (t,cp,:vo)H <K HZEOH et (2.6)

In order to derive the main result of the paper we make use of the concept of a non-wandering
set of a dynamical system.

Definition 2.2 [17]. Apoint ¢ € Ty, is called awandering point of the dynamical system (2.4)
if there exist a neighbourhood O,(p), r = r(¢) > 0, and a moment of time T = T'(yp) > 0 such
that

Or(0) Nee(Or(p) =@ VE>T.
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Let W be the set of all wandering points of (2.4) and let Q2 = 7,, \ W be a set of all non-
wandering points of dynamical system (2.4). Since 7, is a compact set, the set {2 is a nonempty,
invariant, and compact subset of 7,, [1]. Additionally, the following lemma holds true.

Lemma 2.1 [17]. Forany r > 0 there exist T(r) > 0 and N (r) > 0 such that for any ¢ & <
the corresponding trajectory ¢i(p) spends only a finite time that is bounded by T'(r) outside the
r-neighbourhood of the set Q) and leaves this set not more than N (r) times.

Lemma 2.1 suggests that the trajectories of the dynamical system ¢;(¢) spend most of their
life-time in a vicinity of non-wandering set €. This observation motivates us to establish the
sufficient conditions for the exponential stability of trivial torus by imposing some restrictions
on the system dynamics only in a vicinity of 2 and not on the whole surface of torus 7,.

3. Main results. For any ¢ € 7,,,, * € R" let us denote

A 0S(p,x) 05 (¢, x)

Sloa) = = )+ =5, (Plp,m)z) + S(p,2)Plp,x) + P (p,2)S(p,2),

where S = S(y, ) is a symmetric matrix of class C* (7,, x R").
Theorem 3.1. Let (Al)—(A3) hold true and there exist a symmetric matrix S = S(p,x) of
class C* (T, x R™) such that

A~

VoeQ S(e,0)>0, S(p,0)<D0. (3.1)
If for some r > 0 the dwell-time condition
1 Y
aln (Ka) — 26 < 0 (3.2)
is fulfilled, where
a=max||E+I1(,0)], (3.3)
el
N(r)+1
K = <C> 2 62(M+%)T(r),
v
and the constants C > 0, v > 0 defined by the inequalities
Voe0,(Q) VzeR", |z|<r S(pz)—vE>0, S(p,z)+~E<O0, (3.4
VoeTn VaeR", |zl <r |S(pa)ll+|Sea)| <C. (3.5)

for N >0, T > 0 from Lemma 2.1, then the trivial torus x = 0, ¢ € T,, of system (2.1) is
exponentially stable.

Proof. Letus fix r > 0, v = ~(r), and C = C(r) > 0 such that (3.4) and (3.5) hold. Note
that due to (3.1) and continuous dependence of the polynomial’s roots on its coefficients [18],
there exists s > 0 such that (3.4) holds for r € [0,rg] and some v = ~(r) > 0.

The proof of the theorem is divided into two parts. In the first part, we study the evolution
of solutions to (2.1) in the vicinity of invariant manifold under the assumption that no impulsive
perturbations occur. In the second part, we investigate the influence of impulsive jumps on the
solutions to (2.1).

We start considering system (2.1) under the assumption that no impulses occur. Following the
arguments of [14], let us distinguish three qualitatively different types of behaviour of trajectories
of the dynamical system ¢ = a(y):
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(A) a trajectory starts within the r-neighbourhood of the non-wandering set €2 and remains
there for all times;
(B) a trajectory starts within the r-neighbourhood of €2, but leaves it within a finite time;
(C) atrajectory starts outside the r-neighbourhood of €.
Case A. Let
pe0.(Q) and Vs>0 ps(p) € 0.(Q).

Then, there exists 7' € (0, +oc] such that for the solution z(t) = x (t, ¢, 2") to (2) with ||2°|| < r
the estimate ||z(¢)|| < r holds for ¢ € [0, 7). Hence, denoting by

Vip,2) = (S(p, )z, 2),

from (3.4), (3.5) we obtain the following estimates:
YNa@P <V (eile), 2(t) < Clla(®)])?,

LV (o), a(0) < (o)1

hold for ¢ € [0,T"). From the latter inequalities we get that

V(pulp),(t) <V (p,2°) e 2"

1

. C\?2
Hence, there exist constants K| = <> >1and v; = 7276’ > 0 such that Vt € [0,T)
Y

la(®)] < Ki 2] . (3.6)

For ||2°|] < KL we obtain that 7" = 400 and the inequality (3.6) holds for all ¢ > 0.
1
Case B. Now, let ¢ € O,(92), but there exists ¢; > 0 such that

vVt e [0,t1) i) € O:(), w1 (p) & O:(Q).

From Lemma 2.1, for any » > 0 there exist uniform w.r.t. ¢ upper bounds 7'(r) and N(r) for
the total time T'(¢,r) spent by the trajectory () outside the set O,(€2) and for the number
of times N(p,r) the trajectory leaves O,(12). Associating the time periods t;(¢,t) and 7;(p, ),
which denotes the time spent by the trajectory ¢:(¢) in the set O,(£2) and outside O, (€2), with

every index ¢ € {1,..., N(¢,7)} we obtain the sequences
N 5 N )
e, e iYY N < N,
N(p,r)
Z Tz = T 907 ) T(T)
=1
such that

ei() € O (),

N(

p,r)—1 k k N(p,r) (3.7)
vte (0,t)u (Z T ti), ) (Ti+ 1) +tk+1>U Y (Tt t), +oo .
= 1 =1

1 1= i=1

o
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Then, from (A), for ¢ € [0, t1]
0| ,— . 0 r
[z(t)[| < Kq||2°|| e ™ <r if  ||2°) < ook
For t € [t1,t1 + 7], from (2.2) and Wazewski inequality [19],

r

le@l < lla(t)lle™ =) < KafJafl| e M0me™ < o] < g

For ¢ € [tl + 71,01+ 711 —i—tz],

|z(t)|| < K2 [[a0]| etMment < if |20 < W
Continuing this process, due to (3.7), we finally conclude that
VE>0 [zt)]| < Ko |20 e
for N ,
Ky = KT,y KN 1) =] < %
Case C. Now, let us consider the case of ¢ ¢ O,(92). In this case,
310 € (0,T(r),  ¢n(p) € O:(Q)
and
vt e [0,m0), [z(t)] < Ky |20 eMTmTTemmt,
Then, from (B), for
Ko = Ky OTATIIO, 6 = Ky (T)+leZ(W+M)T(r)

1

we obtain the required estimate (2.6).
Summarizing the first phase of the proof, we have proven that in the case of absence of
impulses, for some r > 0 there exist

K = K(r) = max{K\(r), K2(r), K3(r)} >1  and 6= K’("T) >0
such that the solutions to (2) with ||2°|| < § satisfy
vVt >0 Haz (t, go,xo)H < KH:UOH e~ zct, (3.8)

Now, let us study the impact of the impulsive jumps on solutions to (2). Without loss of
generality, we assume that o > 1 (i.e., impulsive jumps play destabilizing role in the system
dynamics). Let us fix sufficiently small » > 0 such that condition (3.2) holds and for some
positive p > 0

%ln (Ka(r)) — — < —p, (3.9)
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where

a(r)= max |[E+I(p,x)|. (3.10)
@€l ||z||<r

The existence of positive p follows from (3.3) and continuity property of the map I(y,-) for
every fixed ¢ € T.

We pick arbitrary z° € R™ with ||2°|| <
x(t, @, 2%) using (3.8) and (3.10):

a(r ) K ¢ € T,, and estimate the norm of solution

e T r
vie0,u@) et ez’) SR SR
G.11)
r a2 r
l#(t1(0) +0,,2) | < alr) i e 1 < &

Since ||z (t1(p) + 0,¢,2%) || < — K we may use inequality (3.8) to estimate the norm of solution
in the interval ¢ € [¢1(¢p),t2(¢)]. Analogously to (3.11) we get

vt € [ti(e), ta(9)] [ (t,2° 9)|| < K [|2(ta(0) + 0, 0,2%) | e"2 012D <

< Ka(r) Hx (t1(e), 907330) H e~ 20 (t-t1(9) <

< K2a(r) |[2°]] 26" @lemae (@) <

7t

< K204<7") HxOH e_%t < re I
From (3.9), (3.10) we derive the estimate for the solution’s norm after the impulsive jump:
Hx(tg(go) +0, cp,:no) H < a(r)re_%h(“’) < oz(r)re_%e

— Le(%ln(a(T)K)*%W < Le—/w <
K - K - K

Since ||z (t2(¢) + 0,0, 2°)|| < %, we can estimate the norm of the solution in the interval

[t2(¢), ta(p)]. From (3.8), (3.9), (3.10) we get that V¢ € [ta(p), t3(¢)]

e (£ 0.2%) | < K [ (ta(p) + 0, p,a%) | e~ 2 120D <
< Ka(r) [z (ta(¢), 0, 2°) | e 72020 <

< K2a(7“) Hl’ (t1(<P) + 0, QO,HL‘O) H e~ 20 (12()—11(9) =35 (1-12(¢)) <

< K%a?(r) ||z (t1(), %) | 720 (719D <

< K3a?(r) HxOH e~ 201(9) g ae (t-t1(9) <

< K3a2(r) ||2°|| e~ 20t = K2a( onuelln(a(r)l(wef%t <
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< Ka(y) 9] e W02t <

< K?a(r) Ha:OH e Mt

Continuing this process, after the n-th impulse we obtain

|2 (ta () + 0,¢,2°)| < %ef(nfl)uo < %7

Yt € [tn(p), tht1(v)] H:z: (t, gp,mO)H < K2a(r) HmOH e M

that imply the desired exponential stability of trivial torus z = 0, ¢ € T,.

This completes the proof.

Theorem 3.1 requires the knowledge of the constants N, 7" from Lemma 2.1 in order to
check the dwell-time condition (3.2) and conclude exponential stability of the trivial torus. If the
non-wandering set {2 and impulsive set I' do not intersect, the following theorem, which does
not require the fulfillment of the condition (3.2), holds true.

Theorem 3.2. Let (Al)—(A3) hold and there exist a symmetric matrix S = S(p,x) of class
C! (Tyn x R™) such that

VoeQ S(e,0)>0, S(p,0)<D0.

I
0ONT =2 (3.12)

and for some 0 > 0 the condition (2.5) holds true, then the trivial torus © = 0, ¢ € T, of
system (2.1) is exponentially stable.

Proof. The proofis based on the parts (A), (B), and (C) from the proof of Theorem 3.1. From
(3.12) it follows that there exists > 0 such that trajectories that start in the r-neighbourhood
of © and remain there for all times (case (A) from the proof of Theorem 3.1) do not undergo
impulsive jumps. Then, there exist constants K; > 1 and v > 0 such that vt > 0

le(®)]] < Kilja®f e

for |20 < —.
Ky
Since every trajectory ¢;(p) resides outside the O,(Q2) only for a finite time 7'(r), the
condition (2.5) implies that the system may undergo only a finite number of impulses Npax <

< Tga) Then, from (B) and (C) we derive the estimate (3.8) with

This completes the proof.
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