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The differential equation ' = f(t,x,2") together with two functional boundary conditions is considered.
Here f(t,x,y) is local Carathéodory function which may be singular at the points x = 0 andy = 0 of
the phase variables x and y. The main common feature for these two singular problems is the fact that
any solution or the derivative of any solution “pass through” the singularities of f somewhere inside of
[0, T]. Existence results are proved by the regularization and sequential techniques and using the Borsuk
antipodal theorem, the Leray — Schauder degree and the Vitali’s convergence theorem.

Pozeanoaemves ougpepenyianvie pisanua x'' = f(t,z,z') 3 060oma GyHKUIOHAALHUMU 2PAHUYHUMU
ymosamu. Tym f(t,x,y) aokaavho € pynkuieto Kapameooopi, wo moxce mamu oco6augicmos 8i0HOCHO
¢azosux aminHux r ma y 6 mouxax r = 0 may = 0. OCHOBHOIO CRIALHOK BAACMUBICIIO UUX 080X
3aday 3 ocobausocmamu € me, wo 6yOb-aKull po3s’a3ok abo noxioHa 6yOb-aK020 po38’ 3Ky ,,iPOX0-
oumv” uepes ocobausocmi [ ecepeouni [0,T]. Peayavmamu npo icHy8aHHa 008e0eHO 3a OONOMO2010
pe2yaapusayii ma nocai008HOCMell, a MAKOX 3 UKOPUCAHHAM AHMUMO0AAbHOT meopemu Bapcyka,
cmenens Jlepe — lllayoepa ma meopemu Bimanai npo 36ixcHicmo.

1. Introduction. Let 7" be a positive constant, J = [0,7], R = (0,00) and ]Ro = R\ {0}.
Throughout the paper we denote by |z|| = max{|z(t)| : t € J}, ||z|r = fo |x(t)| dt and
|z]|oo = essmax{|z(t)| : t € J} the norm in the space C°(J), L1(J) and L (J), respectively.
ACY(J) is the set of all functions having the first derivatives absolutely continuous on .J. For
any measurable set M C R, (M) denotes the Lebesgue measure of M.

Let e € [0,T) and A be the set of all functionals o : C°([¢,T]) — R which are

(a) continuous, «(0) = 0, and

(b) increasing (i.e. z,y € C%([e,T)), z(t) < y(t) fort € [e,T] = a(x) < a(y)) (see [1-4]).

Example 1.1. Let € [0,7), k € C°(R), be an increasing function, k(0) = 0,7 € Ly([e, T)),
r>0aeonfe,T,e<t1 <tag <T,e<&E <& <., <Tanda; >0,j =1,2,...,n,be
constants. Then the functionals

max{z(t) : t; <t <to}, min{z(t):t; <t < o},

to to t

/r(t // )) dsdt, Zaj

t1 t1 t1
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388 S. STANEK

and all their linear combinations with positive coefficients belong to A. (see [1-4]).

In the paper we consider the second order differential equation
2" (t) = f(t,x(t),2'(t)), (1.1)
together with the functional boundary conditions either
a(z) =0, 2'(0) =0, a € A.withe € [0,7) (1.2)

or
z(0) =0, a(z)=0, a € A. withe € (0,7). (1.3)

Here f satisfies the local Carathéodory conditions on J x D, D C R3 (f € Car(J x D)) and
f(t, z,y) may be singular at the points + = 0 and y = 0 of the phase variables x and y.

Definition 1.1.We say that a function x € ACY(J) is a solution of BVP (1.1), (1.2) if x satisfies
the boundary conditions (1.2)" and (1.1) holds for a.e. t € J.

Definition 1.2.By a solution of BVP (1.1), (1.3) we understand a function x € AC*(J) that
satisfies the boundary conditions (1.3) and, for a.e. t € J, fulfils (1.1).

The aim of this paper is to give conditions on the function f which guarantee the solvability
of BVPs (1.1),(1.2) and (1.1),(1.3). We note (see Lemma 2.1) that the condition a(z) = 0 in
(1.2) and (1.3) implies z(§) = 0 for some { € [¢,T]. Hence BVPs (1.1),(1.2) and (1.1),(1.3)
are singular with f having singularities in both phase variables. Indeed, if with some ¢ € (0,7))
z(§) = 0 for a solution = of BVP (1.1),(1.2), which always occurs if ¢ € (0,7), then the si-
ngularities of f “appear” at the fixed point ¢ = 0, where 2’ vanishes, and the inner point & of
J, where 2/ “passes through” a singularity of f. For BVP (1.1),(1.3) the functional boundary
conditions (1.3) imply that the derivative of any solution to this problem vanishes at an inner
point of J. Hence the singularities of f “appear” now in any solution x of BVP (1.1), (1.3) at the
fixed point ¢ = 0, where x vanishes, and an inner point of .J, where 2’ vanishes. So, the main
common feature of BVPs (1.1), (1.2) and (1.1), (1.3) is the fact that any solution or the derivati-
ve of any solution “passes through” singularities of f somewhere inside .J. As we know, these
problems for equation (1.1) with a one-parameter family of the functional boundary conditions
(1.2) or (1.3) with the parameter ¢ has not been considered, yet.

In the special case where a(z) = =z(T) in (1.3), BVP (1.1),(1.3) is the Dirichlet boundary-
value problem. We recall that this problem was considered with f having singularities in phase
variables in many papers (see, e.g., [5—22] and the references therein) with solutions in the class
C%(J)NnC?((0,T)) or CY(J)NC?((0,T)) or C°(J) N ACL .((0,T)). Here ACL_((0,7))) denotes
the set of functions whose first derivatives are absolutely continuous on each [a,b] C (0,7T).
The nonlinearities of equations are usually nonpositive ([5, 6, 10, 11, 1420, 22]) but in [7-9],
[12, 13, 21] this assumption is overcome.

We note that functional boundary-value conditions for regular (in phase variables) differenti-
al equations and functional differential equations are used in many papers, for instance in [1 -4,
23-31] and the references therein.

'If € C°(J) and @ € A. withe € [0,T), then throughout the paper a(z) means a(z|.,r]) Where 2| 7]
denotes the restriction of z to the interval [, T.
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TWO FUNCTIONAL BOUNDARY-VALUE PROBLEMS WITH SINGULARITIES IN PHASE VARIABLES 389

In the paper the following two assumptions on the function f in (1.1) are used for BVP

(1.1), (1.2):
(Hy) f € Car (J xRg x Ry) and there exist ¢ € L;(J) and positive constants a, v such that

0 < () < f(t,x,y) forae.t € Jandeach (z,y) € Ry x Ry

and

t
/w(s) ds > at” fort € J, (1.4)
0

(Ho) for a.e. t € J and each (z,y) € Ry x R4,

[t z,y) < o(t) + qo(t)wo(lz]) + g1 (H)wi(y) + ho(t)]x] + ha(t)y,

where ¢, h; € Li(J), ¢i € Loo(J) are nonnegative, w; : Ry — R are nonincreasing, i = 0, 1,

T T
/wo <1j_7t1+7> dt < oo, /wl(atv)dt < 00, (1.5)
0 0

and
Tl[hollL + lhalz < 1, (1.6)

and for BVP (1.1), (1.3):

(H3) f € Car(J x R3) and there exists a € (0,00) such that a < —f(t,x,y) forae.t €
€ J and each (z,y) € RZ;

(H,) for a.e.t € J and each (z,y) € R2,

—ftz,y) < ¢(t) + qo)wo(lz]) + qr(t)wi([yl) + ho(t)]z| + hi()]y],

where ¢, h; € Li(J), ¢; € Loo(J) are nonnegative, w; : Ry — R are nonincreasing,

T
/wi(t) dt < oo,
0

wi(uv) = Aw;(u)w;(v) for u,v € R with a positive constant A, i = 0, 1, and (1.6) holds.

The paper is organized as follows. Section 2 deals with auxiliary regular two-parameters
BVPs to problems (1.1),(1.2) and (1.1),(1.3) which depend on the parameters A € [0, 1] and
n € N. We give bounds for their solutions. Applying the Borsuk antipodal theorem and the
Leray—Schauder degree theory (see, e.g., [32]), we prove the existence of solutions for the
above auxiliary problems with A = 1. In addition, the uniform absolute continuity on J for
some sets of functions formed by a superposition using solutions of the auxiliary problems
with A = 1 is proved. The main results for the solvability of BVPs (1.1),(1.2) and (1.1),(1.3)
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390 S. STANEK

are given in Section 3. The proofs are based on the sequential technique and use the Arzela—
Ascoli theorem and the Vitali’s convergence theorem (see, e.g., [33, 34]). Finally, two examples
demonstrate general existence results.

2. Auxiliary regular BVPs. 2.1. BVP (1.1), (1.2). Let assumptions (H;) and (H>) be satisfied.
For each n € N, define x,, € C°(R) and f,, € Car (J x R?) by the formulas

1
u[  for fu] > —;

3

Xn(u) =

—_

for |u| < —,

3

Ft 2 xnly)  for (t2,y) € J ((—oo,—i] U [i,oo)) « R;

) =4 51 (0 mon) (4 2) 47 (-2 (5 -a))

11
for (t,z,y) € J x [(—,)] x R.
L n’'n

From (H;) and (H) it follows

0 < 9(t) < fult,z,y) forae.t € Jandeach (z,y) € R? (2.1)

and

Fult2,9) < 6(1) + a0t (max {i m}) (e (i) i

+ ho()(1+ [z]) + ha()(1 + [yl) (22)
for a.e. t € J and each (x,y) € R2. It is obvious that
fa(t2,y) < (1) + go(Bwo(|2]) + g1 (B)wr(y]) + ho(8)(L + []) + () (1 + |y]) (2.3)
for a.e. t € J and each (x,y) € RZ.
Consider the two-parameter family of the differential equations
2"(t) = Mt x(t), 2'(1)) (24)An

depending on the parameters A € [0,1] and n € N.
In our considerations we will use the following lemma.

Lemma 2.1 [1,2]. Let « € A. withe € [0,T) and let a(x) = 0 for some x € C%([e,T)).
Then there exists § € [e, T such that

z(§) = 0.
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TWO FUNCTIONAL BOUNDARY-VALUE PROBLEMS WITH SINGULARITIES IN PHASE VARIABLES 391

Lemma 2.2. Let assumptions (H1) and (Hz) be satisfied and let n € N. Then any solution x
of BVPs (2.4) 5, (1.2) with X\ € [0, 1] satisfies the inequalities

|zl < KT, |[l']] < K, (2.5)

where K > 0 is a constant independent of \ and o € A..

Proof. Fix X € [0,1]. Let x be a solution of BVP (2.4), ,,, (1.2). By Lemma 2.1, 2(§) = 0 for
some ¢ € [e,T], and so

t
z(t)| = ‘/:p/(s) ds‘ < T, te (2.6)
£
From 2/(0) = 0 and (2.1) we see that 2/(¢t) > 0 for ¢t € J and then (2.2) gives

0<2(t) = )\/fn(s,:c(s),az'(s))ds <
0

T
1 1
)+ qo(t =) +qat)w | =)+
o () i 2
o)1+ a(®)]) + B (2)(1 + |x’<t>|>] it <

1 1
< r¢uL+wo< )||qo||oo+w1( )nqluoo

+(1+ T2 Dlkollz + (1 + 2" DAl

IN

A

fort € J. Hence

, A
'] < — —
L =TlhollL — Pl
where
1 1
A= ol (3 ) Haollc + (3 ) e + Wil + 1l
and then (2.6) yields
Jall < AT
= 1=Tlhollz = hllr
A

Consequently, (2.5) holds with K = .
quently (2:3) = TTholly = Tnllz
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392 S. STANEK

Lemma 2.3. Let assumptions (H1) and (Hs) be satisfied. Then for each n € N, there exists a
solution of BVP (2.4)1 ,, (1.2).

Proof. Fix n € N. By Lemma 2.2, there is a constant X > 0 such that (2.5) holds for any
solution z of BVPs (2.4), ,,, (1.2) with A € [0, 1]. Set

Q={(z,¢): (z,¢) € CLJ) xR, ||z|| < KT +1, ||| < K +1, |¢| < KT + 1}.

Then Q is an open ball in the Banach space C*(.J) xR with the norm ||(x, ¢) ||« = max{||z||, |||} +
+|c|. Define the operator K : [0,1] x Q — C'(J) x R by

K\ z,c)=[c+ )\//fn(v,x(v),x'(v))dv ds, c+ a(x) — (1 — Na(—x)
00

Since f,, € Car (J x R?) and « is a continuous and increasing functional on C°([e, T), we see
that K is a compact operator. Besides

K0, —z,—c) = (—¢, —c+ a(—z) — a(z)) = —(¢, c+ a(x) — a(—z)) = —K(0,z,¢)

for (z,c) € Q,andso K(0, -, -) is an odd operator. Assume that (Ao, 2o, co) = (0, co) for some
Ao € [0,1] and (z,cp) € 9. Then

t s

xo(t) = co +Ao//fn(v,xo(v)),xg(v))dv ds, teJ, 2.7)
0

0

and
a(z0) = (1 = Ao)a(—20). (2.8)

From (2.7) we deduce that z(,(0) = 0 and zo(t) is a solution of (2.4)x, . If zo(t) # 0 for
t € [e,T],say zp > 0on [g,T], then a(xp) > 0 and a(—xzp) < 0, contrary to (2.8). Therefore
zo(n) = 0 for some n € [¢,7]. Now Lemma 2.2 (with the functional « in Lemma 2.2 defined
by a(z) = z(n) for z € C%Je, T))) gives ||zo]| < KT, ||2}|| < K and then, by (2.7), |co| =
= |zo(0)| < KT.Hence (z¢,cy) ¢ 092 and we have proved that

K\ x,¢) # (z,¢) for X € [0,1] and (x,c) € 00.
Therefore, by the Leray — Schauder degree theory,
D(Z - K(0,-,-),92,0) = D(Z - K(1,-,-),8,0)
where “D” stands for the Leray — Schauder degree and 7 is the identity operator on C(J) x R.

Since D(Z—-K(0, -, -),£2,0) # 0by the Borsuk antipodal theorem, we have D(Z—K(1,-,-),Q,0) #
# 0, and consequently there exists a fixed point (x., c.) € 2 of the operator K(1, -, -). Then

t s
x4 (t) = ¢ +//fn(v,x*(v),x;(v))dv ds, teJ,
0 0
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TWO FUNCTIONAL BOUNDARY-VALUE PROBLEMS WITH SINGULARITIES IN PHASE VARIABLES 393

and o(z,) = 0. It follows that z, is a solution of BVP (2.4); ,,, (1.2).

Lemma 2.4. Let assumption (Hy) be satisfied and n € N. Let x be a solution of BVP
(2.4)1,n, (1.2). Then

2'(t) > at? forteJ (2.9)
and
a 1+
> — .
lz(t)| > 1+7|t €| fort e J (2.10)

where & € [e,T] is a unique zero of x on J.

Proof. From 2" (t) > (t) fora.e. t € J,2'(0) = 0 and (1.4) we deduce (2.9). Hence z is
increasing on J and from «(z) = 0 and Lemma 2.1 we see that = vanishes at a unique point
¢ € [, T]. Now from z(£) = 0 and (2.9) it may be concluded

%(glﬂ — ") fort € [0,¢]if € > 0;
t)] >
(1) = & e s _
r(t T fort e [, T)ifE< T
5

and since {17 — 17 > (¢ — ) for t € [0,€] and 1Y — 1Y > (¢ — €)1 for t € [¢,T),
(2.10) is true.

Lemma 2.5. Let assumptions (Hy) and (H2) be satisfied. Then there exists a positive constant
A such that

|| < AT, ||2'|| < A, 2.11)

for any solution x of BVP (2.4)1 ,, (1.2) withn € N.

Proof. Let x be a solution of BVP (2.4) ,,, (1.2). We first show that

T T
[ aot0near < 2ol [ (m”) dt. (2.12)
0 0

ISSN 1562-3076. Heainitini koausarnnsa, 2002, m. 5, N 3



394 S. STANEK

By Lemma 2.4, there exists a unique £ € [¢,T] such that z(£) = 0 and (2.10) holds. Therefore

)1+V> dt +

T 3
/@wmmetsummUw(j
0 0

3 T-¢
_ @ 14y / @ 14y
= —t dt + —1 dt| <
||QOHOO[/WO<1+’7 > UJO<1+’Y <
0

t
Using (2.3), (2.9), (2.12) and |z(t)| < /x )ds| < T||2'|| for t € J, we have
3

o
AN
H\

=
A

T
[ttt @) <
0

IN

T
/ 1)+ qo(Dwo(|2(8)]) + a1 (w1 (2 (1)) +
0

Fho())(1+ Tl + A (D)1 + [l2/])] dt <

IN

T T
a
ol + 2l [ (T2t ) dt o [ o) s
0 0

HlhollL (X + Tl") + [l (X + [12'])
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TWO FUNCTIONAL BOUNDARY-VALUE PROBLEMS WITH SINGULARITIES IN PHASE VARIABLES 395

fort € J,and so (2.11) holds with

T T
a
ol + 2anle [ (0 deot ol [ ontatat + ol + Il
A= 0 0

L —T|hollz — Pz

Lemma 2.6. Let assumptions (H,) and (Ha) be satisfied. Then for any at most countable set
{(aj,bj)}je1 of mutually disjoint intervals (a;,b;) C J and any solution x of BVP (2.4)1 ,, (1.2)
withn € N, there exist measurable subsets M; of J, p(M;) < 3 _.cq(bj — aj), i = 1,2, such that

bj
Z/QO(t>w0(!fB(t)\)dt <

Jel a;

<Jlollo | [ 0 <1j,yt1+v> i+ [ (H‘Lthv) i) (2.13)
M

1 Mo

Proof. Let {(a;,b;)} e be at most countable set of mutually disjoint intervals (a;,b;) C J
and z be a solution of BVP (2.4); ,,, (1.2). By Lemma 2.4, there exists a unique zero { € [, T]
of xz on J and (2.10) holds. Set

I = {] : ] € H7 (aj’bj> C (075)}7 I, = {] : ] € ]Iv (ajvbj) C (éaT>}

Then for j € I; and i € I; we have

bj bj
a
t ) dt < - — (-t ) dt =
[ witaio® de < ol [ (156~ 0)
a; a;
£—aj
_ a 144
o]l / wo (1+7t )dt, (2.14)
£-b;
b; b
a
t ) dt < - t—O ) dt =
[ttt on i <t [0 (50 0)
bi—¢
_ a4 ity
= 0o t dt. 2.15
e [ an (07 .15
a;—§
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396 S. STANEK

IfI\ (I; Ulp) = {jo}, thatis aj, < & < bj,, then

by
qo(t)wo(lz(t)]) dt <
a]‘O
3 bjo
a 1+~ / < a 1+’y) o
< o dt + —(t— dt| =
< ol [/“’0<1+ - o) -9
) 13
5_a’JO bjo_g
— - — t17 ) dt]. 2.16
ool [/‘*’(Hf Jare [eo(2 )d] 216)
0 0
Hence
Z/qo wolla(t)]) dt < ||qo||ooz/wo ()
Jel Jjel .
J
¢—a;
= uqouoolz / wo( ‘ tlﬂ) s / w()( tl+v> di 4 B
Jjeh £—b, J€H2a _
where
0 if T =1; Uly;
E = §—aj bjo—¢&
a ity a1ty PR
— dt —1 dt if =1\ (I Uly).
/ wo(l—l—’y ) * /w0(1+,y ) if {jo} \ (I; Uly)
0 0
Set
My =Miu ([ J(€=bj6—aj), Ma= M50 | J(a;—&b—9)
jeﬂl ]GHQ
where
{ 0 if1 =1, Uly;
1 = . .
(075 - ajo) if {.70} = ]I\ (]Il UH?)?
0 if [ =1 Ulb;
M = o
(O, bjo — f) if {jo} = H\ (]11 UHQ).

Then M), are measurable subsets of J, p(My) < > .c1(bj — a;), k = 1,2, and (2.13) is true.
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TWO FUNCTIONAL BOUNDARY-VALUE PROBLEMS WITH SINGULARITIES IN PHASE VARIABLES 397

~ 2.2.BVP (1.1), (1.3). Let assumptions (H3) and (Hy) be satisfied. For each n € N, define
fn € Car (J x R?) by the formula

flt.ay)  for (ta,y) € J x ((_oo,_i) U <:l,oo)>2;

2 e 2 )

Fultz,y) = br@JQWGEJX[—i,i]x((—m%—;>U(iﬁw>>;
1 _1

11
for (t,z,y) € J x R x [—,}
n'n
Then for a.e. t € J and each (z,y) € R? we have
a < —fult,z,y) (2.17)

and

~fult ) < 60) + ao(t (max {i |x}) s

+ e (max {21} )+ 1+ ebrato)+

+ (14 |y))ha(2). (2.18)

From (2.18) and the properties of w;, i = 0, 1, we see that

—fa(t,2,y) < (1) + qo(t)wo(|x]) + g1 (t)wr (ly[)+
+ (L4 [z[)ho(t) + (1 + [y ha (2) (2.19)
fora.e.t € J and each (z,y) € R3.
Consider the two-parameter family of the regular differential equations
2(t) = AMa(t,2(), 2/ (1)) (220)xn
depending on the parameters A € [0,1] and n € N.
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398 S. STANEK

Lemma 2.7. Let assumptions (Hs) and (Hy) be satisfied and let n € N. Then any solution x
of BVPs (2.20) ,,, (1.3) with X € [0, 1] satisfies the inequalities

|zl < LT, 2’|l < L (2.21)

where L > 0 is a constant independent of A and o € A..

Proof. Fix \ € [0,1] and let z be a solution of BVP (2.20)) ,,, (1.3). By Lemma 2.1, z(£) = 0
forsome ¢ € [e,T] andsincee € (0,7") and 2(0) = 0, there exists 7 € (0, &) such that z'(7) = 0.
Then for t € J we have

0] = | [ «/(s)ds| < 7)) (222)
0

and, by (2.18),

IN
O\ﬂ

+ (L |z())ho(t) + (1 + \x’(tﬂ)hl(t)] dt <

IN

1 1
16l + w0 () lgolloe + () latlloe +
n n

+ (L+ T2l hollz + (L + [l DNl -

Hence
, K
o) < — -
1= Tlhollz — Il
where
1 1
K = ol oo (5 ) Bl +0 (5 ) Il + Wil + 1l
and then (2.22) yields
Joll < AT
X .
= T Tkl — [l
K

Consequently, (2.21) holds with L = .
quently, (221 = TTholl; = nllz
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TWO FUNCTIONAL BOUNDARY-VALUE PROBLEMS WITH SINGULARITIES IN PHASE VARIABLES 399

Lemma 2.8. Let assumptions (H3) and (Hy) be satisfied. Then for eachn € N, BVP (2.20)1 ,
(1.3) has a solution.

Proof. Fix n € N. Lemma 2.7 guarantees the existence of a positive constant L such that
(2.21) holds for any solution z of BVP (2.20), ,,, (1.3) with A € [0,1]. Let

Q= {(z,¢) : (x,¢) € CHJI) xR, ||z| < LT+ 1, ||2’|| < L+1, |¢|] < L+ 1}.

Then € is an open ball in the Banach space C'(J) x R. Define the operator F : [0,1] x Q —
— CY(J) x Rby

S

F(\z,¢) = ct—i—)\//fn(v,x(v),x'(v))dv ds, c+a(x) — (1 = Na(—2)
00

Then F is a compact operator since fn € Car (J x R?) and « is a continuous and increasing
functional on C([¢, T'). Besides, F(0, -, -) is an odd operator, that is F(0, —x, —c) = —F (0, z, c)
for (z,c) € Q, as it is easy to check.

Suppose that F (Ao, zo, co) = (0, co) for some (Ao, zo, cp) € [0,1] x 0Q. Then

S

t
z0(t) = cot + Ao / / fa(v, 20(v), 2h(v)) dvds, t € J, (2.23)
0 0

and

a(z0) = (1 = Ao)a(—z0). (2.24)
From (2.23) we conclude that z is a solution of (2.20),,,, and z((0) = co. If 2o(t) # 0 for
t € [e,T],say zp < 0on [g,T], then a(zg) < 0 and a(—xzp) > 0, contrary to (2.24). Therefore
z0(§) = 0 for some £ € [¢,7] and then Lemma 2.7 (with the functional « in the boundary
condition (1.3) defined by a(z) = x(¢) for x € C°([e, T))) gives ||zo|| < LT, ||zj|| < L. Hence
leo| = |26(0)] < L, so (zg,co) ¢ 00 and we have proved that

F(M\ z,c) # (x,¢) for X € [0,1], (z,c) € 09.
Consequently, by the Leray —Schauder degree theory,

D(I_‘F(Oav)7970) = D(I_f(177)7970)
where 7 is the identity operator on C'(.J) x R. According to the Borsuk antipodal theorem,
DT - F(0,-,),Q,0) # 0, and so D(Z — F(1,-,-),Q,0) # 0. Therefore there exists a fixed
point (z,¢) € Q of the operator F(1,-,-) and it is easy to check that z is a solution of BVP

(2.20)1.,, (1.3).

Lemma 2.9. Let assumption (Hs) be satisfied. Letn € Nand x be a solution of (2.20)1 ,, (1.3).
Then
a) there exist a unique zero § € [e,T] of x in (0,T] and a unique zero T € (0,&) of 2" in J,
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b) x satisfies the inequalities

a £
Zt for t e [0, 2} ;
z(t) > c ’ (2.25)
-0 soree (5.
2(t) < —5(E -7t —§) forte (&T)if&<T (2.26)
and
2'(t) > a(r —t) fort €[0,7], 2'(t) < —a(t—71) fort e (r,T). (2.27)

Proof. First we see from (2.17) that 2”/(¢t) < —afora.e.t € J.Next,by Lemma2.1,z(£) = 0

for some § € [e,T]. Since 2(0) = 0 and 2’ is decreasing on J, there is a unique 7 € (0,¢) such
that /(1) = 0. Then

and

2 (t) = /w”(s) ds < —a(t—r1), te (r,T],

which proves (2.27). In addition, ¢ is a unique zero of z in (0, 7.

By (2.27), we have
x(t):/a: CL/T—S (27'—t)
0

fort € [0, 7] and

ac(t):—/a: a7s—T = Y- e -2 +1)

fort € (7,€]. Hence x(£/2) > a&(41 — €)/8 > a&?/8 provided 7 > £/2 and x(£/2) > a&(3€ —
—471)/8 > at?/8 provided 7 < £/2. Consequently, z(£/2) > a&?/8 and since x is concave on J
which follows from 2/ < —a < 0 a.e. on J and z(0) = z(§) = 0, (2.25) is true.

Finally, assume that £ < T. Then

2(t) = 795'(5) ds < —a/(S—T)ds _
3

= —SE-27HN-8 < —SE-T(-O
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for t € (&, T which proves (2.26).

Lemma 2.10. Let assumptions (Hs) and (Hy) be satisfied. Then there exists a positive constant
A such that

lzll < AT, [l2"]] < A (2.28)

for any solution x of BVP (2.20)1 ,, (1.3) withn € N.

Proof. Let z be a solution of BVP (2.20); 5, (1.3). By Lemma 2.9, z satisfies inequalities
(2.25)—(2.27) where ¢ € [e, T is the unique zero of z in (0,7] and 7 € (0, ) is the unique zero
of 2’ in J. We now prove the existence of a positive constant B independent of n € N such that

lz(t)] < BT, |2'(t)] < B fort € [0,¢]. (2.29)

From (H,) and (2.25)-(2.29) we obtain

gfzo(zt)uJo(!af(t)l)ChfS!qo\loo 5/QoJo o, dt + fwo a—g(g—t) dt| <
A / 4 J, 4

¢ £/2
a
< 2A||goloowo <4> /wo(t) dt <

0

T
€
< 2ol (%) [ oty (2.30)
0
and
¢ 3
/ql(t)wl(]a:’( ) dt <lq1loo /wl (T —1)) dt-l—/wl(a(t—T))dt <
0 0 T
E—1

< Allg1|cown (@) /wl(t)dt—i- /wl(t)dt <
0

T
< 2A g1l sowr (a) / o (b) dt. 2.31)
0
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Using (2.19), (2.30), (2.31) and |(¢)| = | [ 2'(s) ds

o

+ (1 +[z())ho(t) + (1 + m’(t))/n(t)] dt <

, we get (for t € [0,¢])

o —

()] = t) + go(B)wo |z (B)]) + a1 (t)wo(|2"(£)])+

¢
/f (s,z(s),2'(s))ds

T

< [0l + 2A o loeteo (% /wo ) dt + 20| g1 ]| o1 (a)
0

w1 (t) Clt+

o\)ﬂ

+ (14 Tmax{[2'(t)] : 0 < ¢ < &})lholl+

+ (14 max{|2’(t)] : 0 < ¢ < &})l|ha]lL.

Hence
v

< S Tl = Tl

max{|z'(t)| : 0 < t <

where

T

= 116012+ 28 aolloowo (% / wo(t) dt + 20| | oo (a
0

wi(t) dt + [|hollL + [Pl -

o\ﬂ

Thus (2.29) is true with
)\
1= T|hollL = 1hallz
If ¢ = T then (2.28) holds with A = B.
Suppose that £ < T'. We claim that

B =

2
age
>
$-T23p

(2.32)
so the difference { — 7 is independent of n € N. Indeed, from (2.25) it follows that z({/2) >
> a?/8 > ae?/8 and then max{z(t) : 0 < t < &} = x(r) > ae?/8. Since z(1) = x(7) —
—z(&) = —2'(n)(€ —7) < B(§ — 7) where i € (7,€), we have ag?/8 < B(¢ — 7) which proves
(2.32). Now from (2.26) and (2.32) we get

a’e?

2(t) < —T=(t=§) forte (€.T), (2.33)
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and so (for ¢t € [¢,T])

|’ (2)

IN

+ an(s,x(s),xl(s))ds

3
<o+ [
3

+ (14 |z(s)])ho(s) + (1 + |x/(s)])h1(s)] ds <

) + qo(s)wo(2(s)]) + a1 (s)wo(l'(s)])+

t

<B A _

<B+ ol + quuoowo<163>/wos st
I3

t
+ Allgillsowi () / wi(s — ) ds+
13

+ (1+ Tmax{|2'(t)] : € <t < T})|lhollz+

+ (L4 max{[a’(t)] : £ <t < T}l

Hence
ax{la'(t)] : £ <t < T} < ;
maxy | :
= = = T T T ol — L
and
T
max{|z(t)] : € <t < T} <
el =&t =T} < g —
where

T T
& = B+ ol + Aol (555 ) [ 0t6) e+ Ml lon(a) [t + ol + [l
0 0

Since B < @, (2.28) holds with A = ®/(1 — T'||hol|z — ||P1]lL)-
Lemma 2.11. Let assumptions (Hs) and (Hy) be satisfied. Then for any at most countable set
{(a;,b;)} ey of mutually disjoint intervals (a;,b;) C J and any solution x of BVP (2.20)1 5, (1.3)

with n € N, there exist positive constants Sy, Sy independent of x© and measurable subsets My,
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Niof J, p(My) < 3 ses(bj —az), p(Ni) < 32ic5(bj —ay), k = 1,2,3, i = 1,2, such that

b 3
Z/%wmmmag&j:/m@ﬁ (2.34)
JET k=1 g,
and
b; 9
q(twr(j2'()])dt < S t. (2.35)

Proof. Let x be a solution of BVP (2.20); ,, (1.3) and {(a;,b;)},cy be at most countable
set of mutually disjoint intervals (aj,b;) C J. By Lemma 2.9, there exists the unique zero
€ € [e,T] of x in (0,T] and the unique zero 7 € (0,&) of 2’ in J and z satisfies the inequalities
(2.25)-(2.27). Besides, it follows from the proof of Lemma 2.10 that

E—1>C (2.36)

(see (2.32) where C' = ae?/(8B) is a positive constant independent of  and n € N. Set

le{] Jj el (a;,b )c(O,i)}, ng{j Jj €, (a;,b )c<§,§)},

{ {705 €3, (a5.b)) € (&T)} if €< T
J3 =
0 ife=T
and
L ={j:7€d (a;0) 07}, La={j:jel (ab) C(r,T)}
Then for j € Jy,i € Jo and k € J3 we have
bj bj
[ atniao de <l [ (%) e <
b b
< Allaln (% ) / wot) dt < Allaollocr () / wolt)dt,  (2.37)
b; b;
[ ataiat de < ol [ (=) at <
b; §—a;
< Al (% ) [l =)t < Mllason (%) [ enttiar @39)
a; §—b;
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and
bk bk
[ antentiaeat < anll [0 (56~ - ©)) dt <
by, o o K=&
< \qo\loo/wo <a2(t—§)> dt < Allgollecwo (“2> / wo(t) dt. (2.39)
Suppose that J \ (J; UJ2 UJs) = {jo}, thatis aj, < & < bj,. If aj, < £/2, we have
bjg £/2 £ bjg
[ wltan(la) e < ||qo||oo[ [entlade+ [ waohar+ [ wO<|x<t>\>dt] <
Ajo jo §/2 3
£/2 £/2
<AHq0]OO[w0 (“E) wolt) dt+wo< ) (t) dt-+
I
+ wo ("f) / wolt) dt] (2.40)
0
and if aj, > £/2, we have
bjg 3 bjg
/qo(t)wo(lﬂf( ) dt < ||qo||oo[/ wo( dt+/wo(fv(t)|)dt] <
ajq 3
§—aj, o bj,—¢
< A||qo!oo[wo (T) / wo (t) dt + +wo <“2> / wo(t) dt]. (2.41)
0 0
Let
So = Al|qo|oo max {wo (%6) , WO <a20>}
and

Mi =& U U(ij,bj), My = E9U U(f—bj7§_aj);

jed Jj€J2

M3:53UU —&,b5—§)

J€Js3
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where &1 = £3 = €3 = () provided J = J; U J2 U J3,

provided {jo} = J\ (J1UJ2UJ3)and aj, < /2 < & < by,
51 - (2)7 82 = (0,6—@7‘0)7 53 = (07b]0 _6)

provided {jo} = J\ (J1 UJ2 UJ3) and §/2 < aj, < & < bj,. Then u(My) < 3°.cy(bj — a;) for
k = 1,2,3 and from (2.37) — (2.41) we obtain (2.34). Finally, for j € I; and i € I we have

b; b;
/q1(t)w1(|$'(t)|)dt < H(hHoo/WO(a(Tt))dt <
b; T—a;
< A lootwr () [ wolr — ) dt = Allgy|locwo(a) / wlt)dt,  (242)
a; T—b;
and
b; b;
/ a1 (Dwr (2O dt < [t / wialt — 7)) dt <
b;—1
< Aflqa|oon (a) / o (t) dt. 2.43)

Ifa;, < 7 < b;, for some ig € J, thatis J\ (I; Uly) = {ip}, then

bzo T blo
/ a1 (D (' (8)]) i < quHool / wi(a(r — 1)) dt + / m(a(t—ﬂ)dt] <

a;, a; T

0 0

T—(Lio biO —T

SAHQ1||oow1(a)[ / wo(t) dt + / wi(?) dt]- (2.44)

0 0

Set
S1 = Allq1][ocwr(a),

M =BU U(T—bj,T—aj), No = By U U(aj—T,bj—T)

jeh Jjel
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where By = (0,7—aj,), B2 = (0,b;,—7) provided a;, < 7 < b, and By = By = 0if J = [ Ulb.
Then pu(Ng) < 37,c5(bj — aj) for k = 1,2 and (2.35) holds which follows from (2.42) - (2.44).

3. Existence results. 3.1. BVP (1.1, (1.2).
Theorem 3.1. Let assumptions (Hy) and (Hz) be satisfied. Then there exists a solution of
BVP (1.1), (1.2) for each o € A, withe € [0,T).

Proof. Fixe € [0,T) and a € A.. By Lemma 2.3, for each n € N, there exists a solution z,,
of BVP (2.4)1 5, (1.2). Consider the sequence {xz,(t)}. By Lemmas 2.1 and 2.4,

z(t) > at? fort € J, n €N, (3.1)

x, has a unique zero &, € [¢,7] in J and Lemma 2.6 guarantees the existence of a positive
constant A such that

lzn]| < AT, ||2}]| < A forn € N. (3.2)

In addition, for 0 < ¢; < ty < T we deduce from the proof of Lemma 2.6 (see (2.14) —(2.16))

to

/ ao(t)wo(|,(B)]) dt <
t1
Sn_tl
llg0 |0 / wo (1+7t1+7> dt ifty < &p;
€n*t2
t2_§n
a
< — ") at ift; < &,
N e it <
tl_gn
gn_tl t2—£n
a1y a g4 .
2 dt O ) de| ift, < &, < t
H%Hoo[ / wo(l—i—fy ) + / wo(l—i—’y > ] ift; < &, 2
0 0
and so
to Tn,2
a
[ a0l de < 2l [ wn (Mt”v) g, neN, (33)

t1 Tn,1
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where 0 < 7,1 < Tpo < T, 72 — Tp1 < ta —t;. Using (2.3) and (3.1) - (3.3) we have

og%@wwwnz/nm%@wmmﬁg

to

g/ww+%@mmmmwwwwmww

t1

4 (14 AT)ho(t) + (1 + Ay ()] dt <

to Tn,2 to
< [otydt+2hale [ w (lith) 4 ar o [ wr(at dee
t1 Tn,1 t1
to to
+ @+ AT) [hotyde+ (15 4) [ o de (3.4)

t1 t1

for0 < t; <ty <Twhere0 < 7,1 < Tpo <T,7T2—Th1 < ta —t1. From this and using
the properties of the functions ¢,w;, hj, j = 1,2, given in (Hz), we conclude that {x/, (¢)} is
equicontinuous on J and then (3.2) and the Arzela— Ascoli theorem guarantee the existence
of a subsequence {zy,} of {z,} converging in C'(J), say li_)m ry, = x. Hence x € C(J),
2'(0) = 0,2/(t) > at?,0 = ILm a(zg,) = a(x) and z(§) = 0 for a unique ¢ € [e,T]. Now
from the definition of the functions f,, € Car(J x R?) it follows that there exists V C J,
u(V) = 0, such that f,(t, -, -) is continuous on R? for each t € J\ V andn € N, and so

lim fi, (t, o, (6), 24, (6) = f(La(),2'(1), te T\ (VU{0,E)).

n—oo

Let {(a;,bj)} ec1 be at most countable set of mutually disjoint intervals (a;,b;) C J. Then, by
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(2.3), (3.1), (3.2) and Lemma 2.6,

by by bj
> [ b, 0at, () dt < Z[ J ot +lalle [wrar)ars
Jel 7 jer Ly, o
J J J
b; b;
+ (14 AT) ho(t)dt+(1+A)/h1(t)dt 4
_ A 14y a4y
+ Hq()Hoo(/ w0(1+7t )dt+ / wo<1+7t >dt> (3.5)
M, M3

for n € N, where M}, are measurable subsets of .J, u(Mj, ) < > jerby —aj), i = 1,2
From (3.5) and the properties of the functions ¢, w;, h;, i = 0,1, given in (Hs) it follows that
{frn (t, 21, (1), 27, (t))} is uniformly absolutely continuous on J, that is for every x > 0 there
exists > 0 such that

[ Bt 0., (0 <
N

for any measurable N' C J, u(N) < 4. Then using the Vitali’s convergence theorem we have
F(t.2(0),2(£)) € Ly(J) and

n—oo

lim 4fkn(s,xkn(s),x;€n(s))d3: {f(s,x(s),x’(s))ds, ted

Taking the limit as n — oo in the equalities

t
a:ﬁcn(t) = /fkn(s,xkn(s),xﬁﬂn(s))ds, teJ neN,
0

we get
2 (t) = /f(s,x(s),x’(s))ds, teJ
0

Consequently, z € AC'(.J) and z is a solution of BVP (1.1), (1.2).
Remark 3.1. If the function f in (1.1) is continuous on J; x Rg x Ry with J; = J\{t1,...,t,}

and satisfies assumptions (H;) and (H>), then from our above considerations it follows that any
solution = of BVP (1.1),(1.2) (whose existence is guaranteed by Theorem 3.1) is increasing on
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J, x vanishes on J at a unique point { € [e,7T] depending on o € A, in the boundary condition
(1.2),z € ACYHJ)NC*J\{0,&,t1,...,t,}) and satisfies (1.1) fort € J\ {0,&,¢1,...,tn}.

Example 3.1. Consider the BVP

) — 1 1 |z (t)] a'(t)
=t ko T wor ey Pyp—n O
T
/r(t)x?’(t) dt =0, 2/(t) =0 (3.7)
0
where b € (0,1/2), ¢ € (0,1), A,B € [0,00), AT +2BVT < landr € Li(J),r > 0 a..
on J. BVP (3.6),(3.7) satisfies assumptions (H;) and (Hs) with ¢(t) = 1, ¢(t) = 0,a = 1,

L,
v = 1, wo(u) = 1/(min{l,u})’, wi(u) = 1/u’, q(t) = q(t) = 1, ho(t) = A//HT —1)
T
and hy(t) = B/+/|2t — T|. Since the functional « defined on C°(J) by a(z) = [r(t)z*(t) dt
0
belongs to Ay, there exists a solution = of BVP (3.6), (3.7) by Theorem 3.1. From Remark 3.1 it
follows that x € ACY(J) N C?(J\ {0,&,T/2,T}) where ¢ € J is the unique zero of .

3.2. BVP (1.1), (1.3).
Theorem 3.2. Let assumptions (Hs) and (Hy) be satisfied. Then for each o € A. with e €
(0,T) there exists a solution of BVP (1.1), (1.3).

Proof. Fix e € (0,7) and € A.. By Lemma 2.9, for each n € N there exists a solution z,,
of BVP (2.20); 5, (1.3) satisfying the inequalities

%t for t € [O, 52”] ;
xp(t) > o, 6 (3.8)
T(fn —t) forte <2,§n] ,
%@g—gg—wm—&)mme@mﬂﬁ@<T (3.9)
and
. (t) > a(r, —t) fort € [0,7,], x,(t) < —a(t—1,) fort € (1,,T] (3.10)

where §,, € [e,T] and 7,, € (0,&,) is the unique zero of z,, in (0,7") and z/, in J, respectively. In
addition, from the proof of Lemma 2.10 it follows that (see (2.32))

&n—Tp > C forn e N (3.11)
where C'is a positive constant. Next, by Lemma 2.10, there is a positive constant A such that

|zn < AT, ||z|| < A forn € N. (3.12)

nl
n
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Consider the sequence {z,,(t)}. We are going to show that { f,,(¢, z,(t), z/,(t))} is uniformly
absolutely continuous on J. To prove this results let {(a;, b;)} cy be a set of at most countable
mutually disjoint intervals (a;,b;) C J. By (2.19),

Z/\fnmn ), ()] dt <

VIS

<y / 1)+ ao(Owollea () + @ Dol () +

Jjel

+ (1 + |zn(t)])ho(t) + (1 + |x;(t)])h1(t)] dt. (3.13)

Now Lemma 2.11 guarantees the existence of positive constants Sy, S; and measurable subsets
Mn,k, Nn,i of J, M(Mn,k) § Zje,,]](bj — aj), ,U(Nn,z) S ZjEJ(bj — aj), k = 1, 2,3,i = 1, 2 and
n € N such that

b]

]6

Since ¢, w;, h; € Li(J),1 = 1,2, we see from (3.13) and the last two inequalities that for each
k > 0 there exists > 0 such that

bj
Z/|fn(taxn(t),x;1(t))|dt <K

Jjed a;

for any at most countable set {(a;, b;)} ey of mutually disjoint intervals (a;,b;) C J such that
> jen, (bj —aj) < é. Consequently, for each > 0 there exists § > 0 such that

/ | Fult 2n (), 2, (D) dE < 5, n €N,
M
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whenever M C .J is a measurable set and (M) < 4, and so { f,,(t, z,(t), z!,(t))} is uniformly
absolutely continuous on J. From this fact and from the inequalities

to
|27, (t2) — a7, (t1)] = /Ifn(t,xn(t)ﬁﬂ%(t))ldt, 0<t <ty <T,ne€N,
t1

it also follows that {«/,(t)} is equicontinuous on .J and since {z,,} is bounded in C*(J) by (3.12),

there exists a subsequence {x, } converging in C(.J), say le rp, = x. Thenz € C(J),
z(0) = 0,
alz) = a(nlinéoxkn) = nl;rrgoa(xkn) =0,

andso z(§) = Owitha¢ € [¢,T] by Lemma 2.1. Because of 2(0) = x(§) = O we have 2/(7) = 0
for some 7 € (0,¢). From li_>m ry, = xin C1(J) we see that

lim a, () =0, lim x) (1) = 0.

n—oo n—o0

We are going to show that nh_)rgo &k, = & Ifnot, there exists a subsequence of {¢;,, } — for simpli-
city of our notation denoted by {&, } again — such that nh_)rr;o &, = 0,0 # & If o < € then, by
(3.9) and (3.11), z1, (¢) < —aC(€ — &, )/2 for sufficiently large n, contrary to nh_}n(gl0 xr, (&) = 0.
If o > ¢ then, by (3.8), z, (§) > amin{&, &, &, (&, — &)}/4 for sufficiently large n, contrary
again to nh_)ngQ xr, (&) = 0.

Now we claim: nlggo Tr, = 7. If not, going if necessary to a subsequence, we can assume
that nlggo Tk, = X> X # 7. 1f x < 7 then, by (3.10), . (1) < —a(T — 73, for sufficiently large
n, contrary to nlggo xy, (1) = 0.1f x > 7 then, by (3.10), z, (7) > a(r, — 7) for sufficiently
large n, contrary to nh—% ;. (1) = 0. Hence n11_>no10 Tk, = T.

Now letting n — oo in (3.8) —(3.10) with k,, instead of n and using (3.11), we get

afft for t € [0, g] ;

ag

4

e €1 forte(é,g},

2(t) < —%C(t—f) fort € (¢, T)if& < T

and
2'(t) > a(r —t) fort € [0,7], 2'(t) < —a(t—71) fort € (r,T).

Consequently, £ is the unique zero of z in (0, T) and 7 is the unique zero of 2’ in J.
From the definition of f,(t,z,y) € Car(J x R?) we conclude that there exists U C J,
w(U) = 0 such that fy, (t,-, ) is continuous on R? for each ¢ € J \ U and each n € N. Hence

i fi, (2, (1), 2, (1) = F(t,a(0), (1), 1€ T\ @U{0,m.€)).
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Now the Vitali’s convergence theorem gives f(t, z(t),2'(t)) € Li(J) and

t

N

im [ fi, (s, @k, (s), 2, (s))ds = /f(s,x(s),x’(s)) ds, teJ.
0

n—00
0

Taking the limit as n — oo in the equalities

we get
2'(t) = 2/(0) + /f(s,x(s),x’(s)) ds, teJ.
0

Hence z € AC!(J) and z is a solution of (1.1). Since £(0) = 0 and a(x) = 0, we see that z is a
solution of BVP (1.1), (1.3).

Remark 3.2. 1f we assume that f in (1.1) is continuous on J; X R% with J; = J\{&,..., &}
and satisfies assumptions (H3) and (Hy), then there exists a solution = of BVP (1.1),(1.3) by
Theorem 3.2. From our considerations we know that there exist { € [¢,7] and 7 € (0,€) such
that z(t) > 0 fort¢t € (0,§) and x(t) < 0 fort € (& T] provided £ < T and 2/(t) > 0
fort € [0,7), 2/(t) < Ofort € (r,T]. Hence from the continuity of f on J; x R3 it may
be concluded that x € ACY(J) N C%(J\ {0,&,7,€1,...,&,}) and o satisfies (1.1) for each t €

e J\{0,&,71,&1,..., &}
Example 3.2. Consider the BVP

1 . 2(1)] w0l
O oy wor A Pumen e G
z(0) =0, z(e)+ Amin{z(t) : e <t < T} = (3.15)

where b, ¢ € (0,1), A, B € [0,00), AnT + 2BVT < 1,e € (0,T) and \ € [0, oo) Then
assumptions (H3) and (Hy) are satisﬁed witha = 1, ¢(t) = 0,wo(u) = 1/(min{1,u})’, w;(u) =
= 1/u qo(t) = q1(t) = 1, hi(t) = A//t(T —t) and hao(t) = B/+/|2t — T'. Since the functi-
onal « defined on CO([E,T]) by a( ) = x(e) + )\mm{a;( ) e <t<T} belongs to A., there
exists a solution = of BVP (3.14), (3.15) by Theorem 3.2 for each ¢ € (0,7) and A € [0,00)

in (3.15).
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