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We give sufficient conditions for a C!-local diffeomorphism between Fréchet spaces to be a global one.
We extend the Clarke’s theory of generalized gradients to more general Fréchet spaces. As a consequence,
we define the Chang Palais-Smale condition for Lipschitz functions and show that a function which is
bounded below and satisfies the Chang Palais-Smale condition at all levels is coercive. We prove a version
of the mountain pass theorem for Lipschitz functions in Fréchet spaces and show that, under the Chang
Palais-Smale condition, a theorem on global diffeomorphism can be obtained.

OnepaHo IOCTAaTHI YMOBM JUISl BUMAIKY, Ko C (JokanbHuil qudeomMopdism Mix npoctopamu Ppe-
mre) € riaobanpHUM gudeomopdizmoM. Tommpeno Teopiro Kinapka mpo y3aranabHeHi Ipagi€HTH B OLIBIIT
3araJbHuX mpocropax Pperie. B pesynbraTi BusHaueHo ymoBy Yanra IMamaiic-CMmeiina mis JTIIIIEBUX
QYHKIIIN 1 TTOKa3aHo, 1o GYHKIIIM, SKa obMeXXeHa 3HM3Y Ta 3an0BoibHsIE yMoBy Yanra [lamaiic-CMmeiina
Ha BCiX piBHSIX, € KOEpPIUMTUBHO. JIoBeIeHO TeOpeMy PO TipChbKUi TIepeBat IS JIMNIIIEBUX QYHKIIINA y
npoctopax Ppelile Ta MoKa3aHo, 1110 ITp¥ BUKOHaHHI yMoBM YaHra [Tanaiic-CMeiiia Mu MOXKEMO ofiepsKaTh
TeopeMy Mpo TIIo0aIbHMI TrdeoMopdizM.

The problem of finding sufficient conditions for a local diffeomorphism to be a global one has
been investigated by many authors in the framework of Banach spaces, cf. [1] and references
therein. But it has not been the subject of study for more general Fréchet spaces. In [2] we found
sufficient conditions that indicate when smooth tame maps are global diffeomorphisms. The
purpose of this paper is to find weakened conditions for C}-maps. To do this, we will apply
the Clarke’s theory of generalized gradients. By means of this theory the problem of global
invertibility of non-differentiable maps has been studied in Banach spaces by many authors
cf. [3-35], but nothing exists for Fréchet spaces.

The calculus of generalized gradients involves Lipschitz maps also on dual spaces weak*
topology suffices. Thus, we may expect to carry it over to the Fréchet setting without much
difficulty. To this end, we start with the definition of the Clarke’s subdifferential of Lipschitz
functions and present some of its basic properties. We then naturally formulate the Palais-Smale
condition in the sense of Chang [4]. By means of Ekeland’s variational principle we prove that any
lower bounded function that satisfies the Chang Palais-Smale condition at all levels is coercive.

As pointed out by Kartiel [5], mountain pass theorems can be used to obtain global home-
morphism theorems. These theorems has many extensions and variations particularly, Shuzhong
[6] generalizes this theorem to locally Lipschitz functions on Banach spaces. Following his ideas
we prove the mountain pass theorem for Fréchet spaces, see Theorem 3.2. The desired advantage of
this theorem is that an obtained convergent subsequent satisfies the Chang Palais-Smale condition.

Finally, we prove the main theorem which roughly states that if ¢ is a C!-locally diffeo-
morphism of Fréchet spaces and if for an appropriate coercive auxiliary function , a function

© K. Eftekharinasab, 2019
54 ISSN 1562-3076. Heainiiini xoaueanns, 2019, m. 22, Ne 1



A GLOBAL DIFFEOMORPHISM THEOREM FOR FRECHET SPACES 55

z — 1(p(x) —y) for any y satisfies the Chang Palais-Smale condition then ¢ is a global
diffeomorphism.

It might not always be easy even for Banach spaces to check if a map satisfies the Chang
Palais-Smale condition, therefore, for the Banach case another approach which is based on the
path lifiting property has been developed, see Plastock [7]. A potential line for further studies
would be the generalization of this approach for Fréchet spaces as well.

Despite the fact that the theory of Fréchet spaces has a remarkable relation with both linear and
non-linear problems but not many methods for solving different types of differential equations are
known. Our motivation here has an eye on future applications to ordinary differential equations.
It is known that each global existence theorem for an autonomous system in Banach spaces
has a correspondence with a global inversion theorem. Analogously, we would expect that such
theorems will play notable role in the theory of differential equations in Fréchet spaces.

1. Clarke’s subdifferential. In this section we extend some basic concepts of the generalized
gradients calculus to the Fréchet setting. In most cases the proofs have elementary calculus nature
and similar to their Banach analogues so we merely give references.

We denote by F' a Fréchet space and by F’ its dual. We assume that the topology of F' is
defined by an increasing sequence of seminorms || - |1 < || - |% < .... A translation-invariant
complete metric inducing the same topology on F' can then be defined by

o I —glE
dp(f,9) _Z;H-Ilf—gl%' (1.1)

A ball with center = and radius r in F' and F’ is denoted by B, (x) and B, (z), respectively. The
boundary of a set U is denoted by bd U. We will use the Keller’s notion of C*-maps, see [8]
(Definition 2.2).

The weak topology o(F, F’) on F is given by the fundamental system of seminorms

py (x) == sup [y(z)|,
yeP!
where ¢’ runs through the set & of finite subsets of the dual space F’. The weak* topology
o(F',F) on F’ is given by the fundamental system of seminorms

po(y) == sup|y(z)],
TED
where ¢ runs through the set ® of finite subsets of F. Let (.,.) be the dual pairing between F'
and F’.
Let Lipjoc(F,R) be the set of all locally Lipschitz functions on F' and ¢ € Lipjoc(F,R). As
in [9] we define for each f € F' the generalized directional derivative, denoted by ¢°(f, ¢g), in the
direction g € F' by

2 (f.g) = limsup £LLF19) = @ ()

, teR, heF
h—sf,£10 t

It can be easily seen that the function f — ¢°(f, g) is locally Lipschitz, positively homogeneous
and sub-additive. For any f € F we define the Clarke’s subdifferential of ¢, denoted by Jy, as
follows:

do(f):={f e F'|(Vge F){f',9) < °(f,9)}-
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56 K. EFTEKHARINASAB

Lemma 1.1. (a) ©°(f;g) is upper semi-continuous as a function of (f, g) and, as a function
of g alone, is Lipschitz on F.

(b) ¢°(f;=9) = (=¢°) (f,9)-

(c) Forevery g € F, ©°(f;g9) = max{(h,g): h € dpo(f)}.

(d) g€ 0p(f) ifand only if ¢°(f;h) > {g,h) Vh € F.

(e) Suppose sequences (f;) C I and (g;) C F' are such that g; € 0¢(f;). If f; — f and g
is a cluster point of (g;), then g € O(f).

(f) O(te)(f) = tdp(f) vt € R
(g) If f is a local minimum of ¢, then 0 € 0p(f).

(h) 0(p +¢)(f) C 0p(f) + 0v(f).

Proof. The proofs of (a) — (h) are easy and similar to the Banach case cf. [10] (Prop. 2.1.1(b),
2.1.1(c), 2.1.2(b), 2.1.5(a), 2.1.5(b), 2.3.1, 2.3.2, 2.3.3), respectively.

Lemma 1.2. The subdifferential 0p(f) is a nonempty, convex and weak* compact subset
of F'.

Proof. The Hahn—Banach theorem and Bourbaki — Alaoglu theorem are available for Fréchet
spaces, therefore, it is enough to apply the arguments of Clarke [10] (Prop. 2.1.2(a)).

Lemma 1.3 [Mean value theorem]. Let f,g € F' and ¢ be a Lipschitz function on an open
set containing the line segment [f, g|. Then there exists 6 € (0,1) such that

©(g) —o(f) € (Op(g+ (0(g — £))), 9 — [)-

Proof. The proof is very similar to that of [10] (Theorem 2.3.7).
Lemma 1.4 [Chainrule]. Let E be a Fréchet space, p: E — F a C}-map in aneighborhood
ofe€ E,and ¢: F — R a locally Lipschitz map. Then T = 1) o @ is locally Lipschitz and

d7(e) S 0Y(p(e)) o D p(e).

If o is regular at o(e) then the equality holds.

Proof. The proof is also quite analogous to the Banach case [10] (Theorem 2.3.10).

We recall that a family B of bounded subsets of F' that covers F is called a bornology on F’
if it is directed upwards by inclusion and if for every B € B and r € R there is a C' € B such
that - B C C.

Let E be a Fréchet space, B abornology on F' and Li(F, E) the space of all linear continuous
maps from F' to E. The B-topology on Lg(F, E) is a Hausdorff locally convex topology defined
by all seminorms obtained as follows:

I1LNI5 == sup {||L()I[E: f € B, B €B}.

Suppose that B consists of all compact sets, then the B-topology on the space Lg(F,R) = Fj
of all continuous linear functional on F, the dual of F, is the topology of compact convergence.
Let U C F beopenand ¢: F — E aKeller C!-map at x € U. The derivative of ¢ at z, D p(z),
is an element of F;. We denote by (-, -)5 the duality pairing between F' and Fj

Lemma 1.5. Let ¢: U C F — R be Lipschitz in open neighbourhood U of x. If ¢ is a
Cl-map at z, then D p(x) € Op(x).

ISSN 1562-3076. Heniniiini koausannus, 2019, m. 22, Ne 1



A GLOBAL DIFFEOMORPHISM THEOREM FOR FRECHET SPACES 57

Proof. By definition for all h € F we have

Do(x)(h) = (D p(x), h)s.

By our definition of differentiability we get D p(z)(h) < ¢°(x, h), but

<D go(x), h>l3 2 <D SO(JJ), h>

therefore (D (), h) < ¢°(x, h) thereby by Lemma 1.1(d) we obtain D ¢(z) € dp(x).

2. Chang Palais-Smale condition. A point f € F is called a critical point of ¢ if 0 € dp(f),
thatis ¢°(f;¢g) =2 0 Vg € F. The value of a critical point is called a critical value.

We define for each ¢ € ® the function A, 4 on F' as follows:

Avolf) = min po(y).

The seminorms pg(-) are bounded below and weak* lower semi-continuous because they arise
as the pointwise supremum of the continuous absolute value function. Also, dp(x) is weak* -
compact therefore the minimum is obtained.

Lemma 2.1. The set-valued mapping f — 0p(f) is locally bounded and weak* upper
Semi-continuous.

Proof. The proof is a slight modification of the Banach case, cf. [11] (Theorem 1.1.2).

Lemma 2.2. For each ¢ € ® the function \, 4(f) is sequentially lower semi-continuous

Proof. 1f \, 4(f) is not sequentially lower-continuous there exist a sequence f,, — fo such
that lim, 00 Ay 6 (fn) < Ape(fo). Let a sequence y, € dp(f,) be such that py(yn) = A ¢(fn)-
By Lemma 2.1 there exist a weak* open set U in F’ such that d¢(fy) C U and a neighborhood
V of fy on which the mapping is bounded such that there exists a subsequence (f,,,) of (f,) in
V' 80 yn, € 0p(fn,) and y,, € U. Since {y,, } is bounded, it has a weak cluster yo and hence by
Lemma 1.1(e) we have yy € d¢(fo) but

Ao.o(fo) = ps(yo) < lim inf py(yn,)

which is a contradiction.

Definition 2.1 [Chang Palais-Smale-condition]. Let ¢ € Lipjo.(F,R). We say that y satisfies
the Palais-Smale condition in the Chang’s sense, Chang Palais-Smale condition for short, if any
sequence (f,) in F such that o(f,) is bounded and for all ¢ €

lim Ay (fn) =0, 2.1

n—o0

possesses a convergent subsequence. Also, if any sequence (f,) C F such that o(f,) - c€ R
and satisfies (2.1) possesses a convergent subsequence we say that ¢ satisfies the Chang Palais-
Smale condition at level c.

Suppose that ¢ € Lipj,.(F,R) satisfies the Chang Palais-Smale condition. Let (f,,) be any
sequence in F that converges to fo and satisfies (2.1). Since by Lemma 2.2 the functions A, 4(f5)
are sequentially lower semi-continuous, it follows that V¢ € ¢

. e S
Jim A g(fn) = lminf A, 4(fn) 2 Ao (fo)-

Whence A, 4(fo) = 0, that is the zero function in F” belongs to d¢(fo), hence fy is a critical
point.
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58 K. EFTEKHARINASAB

Now we prove that a functional ¢ € Lipj..(F,R) that satisfies the Chang Palais-Smale
condition at all levels is coercive. The idea of proof is inspired by the work of Brezis and
Nirenberg [12].

A functional ¢: F' — R is said to be coercive if ¢(f) — +oo as || f||} — oo.

We will need the following version of Ekeland’s variational principle.

Theorem 2.1 [13]. Let (X,0) be a complete metric space. Let a functional f: X —
— (—o00,00] be semi-continuous, bounded from below and not identical to +oo. Then, for
any € > 0 and every point xo € X there exists u € X such that

fu) = f(xo) — eo(u, xo)
flu) £ f(z) + eo(x,u) Vo € X.
Theorem 2.2. Let ¢ € Lipjo.(F,R) and let

o := liminf
||fH1%0<>(p(f)

be finite. Then there exists a sequence (f,) C F such that || f,||" — oo Vi € N, ¢(f,) — «, and
Moo (fn) = 0 forall ¢ € .
Proof. Define

m(r) ;== inf o(f). (2.2)

= 1
£t =r
The function m(r) is a non-decreasing and

lim m(r) = a. (2.3)

T—00

By (2.3) for each ¢ > 0 there exists r; such that for all r» = r;
a—e2 <m(r). 2.4)
For a fixed € > 0 choose a number
ro = max{ry,2¢c}. (2.5)
By our assumption we can fix some zg with ||zo||! = 27y such that
©(z0) < o + € (2.6)

Let F = {f e F:|f|' Zr}. Itis closed in F, so it is a complete metric space by the
induced metric (1.1). Moreover, ¢ is lower semi-continuous on F' and so on F. Also, by (2.2),
(2.4) and (2.5)

o) Zm(Jullp) Z2a—¢e* YueF with |ullp 2 7.

So ¢ is lower bounded, and therefore, all assumptions of Theorem 2.1 are fulfilled for F. Thus,
there is g € F such that

©(9) £ ¢(x) + edp(g,2) Vz €F (2.7

©(9) = »(20) — dr(g; 20) (2.8)
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It follows that (2.2), (2.4), (2.5), (2.8) and (2.6)
o =2 m(rs) £ plg) £ plz0) — edi(g, 20) < a + % — ed(g, 7).
Hence
dr(g,20) < 2e.
Thereby, by (2.5)
dr(g,0) > dr(20,0) — dp(g,20) = 2re — 2 2 79.
Whence g is an interior point of F. Define on F the function
p(h) :=dr(g; h) + @ (h).
The function @(h) attains its minimum in g € Int F by virtue of (2.7). Therefore
0 € 95(g) € 0¢(g) +eBf

where B, is the closed unit ball in F’. Thus,

Ap(9) = min{py(h) | h € dp(h)} < e.

Letting € = ¢, | 0 completes the proof.

Corollary 2.1. If ¢ € Lipioc(F,R) is bounded below and satisfies the Chang Palais-Smale
condition at c for all ¢ € R, then it is coercive.

Proof. 1f it is not coercive then a = lim inf) ¢1_, ¢ (f) is finite. Then by Theorem 2.2 there
exists a sequence (f,,) C F such that ||f,||" = co Vi € N, ¢(fn) = a and A, 4(fn) — 0 for all
¢ € ®. Then the Chang Palais-Smale condition at « yields that (f,,) has a convergent subsequent
which is a contradiction.

3. The mountain pass theorem. Following the lines of the mountain pass theorem for
Banach spaces due to Shuzhong [6] we prove a version of the mountain pass theorem for locally
Lipschitz functions between Fréchet spaces. This is the most suitable version for our goals as it
involves the Chang Palais-Smale condition.

Let ¢ € Lipioc(F,R) be a function. Let U be an open neighborhood of zero and f ¢ U be
given such that for a real number m

max{p(0),o(f)} <m = inf . (3.1

Let
[':={y € C([0,1]; F): 4(0) = 0, »(1) = f}
be the space of continuous paths joining 0 and f. Consider the Fréchet space C([0,1]; F') with
the family of seminorms } '
IVlIr = sup [|v(®)]|F-
te(0,1]

Let
o0 g _ "}/ i’
e = Y

P S E [=

be the metric that defines the same topology. We can easily verify that T" is a closed subset of
C([0,1]; F) soitis a complete metric space with the induced metric dr.
In the sequel we will apply the following weak form of Ekeland’s variational principle.
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60 K. EFTEKHARINASAB

Theorem 3.1 [14] (Theorem 1 bis.). Let (X, o) be a complete metric space. Let a functional
f: X — (—o0,00] be semi-continuous, bounded from below and not identical to +cco. Then, for
any € > 0 there exists x € X such that

f(z) <infx f +e¢,

f(@) = fly) +eo(z,y) Vy#z € X

The idea of the proof of the following mountain pass theorem is to define a function
U(y) = maxp¢(y(t)) on C([0,1]; F) and show that it is locally Lipschitz. Then we find
almost minimizers with some certain conditions by using Ekeland’s variational principle. We
pick a sequence of these points on I' and associate it with a sequence on F which satisfies
the requirement of the Chang Palais-Smale condition for . The limit of a subsequence of this
sequence on F' is a critical point of .

Theorem 3.2. Suppose ¢ € Lipi..(F,R) satisfies (3.1) for a real number m. Let

= inf t)) = m. 3.2
c = inf max p(y(t)) Zm (3.2)

Then there exists a sequence (f,) C F such that o(f,) — ¢ and satisfies (2.1). Moreover, if ¢
satisfies the Chang Palais-Smale condition, then c is a critical value of ¢.
Proof. Define the function ¥: C([0,1]; F) — R by

U(y) = max p(y(t)). (3.3)

Let v € C([0,1], F), for any ¢ € [0, 1] there are positive numbers 7, ¢; such that

Vf1, f2 € Br(v(1))  |o(f1) — e(f2)| £ el f1 = fall -

The family {B;,((t))}e[o,1 is an open covering of the compact set ([0, 1]), therefore, there is
a finite sub-covering {Brt]_ (v(tj)}j=1,...k of 7([0,1]). Hence by the Lebesgue’s number lemma
there exists a positive number r such that for any f € ([0, 1]) there exists some 1 < j < k such
that B.(f) C By, (7(t;))-

Set ¢, := maxi <<y ¢t;. Therefore

vt e (0,1 Vfi,f2€ B:(v(1) le(f1) = (f2)l S ey llf1 = follp-
If y1,72 € C([0,1], F) satisfy
v =k <r Vi'eN, j=0,1.
Then

(W (1) — ¥ ()| = |féﬁ)ﬁ p(m(t) — max (y2)(t)] <

< Iax lp(1(t) — e(r2()] < ¢y max 71(8) — 72 (8|5 <

< ey max (1) ~ )l = el — el VieN

Therefore W is locally Lipschitz.
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Let ¢; be a sequence of positive numbers converging to zero and (n;) C C([0,1];F) a
sequence such that ||n; —~||& Vi’ € N — 0 as j — oo and for € C([0,1]; F)
Wo(yin) = Jim L F &) = V().

j—o00 Ej

Set
M(v):={s€[0,1] | p(~(s)) = ¥(7)}.
For any s; € M(n; +¢;m), j =1,2,..., it follows that

W(n; +em) — ¥(ny) < p(n(s5) +jn(s;)) — o(nj(s))

€j €5

By the mean value theorem, there exist €; € (0,1) and z} € dp(n;(s;) + €je;n(s;)) such that

e(nj(s;) + Ejn(;j)) — ¢(n;(s;)) _ <:c;-,77(3j)>, j=1,2,....

The sequence (s;) has a convergent sequence, denoted again by (s;), suppose that s; — s.
Then 7;(s;) + €jen(sj) — 7(s). By Lemma 1.1(e) the sequence (z}) has a w*-cluster point
z* € 0p(7(s)). So we have <x;f,n(s)> — (z*,n(s)) and then
V(i) < lim (25,n(sy)) < Bm (afn(s;) = n(s)) + lim (5,n(s)) -
Since s; € M(n; +;m), we have
w(nj(sj) +ejn(s;)) = w(ni(t) +em(t)) vt e[0,1].

Letting ¢t — oo yields
p(1(s)) 2 p(7(t)) Vte[0,1]
and hence s € M(~), therefore

TO(y;m) < max ©°(v(s);m(s)) Vne C([0,1], F). (3.4)
seM(v)

Set
Co([0,1], F) := {n € C([0,1], F) Vt € {0,1}, n(t) = 0}.

Suppose for some vy € C([0, 1], F') we have M () C (0,1) and there exists ¢ > 0 such that for
n € Co([0,1], F)

WO(yin) > —ellnlli Vi €N. (3.5)
We prove that there exists s € M(~) such that Vh € F
©°(v(s);h) > —el|h|lp Vi€ N. (3.6)

If there there is no such s then for any ¢ € M(v) there exits h; € F with ||h]|% = 1, i € N, such
that ©°(~(t); hy) < —e. The continuity of ~ and the upper semi-continuity of ¢° implies that for
any t € M(v) there exits h; € F with ||h]|% =1 Vi € N and &} > 0 such that

©°(v(s); i) < —e Vs € Bu(t) = {se€0,1]; [s—t| <ei}. (3.7)
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The family {Ba; ()} teM () is an open covering of M (). Since M(~y) is compact, there exist

ti,...,tx € M(y) such that M () C Ugj B, (t;j). Since M () is a subset of (0, 1), it follows
J

that B, (t) does not contain {0, 1} for all ¢ € M (v). Thereby

j=k
{ U Ba%j (tj)} U {[07 1] \ M(’Y)} = [07 1]' (3-8)
j=1
Define
j=k
_hyd(t)
u(t) = 2, — ~ (3.9)
Do i)
where
dO(t) :SEII]‘lJil(lv)‘t*SL te [Ov 1]a
and

d;(t) = min t—s|, tel0,1], j7=1,... k.
0= ol =k e g
J

By (3.8) it follows that 3" d;(t) > 0.
]:

By the above arguments we obtain 19 € Co([0, 1]; F') with |[no|& < 1. Since g~ ¢°(f,g) is
sublinear in g,

k
L di()e°(v(t); hey)
e (Y(t);mo(t)) < ZFI jk :

> o i (t)

Then for any ¢ € M () we get
do(t) =0, dj(t) >0, j#0=¢°(y(t); ;) < —e.
Therefore by gather (3.4) we have

TO(y;m0) < max °(y(s);no(s)) < —€llnollf
seM(vy)

which is a contradiction.
Since U separates 0 and f, for any v € T,

2([0,1)) NbdU # 2.

Then by the assumptions of the theorem

max (y(t) > inf o >m > max {p(7(0)), (v(1))} - (3.10)
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Therefore for every v € T,

M(y) = { € [0,1]; p(1(5)) = max m(t))} c(0,1). G.11)

The restriction of ¥ to I' is again locally Lipschitz and by (3.10) and (3.2) is bounded from
below. Let (a,) be a sequence of positive numbers converging to zero. By Ekeland’s variational
principle 3.1 there exists a sequence (y,,) C I" such that

c<¥(ym) < c+an
and
V(o) > ¥(vn) — andr(0;mm), ©# M, n=12,....
Therefore for any n € Cy([0, 1]; F') we obtain

v tn) — U
\I/O(’YnS 77) > lim sup (’Yn + 77) (Vn)

> —ap|nllt, n=1,2,....
t—0 t

Then by gather (3.6), there exists s, € M(,) such that ¢(v,(sn)) = ¥(v,) and
©°(Yn(sn);h) > —an|lh||z VieN VYheF, n=12,....

Let f, = vn(sp) for n = 1,2,..., then (f,) is the desired sequence and we have ¢(f,) — c,
moreover

0 € 0p(fn) + OénB}?'

By the Chang Palais-Smale condition (f,,) has a convergent subsequent, denoted again by (f,),
with the limit z. Then,

p(z) = lim o(fn) =c
and Vw € F&i €N

#° (z3w) > limsup o° (yn(sn);w) > = lim_ o |lwlf = 0.
n—00 n—00
That is 0 € dyp(2).
4. A global diffeomorphism theorem. In this section we apply the mountain pass theorem
of the previous section to obtain a global diffeomorphism theorem.
Lemma 4.1. Let ¢ € Lipjo.(F,R) and bounded from bellow. Then there exists a sequence
(fn) such that lim,,_, ¢(fn) = infp ¢ and for all ¢ € &

lim A, 4(fn) = 0.

n—o0

Proof. Consider a sequence of positive numbers (€,) converging to zero. The function ¢
satisfies all assumptions of Ekeland variational principle 3.1, so we can find a sequence ( f,,) such
that

p(fn) <infe +en
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and

o(f) = o(fn) — €ndr(f, fn) Vf# fne€F.

Assume f = f, +t(g — fn) for some g € F' and a positive number ¢, then we obtain

O(fn +t(g — fn)) — o(fn)
t

> —EndF(g, fn)
Thus, for all g € F, if we let ¢t — 0, then

@ (fnig = fn) = —€ndp(g, fn)-
For a fixed f,, define the sets
On;={(h,t) | h € F5t > ¢°(fu;h)}

and ,
II, := {(h,t) | h € Fit < —eplh|% Vi€ N}.

They are open convex sets with empty intersection so by Hahn—Banach separation theorem
there exists a separating hyperplane determined by a functional vy, (h,t) = wy(h) + at for some

o # 0, where w,, is a linear functional on F such that w,(0) = 0. Let w*(h) = — wy(h),

then vy, (h,w*(h)) = 0 Vh € F. Thereby w*(h) < ¢°(fn;h) hence by Lemma 1.1 (g) we have
wk € 0p(fy). On the other hand |w}(h)| < &|/h||" Vi € N so for all ¢ we have A\, 4(fn) <
< pg (w*) < €,. Letting &, | 0 completes the proof.

Theorem 4.1. Let: F — [0, 00) be a coercive locally Lipschitz function having the following
two properties:

1(z) =0 if and only if x = 0,

0 € Ou(y) ifand only if y = 0.

Further let 7: E — F be a local C}-diffeomorphism. Suppose that for each f € F the
function j3: F — [0,00) given by

oe) =alr(e) - f)

satisfies the Chang Palais-Smale condition. Then T is a global diffeomorphism.

Proof. We need to show that 7 is surjective and bijective. Let e; # ey € E, if 7(e1) # 7(e2)
we have nothing to prove. Assume 7(e;) = 7(e2) = [. Since 7 is a local diffeomorphism, it
follows that it is an open map, therefore, there exist o, « > 0 such that

Bur(l) € 7(Br(e1)) Vre (0,0). 4.1)

Let r € (0,0) be the smallest number such that e; ¢ B,(e1). Consider the function j(e) =
= 1(7(e) — 1), therefore, j(e1) = j(e2) = 0.

Without the loose of generality we can suppose e; = 0. By (4.1) for e € bd B(0) we
have 0 < m < j(e). Thus, all conditions of Theorem 3.2 hold so there exists (e,) C E such
that lim,, . 7(en) = ¢ for some ¢ > m characterized by (3.2). Since j(e,) satisfies the Chang
Palais-Smale condition, it has a convergent subsequent, denoted again by (e, ), with the limit A.
Therefore, h is a critical point so 0 € 9j(h) and 7(h) # [ since lim,_,~ j(e) = 3(h) = ¢ > m >
> 0.
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By the chain rule (1.4) we have 0j(h) C 0u(r(h) — ) o D7(h). Therefore, there exists
v € Oi(r(h) — 1) such that 0 = v o D7(h). Since 7 is a local diffeomorphism, it follows that
v = 0. Therefore, by our assumption on 2, 7(h) — [ must be zero which is a contradiction.

Let g € F be given and consider the function j(e) = (7(e) — ¢g). By Lemma 4.1 there exists
a sequence (f,,) such that lim,,_,~ J(f,) = infr 7 and for all ¢ € & we have

Jim Ay 5(fn) = 0.

Since j satisfies the Chang Palais-Smale condition, the sequence ( f;,) has a convergent subsequent,
denoted again by (f,,), with the limit p which is a critical point of 7 so 0 € 9j(p). By the chain
rule (1.4) we have 9)(p) C 0v(7(p) — g) o D 7(p). Thus, there exists £ € du(7(p) — g) such that
0 =¢&oD7(p). Since D7 is invertible at p, we have £ = 0. Therefore, by our assumption on ¢z,
T(p) =g

Remark 4.1. In [15] the analogue of the theorem for Banach spaces is obtained, where the
applied auxiliary function is % | - |? and it satisfies the weighted Chang Palais-Smale condition.
The results of [15] may also work with the type auxiliary function that we use. Nevertheless,
we may attempt to extend Theorem 4.1 for auxiliary functions that satisfy the weighted Chang

Palais-Smale condition which of course requires an appropriate mountain pass theorem.
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