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We give sufficient conditions for a C1
c -local diffeomorphism between Fréchet spaces to be a global one.

We extend the Clarke’s theory of generalized gradients to more general Fréchet spaces. As a consequence,
we define the Chang Palais-Smale condition for Lipschitz functions and show that a function which is
bounded below and satisfies the Chang Palais-Smale condition at all levels is coercive. We prove a version
of the mountain pass theorem for Lipschitz functions in Fréchet spaces and show that, under the Chang
Palais-Smale condition, a theorem on global diffeomorphism can be obtained.

Одержано достатнi умови для випадку, коли C1
c (локальний дифеоморфiзм мiж просторами Фре-

ше) є глобальним дифеоморфiзмом. Поширено теорiю Кларка про узагальненi градiєнти в бiльш
загальних просторах Фреше. В результатi визначено умову Чанга Палайс-Смейла для лiпшiцевих
функцiй i показано, що функцiя, яка обмежена знизу та задовольняє умову Чанга Палайс-Смейла
на всiх рiвнях, є коерцитивною. Доведено теорему про гiрський перевал для лiпшiцевих функiцiй у
просторахФреше та показано, що при виконаннi умови Чанга Палайс-Смейла ми можемо одержати
теорему про глобальний дифеоморфiзм.

The problem of finding sufficient conditions for a local diffeomorphism to be a global one has
been investigated by many authors in the framework of Banach spaces, cf. [1] and references
therein. But it has not been the subject of study for more general Fréchet spaces. In [2] we found
sufficient conditions that indicate when smooth tame maps are global diffeomorphisms. The
purpose of this paper is to find weakened conditions for C1

c -maps. To do this, we will apply
the Clarke’s theory of generalized gradients. By means of this theory the problem of global
invertibility of non-differentiable maps has been studied in Banach spaces by many authors
cf. [3 – 5], but nothing exists for Fréchet spaces.

The calculus of generalized gradients involves Lipschitz maps also on dual spaces weak∗
topology suffices. Thus, we may expect to carry it over to the Fréchet setting without much
difficulty. To this end, we start with the definition of the Clarke’s subdifferential of Lipschitz
functions and present some of its basic properties. We then naturally formulate the Palais-Smale
condition in the sense of Chang [4]. Bymeans of Ekeland’s variational principle we prove that any
lower bounded function that satisfies the Chang Palais-Smale condition at all levels is coercive.

As pointed out by Kartiel [5], mountain pass theorems can be used to obtain global home-
morphism theorems. These theorems has many extensions and variations particularly, Shuzhong
[6] generalizes this theorem to locally Lipschitz functions on Banach spaces. Following his ideas
we prove themountain pass theorem for Fréchet spaces, seeTheorem3.2. The desired advantage of
this theorem is that an obtained convergent subsequent satisfies the Chang Palais-Smale condition.

Finally, we prove the main theorem which roughly states that if ϕ is a C1
c -locally diffeo-

morphism of Fréchet spaces and if for an appropriate coercive auxiliary function ı, a function
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x 7→ ı(ϕ(x) − y) for any y satisfies the Chang Palais-Smale condition then ϕ is a global
diffeomorphism.

It might not always be easy even for Banach spaces to check if a map satisfies the Chang
Palais-Smale condition, therefore, for the Banach case another approach which is based on the
path lifiting property has been developed, see Plastock [7]. A potential line for further studies
would be the generalization of this approach for Fréchet spaces as well.

Despite the fact that the theory of Fréchet spaces has a remarkable relationwith both linear and
non-linear problems but not many methods for solving different types of differential equations are
known. Our motivation here has an eye on future applications to ordinary differential equations.
It is known that each global existence theorem for an autonomous system in Banach spaces
has a correspondence with a global inversion theorem. Analogously, we would expect that such
theorems will play notable role in the theory of differential equations in Fréchet spaces.

1. Clarke’s subdifferential. In this section we extend some basic concepts of the generalized
gradients calculus to the Fréchet setting. In most cases the proofs have elementary calculus nature
and similar to their Banach analogues so we merely give references.

We denote by F a Fréchet space and by F ′ its dual. We assume that the topology of F is
defined by an increasing sequence of seminorms ‖ · ‖1F 5 ‖ · ‖2F 5 . . . . A translation-invariant
complete metric inducing the same topology on F can then be defined by

dF (f, g) =

∞∑
i=0

‖f − g‖iF
1 + ‖f − g‖iF

. (1.1)

A ball with center x and radius r in F and F ′ is denoted by Br(x) and B′r(x), respectively. The
boundary of a set U is denoted by bdU. We will use the Keller’s notion of Ckc -maps, see [8]
(Definition 2.2).

The weak topology σ(F, F ′) on F is given by the fundamental system of seminorms

ρφ′(x) := sup
y∈φ′
|y(x)|,

where φ′ runs through the set Φ′ of finite subsets of the dual space F ′. The weak∗ topology
σ(F ′, F ) on F ′ is given by the fundamental system of seminorms

ρφ(y) := sup
x∈φ
|y(x)|,

where φ runs through the set Φ of finite subsets of F. Let 〈., .〉 be the dual pairing between F
and F ′.

Let Liploc(F,R) be the set of all locally Lipschitz functions on F and ϕ ∈ Liploc(F,R). As
in [9] we define for each f ∈ F the generalized directional derivative, denoted by ϕ◦(f, g), in the
direction g ∈ F by

ϕ◦(f, g) := lim sup
h→f,t↓0

ϕ(h+ tg)− ϕ(h)

t
, t ∈ R, h ∈ F.

It can be easily seen that the function f → ϕ◦(f, g) is locally Lipschitz, positively homogeneous
and sub-additive. For any f ∈ F we define the Clarke’s subdifferential of ϕ, denoted by ∂ϕ, as
follows:

∂ϕ(f) :=
{
f ′ ∈ F ′ | (∀g ∈ F )〈f ′, g〉 5 ϕ◦(f, g)

}
.
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Lemma 1.1. (a) ϕ◦(f ; g) is upper semi-continuous as a function of (f, g) and, as a function
of g alone, is Lipschitz on F.

(b) ϕ◦(f,−g) = (−ϕ◦) (f, g).

(c) For every g ∈ F, ϕ◦(f ; g) = max{〈h, g〉 : h ∈ ∂ϕ(f)}.
(d) g ∈ ∂ϕ(f) if and only if ϕ◦(f ;h) ≥ 〈g, h〉 ∀h ∈ F.
(e) Suppose sequences (fj) ⊂ F and (gj) ⊂ F ′ are such that gj ∈ ∂ϕ(fj). If fj → f and g

is a cluster point of (gj), then g ∈ ∂(f).

(f) ∂(tϕ)(f) = t∂ϕ(f) ∀t ∈ R.
(g) If f is a local minimum of ϕ, then 0 ∈ ∂ϕ(f).

(h) ∂(ϕ+ ψ)(f) ⊂ ∂ϕ(f) + ∂ψ(f).

Proof. The proofs of (a) – (h) are easy and similar to the Banach case cf. [10] (Prop. 2.1.1(b),
2.1.1(c), 2.1.2(b), 2.1.5(a), 2.1.5(b), 2.3.1, 2.3.2, 2.3.3), respectively.

Lemma 1.2. The subdifferential ∂ϕ(f) is a nonempty, convex and weak∗ compact subset
of F ′.

Proof. TheHahn –Banach theorem andBourbaki –Alaoglu theorem are available for Fréchet
spaces, therefore, it is enough to apply the arguments of Clarke [10] (Prop. 2.1.2(a)).

Lemma 1.3 [Mean value theorem]. Let f, g ∈ F and ϕ be a Lipschitz function on an open
set containing the line segment [f, g]. Then there exists θ ∈ (0, 1) such that

ϕ(g)− ϕ(f) ∈ 〈∂ϕ(g + (θ(g − f))), g − f〉.

Proof. The proof is very similar to that of [10] (Theorem 2.3.7).
Lemma 1.4 [Chain rule]. Let E be aFréchet space, ϕ : E → F a C1

c -map in a neighborhood
of e ∈ E, and ψ : F → R a locally Lipschitz map. Then τ = ψ ◦ ϕ is locally Lipschitz and

∂τ(e) j ∂ψ(ϕ(e)) ◦Dϕ(e).

If ψ is regular at ϕ(e) then the equality holds.
Proof. The proof is also quite analogous to the Banach case [10] (Theorem 2.3.10).
We recall that a family B of bounded subsets of F that covers F is called a bornology on F

if it is directed upwards by inclusion and if for every B ∈ B and r ∈ R there is a C ∈ B such
that r ·B ⊂ C.

Let E be a Fréchet space, B a bornology on F and LB(F,E) the space of all linear continuous
maps from F to E. The B -topology on LB(F,E) is a Hausdorff locally convex topology defined
by all seminorms obtained as follows:

‖L‖nB := sup {‖L(f)‖nE : f ∈ B, B ∈ B} .

Suppose that B consists of all compact sets, then the B -topology on the space LB(F,R) = F ′B
of all continuous linear functional on F, the dual of F, is the topology of compact convergence.
Let U ⊂ F be open and ϕ : F → E a Keller C1

c -map at x ∈ U. The derivative of ϕ at x, Dϕ(x),
is an element of F ′B. We denote by 〈·, ·〉B the duality pairing between F and F ′B

Lemma 1.5. Let ϕ : U ⊂ F → R be Lipschitz in open neighbourhood U of x. If ϕ is a
C1
c -map at x, then Dϕ(x) ∈ ∂ϕ(x).
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Proof. By definition for all h ∈ F we have

Dϕ(x)(h) = 〈Dϕ(x), h〉B.

By our definition of differentiability we get Dϕ(x)(h) 5 ϕ◦(x, h), but

〈Dϕ(x), h〉B = 〈Dϕ(x), h〉

therefore 〈Dϕ(x), h〉 5 ϕ◦(x, h) thereby by Lemma 1.1(d) we obtain Dϕ(x) ∈ ∂ϕ(x).
2. Chang Palais-Smale condition. A point f ∈ F is called a critical point of ϕ if 0 ∈ ∂ϕ(f),

that is ϕ◦(f ; g) = 0 ∀g ∈ F. The value of a critical point is called a critical value.
We define for each φ ∈ Φ the function λϕ,φ on F as follows:

λϕ,φ(f) = min
y∈∂ϕ(f)

ρφ(y).

The seminorms ρφ(·) are bounded below and weak∗ lower semi-continuous because they arise
as the pointwise supremum of the continuous absolute value function. Also, ∂ϕ(x) is weak∗ -
compact therefore the minimum is obtained.

Lemma 2.1. The set-valued mapping f 7→ ∂ϕ(f) is locally bounded and weak∗ upper
semi-continuous.

Proof. The proof is a slight modification of the Banach case, cf. [11] (Theorem 1.1.2).
Lemma 2.2. For each φ ∈ Φ the function λϕ,φ(f) is sequentially lower semi-continuous
Proof. If λϕ,φ(f) is not sequentially lower-continuous there exist a sequence fn → f0 such

that limn→∞ λϕ,φ(fn) < λϕ,φ(f0). Let a sequence yn ∈ ∂ϕ(fn) be such that ρφ(yn) = λϕ,φ(fn).
By Lemma 2.1 there exist a weak∗ open set U in F ′ such that ∂ϕ(f0) ⊆ U and a neighborhood
V of f0 on which the mapping is bounded such that there exists a subsequence (fni) of (fn) in
V so yni ∈ ∂ϕ(fni) and yni ∈ U. Since {yni} is bounded, it has a weak cluster y0 and hence by
Lemma 1.1(e) we have y0 ∈ ∂ϕ(f0) but

λϕ,φ(f0) 5 ρφ(y0) 5 lim inf
ni→∞

ρφ(yni)

which is a contradiction.
Definition 2.1 [ChangPalais-Smale-condition]. Let ϕ ∈ Liploc(F,R).Wesay that ϕ satisfies

the Palais-Smale condition in the Chang’s sense, Chang Palais-Smale condition for short, if any
sequence (fn) in F such that ϕ(fn) is bounded and for all φ ∈ Φ

lim
n→∞

λϕ,φ(fn) = 0, (2.1)

possesses a convergent subsequence. Also, if any sequence (fn) ⊂ F such that ϕ(fn) → c ∈ R
and satisfies (2.1) possesses a convergent subsequence we say that ϕ satisfies the Chang Palais-
Smale condition at level c.

Suppose that ϕ ∈ Liploc(F,R) satisfies the Chang Palais-Smale condition. Let (fn) be any
sequence in F that converges to f0 and satisfies (2.1). Since by Lemma 2.2 the functions λϕ,φ(fn)
are sequentially lower semi-continuous, it follows that ∀φ ∈ Φ

lim
n→∞

λϕ,φ(fn) = lim inf
n→∞

λϕ,φ(fn) = λϕ,φ(f0).

Whence λϕ,φ(f0) = 0, that is the zero function in F ′ belongs to ∂ϕ(f0), hence f0 is a critical
point.
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Now we prove that a functional ϕ ∈ Liploc(F,R) that satisfies the Chang Palais-Smale
condition at all levels is coercive. The idea of proof is inspired by the work of Brezis and
Nirenberg [12].

A functional ϕ : F → R is said to be coercive if ϕ(f)→ +∞ as ‖f‖1F →∞.
We will need the following version of Ekeland’s variational principle.
Theorem 2.1 [13]. Let (X,σ) be a complete metric space. Let a functional f : X →

→ (−∞,∞] be semi-continuous, bounded from below and not identical to +∞. Then, for
any ε > 0 and every point x0 ∈ X there exists u ∈ X such that

f(u) 5 f(x0)− εσ(u, x0)
f(u) 5 f(x) + εσ(x, u) ∀x ∈ X.
Theorem 2.2. Let ϕ ∈ Liploc(F,R) and let

α := lim inf
‖f‖1→∞

ϕ(f)

be finite. Then there exists a sequence (fn) ⊂ F such that ‖fn‖i →∞ ∀i ∈ N, ϕ(fn)→ α, and
λϕ,φ(fn)→ 0 for all φ ∈ Φ.

Proof. Define

m(r) := inf
‖f‖1=r

ϕ(f). (2.2)

The function m(r) is a non-decreasing and

lim
r→∞

m(r) = α. (2.3)

By (2.3) for each ε > 0 there exists r1 such that for all r = r1

α− ε2 5 m(r). (2.4)

For a fixed ε > 0 choose a number

r2 = max{r1, 2ε}. (2.5)

By our assumption we can fix some z0 with ‖z0‖1 = 2r2 such that

ϕ(z0) < α+ ε2 (2.6)

Let F =
{
f ∈ F : ‖f‖1 = r2

}
. It is closed in F, so it is a complete metric space by the

induced metric (1.1). Moreover, ϕ is lower semi-continuous on F and so on F. Also, by (2.2),
(2.4) and (2.5)

ϕ(u) = m
(
‖u‖1F

)
= α− ε2 ∀u ∈ F with ‖u‖1F = r2.

So ϕ is lower bounded, and therefore, all assumptions of Theorem 2.1 are fulfilled for F. Thus,
there is g ∈ F such that

ϕ(g) 5 ϕ(x) + εdF (g, x) ∀x ∈ F (2.7)

ϕ(g) 5 ϕ(z0)− εdF (g, z0) (2.8)
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It follows that (2.2), (2.4), (2.5), (2.8) and (2.6)

α− ε2 5 m(r2) 5 ϕ(g) 5 ϕ(z0)− εdF (g, z0) 5 α+ ε2 − εdF (g, z0).

Hence

dF (g, z0) 5 2ε.

Thereby, by (2.5)

dF (g, 0) ≥ dF (z0, 0)− dF (g, z0) = 2r2 − 2ε = r2.

Whence g is an interior point of F. Define on F the function

ϕ̃(h) := dF (g, h) + ϕ(h).

The function ϕ̃(h) attains its minimum in g ∈ IntF by virtue of (2.7). Therefore

0 ∈ ∂ϕ̃(g) ⊆ ∂ϕ(g) + εB′F

where B′F is the closed unit ball in F ′. Thus,

λϕ,φ(g) = min{ρφ(h) | h ∈ ∂ϕ(h)} 5 ε.

Letting ε = εn ↓ 0 completes the proof.
Corollary 2.1. If ϕ ∈ Liploc(F,R) is bounded below and satisfies the Chang Palais-Smale

condition at c for all c ∈ R, then it is coercive.
Proof. If it is not coercive then α = lim inf‖f‖1→∞ ϕ(f) is finite. Then by Theorem 2.2 there

exists a sequence (fn) ⊂ F such that ‖fn‖i →∞ ∀i ∈ N, ϕ(fn)→ α and λϕ,φ(fn)→ 0 for all
φ ∈ Φ. Then the Chang Palais-Smale condition at α yields that (fn) has a convergent subsequent
which is a contradiction.

3. The mountain pass theorem. Following the lines of the mountain pass theorem for
Banach spaces due to Shuzhong [6] we prove a version of the mountain pass theorem for locally
Lipschitz functions between Fréchet spaces. This is the most suitable version for our goals as it
involves the Chang Palais-Smale condition.

Let ϕ ∈ Liploc(F,R) be a function. Let U be an open neighborhood of zero and f /∈ U be
given such that for a real number m

max{ϕ(0), ϕ(f)} < m 5 inf
bdU

ϕ. (3.1)

Let
Γ := {γ ∈ C([0, 1];F ) : γ(0) = 0, γ(1) = f}

be the space of continuous paths joining 0 and f. Consider the Fréchet space C([0, 1];F ) with
the family of seminorms

‖γ‖i′Γ = sup
t∈[0,1]

‖γ(t)‖iF .

Let

dΓ(`, γ) =
∞∑
i′=0

‖`− γ‖i′Γ
1 + ‖`− γ‖i′Γ

be the metric that defines the same topology. We can easily verify that Γ is a closed subset of
C([0, 1];F ) so it is a complete metric space with the induced metric dΓ.

In the sequel we will apply the following weak form of Ekeland’s variational principle.
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Theorem 3.1 [14] (Theorem 1 bis.). Let (X,σ) be a complete metric space. Let a functional
f : X → (−∞,∞] be semi-continuous, bounded from below and not identical to +∞. Then, for
any ε > 0 there exists x ∈ X such that

f(x) < infX f + ε,

f(x) 5 f(y) + εσ(x, y) ∀y 6= x ∈ X.
The idea of the proof of the following mountain pass theorem is to define a function

Ψ(γ) = max[0,1] ϕ(γ(t)) on C([0, 1];F ) and show that it is locally Lipschitz. Then we find
almost minimizers with some certain conditions by using Ekeland’s variational principle. We
pick a sequence of these points on Γ and associate it with a sequence on F which satisfies
the requirement of the Chang Palais-Smale condition for ϕ. The limit of a subsequence of this
sequence on F is a critical point of ϕ.

Theorem 3.2. Suppose ϕ ∈ Liploc(F,R) satisfies (3.1) for a real number m. Let

c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)) = m. (3.2)

Then there exists a sequence (fn) ⊂ F such that ϕ(fn) → c and satisfies (2.1). Moreover, if ϕ
satisfies the Chang Palais-Smale condition, then c is a critical value of ϕ.

Proof. Define the function Ψ: C([0, 1];F )→ R by

Ψ(γ) = max
[0,1]

ϕ(γ(t)). (3.3)

Let γ ∈ C([0, 1], F ), for any t ∈ [0, 1] there are positive numbers rt, ct such that

∀f1, f2 ∈ Brt(γ(t)) |ϕ(f1)− ϕ(f2)| 5 ct‖f1 − f2‖1F .

The family {Brt(γ(t))}t∈[0,1] is an open covering of the compact set γ([0, 1]), therefore, there is
a finite sub-covering {Brtj (γ(tj))}j=1,...,k of γ([0, 1]). Hence by the Lebesgue’s number lemma
there exists a positive number r such that for any f ∈ γ([0, 1]) there exists some 1 ≤ j ≤ k such
that Br(f) ⊂ Brtj (γ(tj)).

Set cγ := max1≤j≤k ctj . Therefore

∀t ∈ [0, 1] ∀f1, f2 ∈ Br(γ(t)) |ϕ(f1)− ϕ(f2)| 5 cγ‖f1 − f2‖1F .

If γ1, γ2 ∈ C([0, 1], F ) satisfy

‖γj − γ‖i
′

Γ < r ∀i′ ∈ N, j = 0, 1.

Then

|Ψ(γ1)−Ψ(γ2)| = | max
t∈[0,1]

ϕ(γ1(t))− max
t∈[0,1]

ϕ(γ2)(t)| ≤

≤ max
t∈[0,1]

|ϕ(γ1(t))− ϕ(γ2(t))| ≤ cγ max
t∈[0,1]

‖γ1(t)− γ2(t)‖1F ≤

≤ cγ max
t∈[0,1]

‖γ1(t)− γ2(t)‖iF = cγ‖γ1 − γ2‖i
′

Γ ∀i ∈ N.

Therefore Ψ is locally Lipschitz.
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Let εj be a sequence of positive numbers converging to zero and (ηj) ⊂ C([0, 1];F ) a
sequence such that ‖ηj − γ‖i

′
Γ ∀i′ ∈ N→ 0 as j →∞ and for η ∈ C([0, 1];F )

Ψ◦(γ; η) = lim
j→∞

Ψ(ηj + εjη)−Ψ(ηj)

εj
.

Set
M(γ) := {s ∈ [0, 1] | ϕ(γ(s)) = Ψ(γ)} .

For any sj ∈M(ηj + εjη), j = 1, 2, . . . , it follows that

Ψ(ηj + εjη)−Ψ(ηj)

εj
≤ ϕ(ηj(sj) + εjη(sj))− ϕ(ηj(sj))

εj
.

By the mean value theorem, there exist εj ∈ (0, 1) and x∗j ∈ ∂ϕ(ηj(sj) + εjεjη(sj)) such that

ϕ(ηj(sj) + εjη(sj))− ϕ(ηj(sj))

εj
=
〈
x∗j , η(sj)

〉
, j = 1, 2, . . . .

The sequence (sj) has a convergent sequence, denoted again by (sj), suppose that sj → s.
Then ηj(sj) + εjεjη(sj) → γ(s). By Lemma 1.1(e) the sequence

(
x∗j
)
has a w∗ -cluster point

x∗ ∈ ∂ϕ(γ(s)). So we have
〈
x∗j , η(s)

〉
→ 〈x∗, η(s)〉 and then

Ψ◦(γ; η) ≤ lim
j→∞

〈
x∗j , η(sj)

〉
≤ lim

j→∞

〈
x∗j , η(sj)− η(s)

〉
+ lim
j→∞

〈
x∗j , η(s)

〉
.

Since sj ∈M(ηj + εjη), we have

ϕ(ηj(sj) + εjη(sj)) ≥ ϕ(ηj(t) + εjη(t)) ∀t ∈ [0, 1].

Letting t→∞ yields
ϕ(γ(s)) ≥ ϕ(γ(t)) ∀t ∈ [0, 1]

and hence s ∈M(γ), therefore

Ψ◦(γ; η) ≤ max
s∈M(γ)

ϕ◦(γ(s); η(s)) ∀η ∈ C([0, 1], F ). (3.4)

Set
C0([0, 1], F ) := {η ∈ C([0, 1], F ) ∀t ∈ {0, 1}, η(t) = 0} .

Suppose for some γ ∈ C([0, 1], F ) we have M(γ) ⊂ (0, 1) and there exists ε > 0 such that for
η ∈ C0([0, 1], F )

Ψ◦(γ; η) ≥ −ε‖η‖i′Γ ∀i′ ∈ N. (3.5)

We prove that there exists s ∈M(γ) such that ∀h ∈ F

ϕ◦(γ(s);h) ≥ −ε‖h‖iF ∀i ∈ N. (3.6)

If there there is no such s then for any t ∈M(γ) there exits ht ∈ F with ‖ht‖iF = 1, i ∈ N, such
that ϕ◦(γ(t);ht) < −ε. The continuity of γ and the upper semi-continuity of ϕ◦ implies that for
any t ∈M(γ) there exits ht ∈ F with ‖ht‖iF = 1 ∀i ∈ N and ε′t > 0 such that

ϕ◦(γ(s);ht) < −ε ∀s ∈ Bε′t(t) =
{
s ∈ [0, 1]; |s− t| < ε′t

}
. (3.7)
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The family
{
Bε′t(t)

}
t∈M(γ)

is an open covering of M(γ). Since M(γ) is compact, there exist
t1, . . . , tk ∈ M(γ) such that M(γ) ⊂

⋃j=k
j=1 Bε′tj

(tj). Since M(γ) is a subset of (0, 1), it follows
that Bε′t(t) does not contain {0, 1} for all t ∈M(γ). Thereby

j=k⋃
j=1

Bε′tj
(tj)

 ∪ {[0, 1] \M(γ)} = [0, 1]. (3.8)

Define

µ(t) =

∑j=k

j=1
htjdj(t)∑j=k

j=0
dj(t)

, (3.9)

where

d0(t) = min
s∈M(γ)

|t− s|, t ∈ [0, 1],

and

dj(t) = min
s∈[0,1]\Bε′tj

(tj)
|t− s|, t ∈ [0, 1], j = 1, . . . , k.

By (3.8) it follows that
∑j=k

j=0
dj(t) > 0.

By the above arguments we obtain η0 ∈ C0([0, 1];F ) with ‖η0‖i
′

Γ ≤ 1. Since g 7→ ϕ◦(f, g) is
sublinear in g,

ϕ◦(γ(t); η0(t)) ≤

∑k

j=1
dj(t)ϕ

◦(γ(t);htj )∑k

j=0
dj(t)

.

Then for any t ∈M(γ) we get

d0(t) = 0, dj(t) > 0, j 6= 0⇒ ϕ◦(γ(t);htj ) < −ε.

Therefore by gather (3.4) we have

Ψ◦(γ; η0) ≤ max
s∈M(γ)

ϕ◦(γ(s); η0(s)) < −ε‖η0‖i
′

Γ

which is a contradiction.
Since U separates 0 and f, for any γ ∈ Γ,

γ([0, 1])
⋂
bdU 6= ∅.

Then by the assumptions of the theorem

max
t∈[0,1]

ϕ(γ(t)) ≥ inf
bdU

ϕ ≥ m > max {ϕ(γ(0)), ϕ(γ(1))} . (3.10)
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Therefore for every γ ∈ Γ,

M(γ) =

{
s ∈ [0, 1];ϕ(γ(s)) = max

t∈[0,1]
ϕ(γ(t))

}
⊂ (0, 1). (3.11)

The restriction of Ψ to Γ is again locally Lipschitz and by (3.10) and (3.2) is bounded from
below. Let (αn) be a sequence of positive numbers converging to zero. By Ekeland’s variational
principle 3.1 there exists a sequence (γn) ⊂ Γ such that

c ≤ Ψ(γn) ≤ c+ αn

and

Ψ(%) > Ψ(γn)− αndΓ(%, γn), % 6= γn, n = 1, 2, . . . .

Therefore for any η ∈ C0([0, 1];F ) we obtain

Ψ◦(γn; η) ≥ lim sup
t→0

Ψ(γn + tη)−Ψ(γn)

t
≥ −αn‖η‖i

′
Γ, n = 1, 2, . . . .

Then by gather (3.6), there exists sn ∈M(γn) such that ϕ(γn(sn)) = Ψ(γn) and

ϕ◦(γn(sn);h) ≥ −αn‖h‖iF ∀i ∈ N ∀h ∈ F, n = 1, 2, . . . .

Let fn = γn(sn) for n = 1, 2, . . . , then (fn) is the desired sequence and we have ϕ(fn) → c,
moreover

0 ∈ ∂ϕ(fn) + αnB
′
F .

By the Chang Palais-Smale condition (fn) has a convergent subsequent, denoted again by (fn),
with the limit z. Then,

ϕ(z) = lim
n→∞

ϕ(fn) = c

and ∀w ∈ F& i ∈ N

ϕ◦(z;w) ≥ lim sup
n→∞

ϕ◦(γn(sn);w) ≥ − lim
n→∞

αn‖w‖iF = 0.

That is 0 ∈ ∂ϕ(z).
4. A global diffeomorphism theorem. In this section we apply the mountain pass theorem

of the previous section to obtain a global diffeomorphism theorem.
Lemma 4.1. Let ϕ ∈ Liploc(F,R) and bounded from bellow. Then there exists a sequence

(fn) such that limn→∞ ϕ(fn) = infF ϕ and for all φ ∈ Φ

lim
n→∞

λϕ,φ(fn) = 0.

Proof. Consider a sequence of positive numbers (εn) converging to zero. The function ϕ
satisfies all assumptions of Ekeland variational principle 3.1, so we can find a sequence (fn) such
that

ϕ(fn) < inf
F
ϕ+ εn
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and

ϕ(f) ≥ ϕ(fn)− εndF (f, fn) ∀f 6= fn ∈ F.

Assume f = fn + t(g − fn) for some g ∈ F and a positive number t, then we obtain

ϕ(fn + t(g − fn))− ϕ(fn)

t
≥ −εndF (g, fn).

Thus, for all g ∈ F, if we let t→ 0, then

ϕ◦(fn; g − fn) ≥ −εndF (g, fn).

For a fixed fn, define the sets

Θn; =
{

(h, t) | h ∈ F ; t > ϕ◦(fn;h)
}

and
Πn :=

{
(h, t) | h ∈ F ; t < −εn|h|iF ∀i ∈ N

}
.

They are open convex sets with empty intersection so by Hahn –Banach separation theorem
there exists a separating hyperplane determined by a functional υn(h, t) = wn(h) + αt for some
α 6= 0, where wn is a linear functional on F such that wn(0) = 0. Let w∗(h) =

−1

α
wn(h),

then υn (h,w∗(h)) = 0 ∀h ∈ F. Thereby w∗(h) ≤ ϕ◦(fn;h) hence by Lemma 1.1 (g) we have
w∗n ∈ ∂ϕ(fn). On the other hand |w∗n(h)| ≤ εn‖h‖i ∀i ∈ N so for all φ we have λϕ,φ(fn) ≤
≤ ρφ (w∗) ≤ εn. Letting εn ↓ 0 completes the proof.

Theorem 4.1. Let ı : F → [0,∞) be a coercive locally Lipschitz function having the following
two properties:

ı(x) = 0 if and only if x = 0,
0 ∈ ∂ı(y) if and only if y = 0.
Further let τ : E → F be a local C1

c -diffeomorphism. Suppose that for each f ∈ F the
function  : F → [0,∞) given by

(e) = ı(τ(e)− f)

satisfies the Chang Palais-Smale condition. Then τ is a global diffeomorphism.
Proof. We need to show that τ is surjective and bijective. Let e1 6= e2 ∈ E, if τ(e1) 6= τ(e2)

we have nothing to prove. Assume τ(e1) = τ(e2) = l. Since τ is a local diffeomorphism, it
follows that it is an open map, therefore, there exist σ, α > 0 such that

Bαr(l) ⊂ τ(Br(e1)) ∀r ∈ (0, σ). (4.1)

Let r ∈ (0, σ) be the smallest number such that e2 /∈ Br(e1). Consider the function (e) =
= ı(τ(e)− l), therefore, (e1) = (e2) = 0.

Without the loose of generality we can suppose e1 = 0. By (4.1) for e ∈ bdBr(0) we
have 0 < m ≤ (e). Thus, all conditions of Theorem 3.2 hold so there exists (en) ⊂ E such
that limn→∞ (en) = c for some c ≥ m characterized by (3.2). Since (en) satisfies the Chang
Palais-Smale condition, it has a convergent subsequent, denoted again by (en), with the limit h.
Therefore, h is a critical point so 0 ∈ ∂(h) and τ(h) 6= l since limn→∞ (en) = (h) = c ≥ m >
> 0.
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By the chain rule (1.4) we have ∂(h) ⊂ ∂ı(τ(h) − l) ◦ D τ(h). Therefore, there exists
v ∈ ∂ı(τ(h) − l) such that 0 = v ◦ D τ(h). Since τ is a local diffeomorphism, it follows that
v = 0. Therefore, by our assumption on ı, τ(h)− l must be zero which is a contradiction.

Let g ∈ F be given and consider the function (e) = ı(τ(e)− g). By Lemma 4.1 there exists
a sequence (fn) such that limn→∞ (fn) = infE  and for all φ ∈ Φ we have

lim
n→∞

λ,φ(fn) = 0.

Since  satisfies theChangPalais-Smale condition, the sequence (fn) has a convergent subsequent,
denoted again by (fn), with the limit p which is a critical point of  so 0 ∈ ∂(p). By the chain
rule (1.4) we have ∂(p) ⊂ ∂ı(τ(p) − g) ◦ D τ(p). Thus, there exists ξ ∈ ∂ı(τ(p) − g) such that
0 = ξ ◦ D τ(p). Since D τ is invertible at p, we have ξ = 0. Therefore, by our assumption on ı,
τ(p) = g.

Remark 4.1. In [15] the analogue of the theorem for Banach spaces is obtained, where the
applied auxiliary function is 1

2
| · |2 and it satisfies the weighted Chang Palais-Smale condition.

The results of [15] may also work with the type auxiliary function that we use. Nevertheless,
we may attempt to extend Theorem 4.1 for auxiliary functions that satisfy the weighted Chang
Palais-Smale condition which of course requires an appropriate mountain pass theorem.
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