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For a viscous incompressible liquid with laminar flows, nonlinear boundary-layer problems on the wetted
tank surface (wall and bottom) of a rigid circular-base tank partly filled with a finite depth are deri-
ved assuming known the resonant steady-state inviscid liquid sloshing due to a horizontal translatory
orbital tank motion with the forcing frequency close to the lowest natural sloshing frequency. By adop-
ting a Narimanov— Moiseev-type approximation of the above-mentioned inviscid sloshing, an analytical
asymptotic solution of the derived boundary-layer problems is constructed to prove that the inviscid flows
must contain a global stationary vortex component. A new nonlinear boundary-value problem governing
this component is derived.

3a npunyujeHHA 6°’A3K0I HeCMUCAUBOL PIOUHU 3 AAMIHAPHOI Mewiet) 8U8e0eHO HeATHILHI Kpallosi 3a-
oaui npumaposux me4ii 6ina 3mo4enol nodepxHi baxa (CMiHKU ma OHA) 8ePMUKAABHOZ0 KPY208020
YUATHOPUYHO20 0aKa, AKULL 4aCHKO80 3aN0BHEHULL PIOUHOIO I3 CKIHYeHHOI 2aubunoro. [lonyckaiouu,
U0 BIOOMO PE3OHAHCHI ycmaneHi Hed A3KI meuii pIOUHU (XAIONaHHA), AKL 30YPIOIOMbCA 20PpU3OHMANL-
HUMU ROCIYNAABHUMU OPOIMAALHUMU DYXaMU 6AKa i3 HACMOMOI0, AKA € 6AU3bKOI0 00 NePULOL 8AACHOT
4acmomu KOAUBAHHA PIOUHU, MaA 8UKOPUCMO8Yo4U HabauxcenHa Hapimanosa— Moiceesa suujesasna-
YEeHUX YCMANEHUX He8 ASKUX PENUMIB XAIONAHHA, MU OY0YEMO ACUMNIMOMUYHUIL AHAAIMUYHUL D036 A-
30K 8UBe0eHUX 3a0a4 npuaposoi me4ii. /[oedeno, uio Ui Hed’ A3Ki XAIONAHHA NOBUHHI MICIIUMU 210-
6aAbHY CMAUIOHAPHY BUXPO8Y KOMNOHEHNY. Busederno Ho8y HeAlHIlIHY Kpailogy 3a0a4y, po36’a30K AKOL
ONnUCye Yo KOMROHEHNTY.

1. Introduction. Free-surface problems describing the liquid sloshing dynamics in a rigid circular-
base tank have been studied, analytically and numerically [9, 16], starting from the 50’s, ori-
ginally, in context of spacecraft applications [1, 13]. Nonlinear analytical theories normally
adopted the inviscid irrotational hydrodynamic model but the viscous rotational (Navier — Sto-
kes) equations were in focus of the Computational Fluid Dynamics.

Ludwig Prandtl [15] was probably the first who observed, in his dedicated model tests of
1949, a slow rotation of liquid particles around the vertical tank axis that accompanies resonant
angular progressive waves (swirling) in a circular-base container; the forcing frequency was
close to the lowest natural sloshing frequency. In Prandtl’s experiments, container moves hori-
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zontally and translatory along a circular orbit, but the same rotational stream was detected by
Hutton [8] and Royon-Lebeaud, Hopfinger & Cartellier [20] for swirling due to the resonant
longitudinal harmonic tank forcing. Being interested in life-science applications (bioreactors),
the Prandtl-like experiments were reproduced, on a more sophisticated and systematic level in
[3, 5, 17, 18, 21]. After pointing out that the Prandtl vortical stream can never be theoretically
explained within the framework of the inviscid hydrodynamic model based on the Eulerian
specification, the latter authors referred, as two sources for liquid particles to rotate, to the
angular Stokes drift (comes from kinematic relations in the Lagrangian specification) or/and
the so-called steady streaming [2, 19], whose occurrence is caused by the viscous boundary-layer
flows. Comparing theoretical predictions of the Stokes drift with rotational stream measure-
ments, Reclari [17] found out a satisfactory agreement only for the non-resonant sloshing. The
same disagreement for the resonant steady-state swirling but due to the longitudinal forcing
was reported by Hutton [8] who guessed that viscosity, most probably, then matters and must
be included into analysis.

In the present paper, an attempt to extend the steady streaming theory onto sloshing prob-
lems is performed. The primary goal consists of creating a mathematical background for explai-
ning the Prandtl stationary vortical stream phenomenon. Extending the steady streaming theory
needs nonlinear boundary-layer equations and boundary conditions (boundary-layer problems)
to be derived and solved under assumption that a “parental” inviscid solution of the hydrody-
namic problem is a priori known, in a suitable analytical form. This faces the two challenges:
(i) analogous nonlinear boundary-layer problems were mainly considered for two-dimensional
external (infinite domain) statements but sloshing in a circular-base tank deals with internal
(the limited liquid volume) three-dimensional free-surface boundary-value problems, that is, a
naive implementation of existing results [19] is doubtful; (ii) the above-mentioned parental invi-
scid solutions were derived [6, 7 11] only for potential flows. In Sections 2 -4, we demonstrate
how to overcome the challenges.

In Section 2, after introducing a scaling (normalisation) and giving the necessary notati-
ons, we introduce inviscid v and viscous V' velocity fields in the liquid domain Q(¢) (depends
on the time), which are governed by the Euler and Navier—Stokes equations, respectively.
The Reynolds number Ry = v/(l.0) (v is the kinematic viscosity, [, is the chosen characteri-
stic size, o is the forcing frequency) determines the nondimensional boundary-layer thickness
§ = 1/v/Rs < 1. Introducing an asymptotic solution by O(§) makes it possible to derive
(boundary-layer) equations and boundary conditions, which govern the O(1)-quantities of the
velocity field difference (V' —v). These equations are defined on the tank bottom and the wetted
vertical wall. Projections of v (and its derivatives) on the wetted tank surface are assumed being
known functions; they appear in both boundary conditions and coefficients of the boundary-
layer equations. Solutions of the boundary-layer problems should tend to zero as £ — +o0o,
where ¢ is a local (boundary-layer) spatial variable whose O(1)-values specify the inner points
of Q(t), which belong to the J-vicinity of the wetted tank surface.

The Narimanov —Moiseev asymptotic scheme is employed in Section 3 to get an analytical
approximation of the inviscid velocity field v and solve the nonlinear boundary-layer problems
derived in Section 2. The scheme introduces the leading O(¢'/3) term in v (O(e) is the forcing
amplitude) and the asymptotic relationship § < €2/3 is required as the necessary applicabili-
ty condition of the boundary-layer problems adopting the Narimanov —Moiseev-type inviscid
solution for v. The leading asymptotic term is associated with the two perpendicular natural
sloshing modes; it is taken from [6]. Specifically, solutions of the boundary-layer problems
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Fig. 1. An upright circular cylindrical rigid tank moves horizontally along an elliptic orbit and, thereby, excites a
steady-state resonant sloshing (panel a). The coordinate system Owxyz is rigidly fixed with the tank.
The mean liquid depth is finite. Auxiliary problems of the asymptotic sloshing theories are defined in the
the unperturbed (hydrostatic) liquid domain Qo confined by the mean free surface o, wetted wall V5,
and the bottom By (panel b).

include a time-independent summand, which must decay away from the mean wetted tank
surface. The latter is only possible, if v contains a non-zero stationary vortical stream component
w = O(e*/?). The corresponding non-zero boundary conditions for w on the mean wetted tank
surface are derived. To find a governing equation for w in the mean liquid domain Qg (in addi-
tion, to the non-zero boundary conditions), the vorticity equation is used in Section 4.

2. Boundary-layer problems. Our analysis suggests a nondimensional statement adopting
the characteristic size, time and mass,

l. =ro/k, t.=1/c and m, = pl, (1)

respectively, where ry is the tank radius, o is the forcing frequency, p is the liquid density, and
k = 1.84...is the lowest positive real root of the transcedential equation Jj (k) = 0 (J; is the
Bessel function of the first kind); the normalisation factor & is used to simplify the forthcoming
derivations. The nondimensional tank radius is equal to k. The mean nondimensional liquid
depth is a finite value, i.e., of the order O(1).

A viscous incompressible liquid partly filling a circular-base rigid tank is considered in the
tank-fixed coordinate system Ozyz as shown in Figure 1 (a). The tank moves along an elliptic
horizontal orbit 7, (t)  + 12(¢) ¥ (€ and g are the coordinate units of the tank-fixed coordinate
system Ozyz), m(t) = Mg cost, n2(t) = nagsint. The nondimensional forcing amplitudes are
small values,

Ma ~ M2a = O(e) < 1. (2)

The task consists of describing the steady-state (time-periodic) liquid sloshing dynamics, i.e., fi-
nding the free-surface ¥(¢) governed by z = f(r, 0, t) (the liquid domain Q(t) = {(r,0,2,t):0 <
<r<k,—m<0<m—h< f(r6,z1t)}, the velocity and pressure fields in Q(¢), which should
be found from the corresponding free-surface problem whose actual mathematical formulation
depends on the used hydrodynamic model [7].

In the present section, the steady-state inviscid v(r,0,z,t) = ur + v 0 + w 2 and viscous
V(r,0,z,t) = U 4+ VO + W2 velocity fields are considered, simultaneously. The cylindri-
cal frame coordinate units are # 6 and 2 and R, = v/(l,0) (v is the kinematic viscosity)
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is the Reynolds number. We assume that v(r, 6, z,t) (as well as the pressure py(r, 0, z,t)) is a
known analytical vector-function in Q(t), which is found from the corresponding inviscid-flow
free-surface problem. The viscous velocity field V (r, 0, z,t) and the pressure P(r,6,z,t) are
governed by the continuity equation

(rU)r +Vog+rW, =0 3)

(the subscripts denote the corresponding spatial derivative and the dot marks the time-derivati-
ve) and the nondimensional Navier — Stokes equation

) VU, V2 u), U U 2V,
U+UUT+9—+WUz=—PT+62[(r)—2+929—;’+U4+
T T T r T T
+ cos 07j; + sin O7ja, (4a)
: VVy UV P, Ve Vo Vg 20
V+UVT+9++WVZ=9+52[(T ) 2+929+29+sz]
r T T T T T T
— sin 0ijy + cos O7ja, (4b)
- VW, W) W,
W+ UW, + T9+WW :—PZ+52[T(T)+TSG+WZZ], (4¢)

where 62 = 1/R;.

Because the known inviscid solution (v(r, 0, z,t) and py(r, 6, z,t)) should exactly satisfy (3)
and (4) with 0 = 0 (the boundary layer thickness ¢ is negligibly small relative to other nondi-
mensional parameters), one can focus on the difference fields

V-v=(R06,2)=U—-u,V—-—ouv,W—-—w) and p= P — py, (5)
which are governed by
(rR), +0©9+1Z, =0, (6a)
: ORy ©? 1
R+ RR, + Te — ——+ ZR: + [uRy + Ru,] + — [vRg + Oug| -

20 R.) R R 20
—U-I—[Zuz—i-sz]:—pr—i-éQ[(T ) — S+ 2R, |+
T T T T
2 [(rur)e u  uey  2vg
+6 " r2+ 2 2 +wzz], (6b)
. 00 RO 1
@+R@r+70+T+Z@z+[u@r+er]+;[v@9+@v9}+
1 0,), 0 06 2R
+ = [u® + Ro] + [, + Zv,] = 22 4 52 [(T)—z+§9+29+@zz +
T T T T T T
o [ (rup)y v vge  2uy
+(5 T_7’2+7“2+7“2+Uzz:|7 (60)
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. 07, 1
Z+ RZ, + - + 277, + [uZ, + Rw,] + - [vZy + Owg| + [WZ, + Zw,] =

:_pz+52

Z)y 7, r)r
r(Z) +920+Zzz} + 62 [r(w) + 29 4w, (6d)
T T r T

in all internal points of Q(¢). The Navier — Stokes equation traditionally requires the non-slip

V' = 0 condition on S(t), but v adopts the slip condition v - n = 0 (n is the outward normal
vector). The difference velocity field by (5) and (6), therefore, satisfies

(R,©,Z) =V —v = (—v,—u,—w) on S(t), (7)

where the right-hand side is a known vector-function. The velocity fields V' and v are close to
each other on the O(9) scale away from the wetted tank surface. The latter condition can be
formalised as

I(R,©,2)|| = |V —wv| =0() in Q(t) atadistance d > ¢ awayfrom S(t) (8)

and, as a consequence, the difference velocity field (V' — v) has the order O(1) only in a O(J)-
vicinity of the wetted tank surface. Our goal is to derive the boundary-value problems, which
govern this zero-order component. The problems consist of boundary-layer equations defined
on the wall (r = k) and the bottom (z = —h), respectively, with appropriate boundary conditi-
ons following from (7). In addition, one should require that this component vanishes away from
the O(6) boundary-layer zone.

To derive the boundary-layer problem on the vertical wall, we introduce the boundary-layer
spatial variable ¢ and consider

r=k—0, R=0R1+..., ©=00+01+..., Z=20+0Z1+..., p=dp1+...,
9)

where R, O, Z and p are now functions of ¢, ¢; 6, z. Because the normal velocity is zero at r = k,
= Ro = 0. Equation (6b) (rewritten in the &, ¢, , z coordinates) shows that the pressure

difference field has no zero-order component. Furthermore, using the rule (-)¢ = —4(-), for R,
© and Z and keeping only the O(1) terms derive

Ri¢ = Zo. + O /k (10)
from (6a), but (6¢) and (6d) transform to the two equations

©0O09

. 1
©¢ — Opge — R1O0¢ + + Z0Oo: + {urOpc + % (V00 + 19O0] + [WO0, + 1. Zp] = 0,

(11a)

SIVAY,

1
+ ZoZoz + §urZoe + % [0Z09 + weOo| + [WZy. + w.Zp] = 0,
(11b)
in which the bars denote projections of the known v and its derivatives on the wall (u,v and

w and their derivatives are expanded in a Taylor series in ¢) so that all coefficients in (11) are
known time-depending functions, which parametrically depend on # and z, i.e.,

ur(t;0,2) = up(k,0,2,t), 0(t;0,2) = v(k,0,2,t), vg(t;0,2) = vg(k,0,z,t),

Zo — Zoee — R1Zoe +

w(t;0,2) = w(k,0,z,t), 0,(t;0,2) = w,(k,0,z,1).
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According to (7), the time-periodic (steady-state) solution of (11) satisfies the inhomogeneous
boundary conditions

R1(0,t;0,2) =0, ©¢(0,t;6,2) = —0(t;0,2), Zp(0,t;6,2) = —w(t; 0, z). (12)

Because O, Zp = O(1), but R; corresponds to the first-order approximation in (9), the asymp-
totic condition (8) transforms to the form

|©o] + |Zo] — 0 and [Ry] — O(1) as & — +oc. (13)

The nonlinear boundary-value problem (10)—(13) is formulated with respect to ©¢ and Z, on
the inner points of the wetted tank wall, namely, for —oco < t < +00,& > 0,and —7 < 0 < ,
—h < z < f(r,0,t).

Proceeding in a similar way for the bottom with

z:—h+5§,R:R0+5R1—|—..., @:@0+(5@1+, Z:(SZl+...,p:5p1+...

(14)
leads to
Roy)r + 0O
Ty = — o) + O : ©, (15a)
. OoRy O
Ry — Roge + RoRor + —070 70 + Z1Roe + [uRo, + Roti, |+
vR Ot 2090
4 200 F D00 Z00% | i, Roe = 0, (15b)
T T
: 000 Ry©
O — Ouge + RoOo, + — = + = + Z100¢ + [100, + Rov, |+
vO Opvg + uBg + Rov
4 V900 + OUG:U 0 + v + €w.00¢ = 0, (15¢)
where the bars denote projections of the known inviscid solution on the bottom (z = —h). We

look for a time-periodic solution satisfying

RO(Oata T, 0) = —-u= —u(r,@, _hvt)a GO(Oat;rve) = -7 = —U(’I“,e, _h>t)7 Zl(oata T, 0) = 07
(16)

and
|©o] + |Ro] — 0 and |Z1] — O(1) as & — +oc. (17)

The nonlinear boundary-value problem (15)—(17) is formulated with respect to ©g and Ry as
functionsof ¢ > 0, —c0c <t < occandr > 0, -7 < 0 < 7.
As matter of the above-done derivations, we have proved the following proposition.
Proposition 1. Assuming § = 1/\/Rs < 1, the O(1)-order difference between viscous V
and inviscid v velocity fields of the steady-state sloshing problem in a circular-base container is
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localised in a O(0)-neighbourhood of the wetted tank surface and governed by the boundary-
layer problems (10) - (13) and (15) - (17).

3. An asymptotic solution of (10)-(13) and (15) - (17). Assuming an inviscid irrotational
flow, a steady-state (periodic) solution of the corresponding free-surface problem was derived
in [6] utilising the Narimanov — Moiseev asymptotic scheme [9, 10, 12]. According to the scheme,
the lowest-order (dominant) solution component is associated with the primary excited natural
sloshing modes and has the order O(¢!/3), unless a secondary resonance occurs [4, 6]; O(e)
characterises the nondimensinal forcing amplitude (2).

Because the natural sloshing modes imply potential flows, the Narimanov — Moiseev scheme
for the inviscid rotational hydrodynamic model should not change the lowest-order asymptotic
component (by primary-excited natural sloshing modes) and, therefore, the velocity field
v(r,0, z,t) reads as (see [6] for the adopted normalization (1))

v = uf +v0 + wz = cost V[J1(r)Z(2)7e(0)] + sint V[J1(r) Z(2)7(0)] +

v (1/3)=(u(1/3) p(1/3) 1(1/3))=0(c1/3)

+w(r, 0, 2) + cos 2t we(r, 0, z) + sin 2t ws(r, 0, z) +O () (18)

w(2/3) =(u(2/3) p(2/3) w(2/3) ) =0 (e2/3)
in the unperturbed liquid domain @ (see Figure 1 (b)), where
Z(2) = cosh(z)/sinhh, 7.(0) = bsinf +acosf, 74(0) = —bsinh —acosd  (19)

(h = O(1) is the nondimensional liquid depth) and the nondimensional amplitude parameters
a,a,b,b = O(¢'/3) are taken from [6] as a solution of the corresponding (secular) system of
nonlinear algebraic equations. Generally speaking, the second-order velocity component v(2/3)
is a quadratic function of the nondimensional amplitude parameters. Specifically, the stationary
part

w(r,0,z) = (wi(r,0,2),ws(r,8,z),ws(r,0,z)) = O <€2/3)

cannot appear within the framework of the potential flow theory [6, 7 11]; it corresponds to a
global vortex stream in (Qp, that is,

UJ(’I",G,Z) = (w17w2aw3) =Vxuw 7& 0. (20)

Utilising (18), an asymptotic solution of the boundary-value problems (10)—(13) and (15) -
(17) can be constructed in term of O(¢'/3) < 1. One should remember that the boundary-layer
problems neglect the O(d) quantities which should, therefore, be asymptotically smaller than
2/3

5 < 3, (21)

To get an asymptotic solution of (10)—(13), we introduce

O =0"+el® . . Zy=2zMV 1704 . R =RYY LR 4 (22)

and consider a sequence of linear boundary-value problems for ¢ > 0, —co < t < oo and
—h<z<0,—7m7<0<m.
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The first-order approximation of (10)—(12) gives the linear parabolic problems ({ > 0,
—00 < t < 00):

961/3) - (9(()15?) =0, 981/3) (0,0,2,t) = —Jlék)Z(z) [cost7,(6) + sint /()] , (23a)
7MY~z =0, Z2579(0,0,2,1) = — (k) 2(2) [cost ro(0) +sint m(0)],  (23b)

which consists of the two independent linear Stokes boundary-layer equations [2] parametri-
cally dependent on —h < z < 0and —7 < 6 < . General time-periodic solution of (23)
reads, according to § 3.1.1 in [14], as

S1(k)

0f/ (€. 1:0,2) = ==L,

Z(z) exp(—ag) [i(0) cos(t — ag) + 7((0) sin(t — a)|,  (24a)

Z8 (40, 2) = —Ty (k) 2(2) exp(—al) [re(0) cos(t — a€) + 4(0) sin(t — af)] (24b)

(o = 1/4/2). Substituting (24) into the continuity equation (10) and using the first boundary
condition of (12) give

13
RV (¢ 10, 2) / 23 + 0/ 1) de —% Ti(k)Z(2) (1 - 132) %
0

X {TC(G) [sint + cost — e (sin(t — a€) + cos(t — af))]+

+ 75(0) [sint — cot t — e~ *(sin(t — af) — cos(t — ag))] } (25)

One can see that ‘R§1/3)‘ — 0 (¢/3) and ©/? ~ Z{"® 5 0as ¢ — +oo that is consistent

with (13) on the O(¢) asymptotic scale restricted to (21).

Expressions (24) and (25) should be inserted into (11) that leads to the following inhomoge-
neous parabolic equations with respect to 982/ % and Zé2/ 3.
(1/3) 5(1/3)
OO0 e cafie

~(2/3) 2/3 1/3 1/3
O — oY = RiIe -

S99 4 5D - [a/Mell 4+ 50/ £{19] =

= Gol&,1;:0,2) = e [Gg)(&ﬁ,z) —I—cothGg)(f;H,z) + sin2tGg)(f;0,z)} ,
(26a)

1/3) ,(1/3
@(()/ )Z(ge/ )

>(2/3 2/3 1/3 1/3
2219 — 78 = R 9 - S0

— Z(()l/S)ZO(i/g) _ 561{1/3)%;/3)_
_% [@(1/3)Zéi/3) + wél/?’)@(()l/?’)} _ [w(l/3)Zéi/3) 4 wgl/:i)Zél/B)} _

Gz(&,t,0,2) = e [G(O (&6, 2) +cos2tG (f 0, z) —I—sttG (f 6 z)]
(26b)
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where the right-hand sides being the known functions

2
Go(§,t;0,2) = —J;;k) 6_0‘5{ |:(7'é7'c +7.75) (2cos a — e_ag) +
k2 —1
+ 2| = (e + 1) = mil7e = ))e ™+

+ (=727 + Ts) + Th(Te — 275)) cos € + (TéTC + 7';7'5) sin a£)+

ﬁ%%%«,

(e = ) 4 (7 + 7)) o8 + (e + 74) — 77 — 7)) sin ) | +

+ cos 2t { [(TC’TC — 775) (e (1 — 2cos? a€) + 2 cos o)+

+ 2(7l7e + T7) sin aé (7% cos af — 1)} +

k2 —1
+Z [1@2 ((7‘8'7‘0 + 7i7g) sin € + (TiTs — TiTC) COS a&) +

1 (k)
J1(k)

~+ sin Qt{

— 2 (Tlre — Ti7s) sin o <e_0‘£ cos a — 1)

+

af ((Té(’]’c +7s) + To(Te — 7s)) cos € + (Th(Te — Ts) — Th(Te + 7)) sin af)} }+

(rie + 7ims) (e (1 = 2cos” ag) + 2 cos ag) -

+

E2—1
k2

o : (] ! _ J7 (k)
(TaTs — Toe) sina — (T4Te + T4Ts) cos € agx
J1(k)

+2Z

X ((Té(TC —75) — To(Te + 75)) cos & — (TL(7e + Ts) + To(Te — 75)) sin af)] }}, (27a)

2
Gz(&t;0,2) = —J;]il;) zZ e_o‘g{ [((TE + 7'52)]6‘2 + Té2 + 722)(6_“5 —2cosaf)+
2 qn
+ (K% = 1)(12 + 72)sinaé + kjjzgj) (12 4 72)(sin a€ 4 cos a{)] +
1

+ cos 2t [( 272 4 224 7% (e — 2cos® al)+
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+cos al((k? + 1) (—12 +72) — 2(r1* — 71%)+

+ 2sin 045(—26_0‘E cos ol (TeTs + TLTL) + Ts(kz + 1)7e + 27.70)+

k:2aJ”(k:)

" ¢ (12 = 2oy — 72) sin o + (77 + 27075 — 72) cos o) ] —

— sin 2t | (27075 + 27070) % _ 92082 ) + 2 (1o (K% + 1) + 27°7) cos aé+
c'S

+sm0‘f( — 12+ re  C cosag + (K2 + 1)(72 — 72) + 277 —275’2)+
kQL _ 2 (2 2\
71 0) £ (( — 27,7y — T3) cosa€ — (77 + 27,75 — 72 ) sin a&) } (27b)

The time-periodic solution of (26) should decay at the infinity,

P (¢, 4:0,2,t) > 0 and Z(P(€,0,2t) >0 as € — +oo, (28)

and satisfy the boundary conditions
O¥(0,4,0,2) = — cos 2t we(k, 0, 2) — sin 2wy (k, 0, 2) — wa(k, 0, ), (292)
Z(()Q/s)((),t; 0,z) = —cos2twes(k,0,z) —sin 2t ws(k, 0, z) — ws(k, 0, 2). (29b)

Huge and very tedious derivations (Maple(™) was employed to simplify them) make it
possible to get an exact analytical solution of (26)—(29) in the form

682/3)(5,15;9,2') = 6(()%/3)(5;0, z2)+© 2/3)(5 6,z) cos2t + O 2/3 (&6, 2) sin 2t,

o5V (e1:0.2)

(30)
Z(()Q/?’)(f,t;ﬁ7 z) = Zég/?’)(f;e, z) + ZOQ/3 (&;0,2) cos2t + 202/3 (&;6,2) sin2t.
Z5/P (€ t:0.2)
The oscillatory component is the sum
05/ (€,1;0,2) = 65/ (6,4;0,2) + O/ (€, 1:6, 2),
256, 1:0,2) = 267 (6,4:0,2) + 257 (6,450, 2),
where, according to § 3.1.1 in [14],
(2/3 (€,t:0,2) = —e S [wea(k, 0, 2) cos(—€ + 2t) + wea(k, 0, 2) sin(—€ + 2t)]
(31)

Z(()Z/S) (67 t; ‘9’ Z) = _e—§ [wc?)(k: 97 Z) COS(—f + 2t) + ws3(ka 07 Z) Sin(_g + Qt)]
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(corresponds to Gg = Gz = 0in (26)) and ([14], § 4)
+00 +00
(2/3 (&,t:0,2) = / / e [COSQ(t—tl)G( )(x 6, z) —i—sm2(t—t1)G( )(:c 0 z)] X
0 0
K&, x,t1)dxdty, (32a)
+00 400
2/3 (&,6;0,2) = / / et [cosQ(t—tl)G( )(a: 0 z)—i—sm2(t—t1)G( )(a: 0,2)| x
0 0
,C(f, Z, tl)da;dtl, (32b)
where
o (- 2’ (€ + )
K&, t1) = Nl A T e e (33)

(@ 2/3) and Zéf,/ 3) exactly satisfy the zero boundary condition on £ = 0).

Direct analysis of the obtained analytical expressions shows that

009 Z89] ~ 0 (cm%) and 09| ~ |29~ 0() a5 € > +oc.

This means that @(2/ 3) 72/3)

Zy, " automatically satisfy (28) for any oscillatory velocity field com-
ponents w, and w; 1n (18)

The time-independent component of (30) comes from the equations

. J2(k _ k-1
(o), = 15 eaf{<ab — ab)Z(2) [k? (7€ — cosag) +

+ jill((ll:)) af (sin af — cos aﬁ)} + [2 cos a& — e+
+ Z(2) <k2k; 1 (e*aﬁ — 2cos af + sin 04§> + ﬁ/((]]s)) aé(cos af + sin ag))} X
X [(a@ + ab) cos 20 + % (b2 +b? —a® - EL2) sin 20] }, (34a)
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1 _
Z(2)2'(2) 6_0‘5{2 (a2 +a* + b+ b2) X

¢ 2k?
2 71
X ((kz2 +1) (e_a5 — 2cos a£> + (k:2 - 1) sin o€ + BTy (k) af(sin a + cos af))—l—
Ji(k)
+ (; (a2 +a? b — 132) cos 20 + (ab + ab) sin 29) X
2 71
X ((k‘2 - 1) (e_o‘5 — 2cos af + sin af) + kjﬁlgg) a&(sin ag + cos a£)> },
(34b)
whose fundamental solution is
2 2
@/3) _ Ji(k) _ae) 7 YO it R Y .
Ou) " = iha? (ab—ab)Z*(z) 572 (e + 2sin af) +
1"
+ Jll((ll:)) (2 cos o + a&(sin o + cos af))] —| - % ((270‘5 + 4sina§> +

k? —1
+Z2(z)< 572 (670‘£+2cosa§+4sina§)+

T (k
J1(k)

~—

+ (a€(cos a€ —sinaf) — 281110[5))] X

X mb+amcw29+;(E+49—a2—a%sm2ﬂ}+m%w¢)+50ﬂaz) (35a)

JE(k a1 _ -
A%MMQ£Z@Z@65{2W+J+§+ﬂX

X !; ((k:2 +1) <4sin af + e_ag) +2(k? — 1) cos af) +

+ kiﬁllif) (a€(cosaf —sinaf) — 2sinaf) |+

i <; (CL2 + (762 o b2 _ 62> cos 260 + ((LB + be) sin 20) X

2
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K (k)
Ji(k)

(2sin a + aé(sin a€ — cos af)) > } + C2(0,2) + £C3(0, 2). (35b)

Obviously C1, Cy, C5 and Cy must be zero to satisfy (28). A use (29) and (35) with C; = 0
leads to the necessary boundary condition for the stationary vortical component on the wall

wy(k,0,2) =0, (36a)

2 2 1"
wa(k,0,2) = —Lh;]?{(al_)—ab) <k2k21 +2 Jll((]/j))) Z%(2)—

(-2 + s K- Z%(2) ) | (ab + ab) cos 20 + ! (b* +b* — a® — @*) sin 20
22 k2 2 ’
(36b)
JE(k 1 _
ws3(k,0,2) = — i]iz,) Z(z)Z’(z){2 (a® +a* + % +b?) (3k* — 1) +
1 _ _
+3(k*-1) [2 (a® +a* — b* — b?) cos 20 + (ab + ab) sin 29] } (36¢)

Proceeding in a similar way with the boundary-layer problem (15)-(17) we get another
necessary boundary condition on the bottom:

—rzj’%(r) + TJ{ (r)Ji(r)(2 — 31"2) — le(r)

r3 +

1 _
wi(r,0,—h) = =2 22(—h){ (a® +a* + b* + b?)

+ [(a® + a@* — b* — b*) cos 20 + 2(ab + ab) sin 20

—r2J2(r) = 33T (r) 1 (r) + J2(r) }
r3 ’

(37a)

wa(r,0,—h) = 132(—h){3(ab— ab) <]12(7“)Jr

r3

_ 1 _ 2 712 72 1 2) 2
+ —(ab+db)cos20+§ (a* +a@* — b* — b?) sin 26 () = A+ 2 )}, (37b)

ws(r,0,—h) = 0. (37¢)

Remark. The necessary solvability condition of the boundary-layer problems (10) —(13) and
(15)-(17), which are based on the inviscid resonant Narimanov—Moisev-type solution (18),
consists of satisfying the inhomogeneous boundary conditions (36) and (37) for the stationary
vortical stream component w = O(e2/3). To find the stationary stream by w, one must also
derive the corresponding governing equation (with respect to w) in the mean liquid domain Q.
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4. Governing equation for w. Because the velocity field v can always be restored from the
vortex 2 = V x v by using the Biot—Savart law, we employ the vorticity equation (inviscid
incompressible flows)

Q=VxwxQ with Q=Q;+Q;+... (38)
and (18). Since €2, /3 = 0,
Q3/3(r,0,2,t) = (acost +asint) V x [v,(r, 0, 2) x w(r,0,2)] +
+ (beost + bsint) V x [vy(r,0,2) x w(r,,2)], (39)

where

Jl(’l”)

v, (r,0,2) = (J{(r) cosf Z(z),— sinfZ(z), Ji(r) cosHZ’(z)) ,

(40)

op(r, 0, 2) = (J’(r) sin0Z(z), Jlﬁr)

cos0Z(z), Ji(r) sin 02'(z)> :
Furthermore, inserting (39) into (38) gives the time-averaged (4/3)-approximation

0= <Q4/3> = (V x [v1/3 x Q373]) +(V x [v9/3 X Qay3]) (41)

which leads to the necessary solvability condition
1 _
V X wx w]+ 3 (ab—ab) V x [vp X 10t (Vg X W) — vy X 1Ot (Vp X w)] in Qp, (42)

where divw = V- [V x w]| = 0 and v;, v, are defined by (40). This condition plays the role
of a governing equation for w within the framework of the Narimanov—Moiseev asymptotic
approximation (18).

5. Conclusions. The boundary-layer problems describing a local viscous flow at the wetted
tank surface are derived assuming § = 1/\/R; < 1, where R; is the sloshing-related Reynolds
number. The problems govern the O(1) difference between viscous and inviscid solutions,
which only exists in the O(d) neighbourhood of the wetted tank surface. By constructing and
analysing the analytical asymptotic solution of the derived boundary-layer problems within the
framework of the Narimanov—Moiseev-type approximation of the inviscid velocity field, we
proved the following main result:

Proposition 2. The inviscid Narimanov— Moiseev steady-state asymptotic solution (18) of
the resonant sloshing problem in a circular-base tank [6] contains a non-zero global stationary
vortical stream component w (w = (wi,wa,w3) = V X w # 0), which is governed by the
nonlinear equation (rewriting (42))

V x [w x w] = %(ab _ ab) { {22(2) £(r) -
+6 (2w [39(r) Z2(2) + g1(r) Z2(—h)]| — 2rf(1)Z(2) 2 (2)ws) } in Qo,
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restricted to the inhomogeneous boundary conditions (36) and (37) on Vy (the wall) and By (the
bottom), respectively.
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