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We consider optimal control problems for nonlinear systems which dynamics depends on the maxi-
mum of the control function and the maximum of the state over some prehistory time interval. We are
interested in approximation of solutions for such kind of problems. Averaging method is developed for
this purpose.

Розглянуто задачi оптимального керування нелiнiйними системами, динамiка яких залежить вiд
максимуму функцiї керування та максимуму стану на деякому часовому iнтервалi передiсторiї.
Дослiджено апроксимацiю розв’язкiв таких задач. З цiєю метою обґрунтовано метод усереднення.

Introduction. In certain applications modeling controlled processes leads to functional dif-
ferential equations with small parameters. Especially, if the corresponding system is nonlinear, an
analytic solution is hardly possible to derive. In this case approximation methods can be helpful.
There are two categories of approximation methods for analyzing nonlinear systems. One of them
includes numerical methods, another one is a category of asymptotic methods. When we deal
with an optimal control problem the choice of one or another asymptotic method depends on
the structure of the differential equation. One possible option can be application of an averaging
method. Initially, averaging methods were developed in [1, 2]. Its further generalization to the
functional differential equation can be found in [3, 4]. However, the first time an averagingmethod
was applied to controlled systems in [5]. There are two approaches for solving an optimal control
problem by the averaging method:

– using the necessary condition of optimality one reduces the original optimal control problem
to a boundary-value problem, which is solved by the averaging method;
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– applying averaging method directly to the original controlled problem and then solving the
simplified averaged problem.

The first approach can be justified under an assumption that the control function is smooth
enough. In the second approach one associates a nonautonomous controlled system with an
autonomous one via the algorithm of averaging. It consists of the following steps:

(i) apply the averaging method to the controlled system;
(ii) establish a correspondence between controlled functions of both (averaged and original)

systems;
(iii) estimate the quality of the control function of the averaged problem by a functional of

the original problem.
The averaging method is used extensively for different classes of optimal control problems,

for instance for ordinary differential equations [6], for systems with Hukuhara derivative [7],
systems with impulsive actions [8], for differential inclusions [9] etc. In this paper we use the
second approach mentioned above to obtain an averaging method for the optimal control problem
described by differential equations with maximum of the state and input. Differential equations
with max-operator is a particular case of the state dependent delay differential equations. We
deal with the situation when maximum of the state is taken on the prehistory but only for
t ≥ 0. For the first time, such kind of equations appeared in applications to electric engineering
problem in [10], and later in bioscience [11]. The issues of existence of a unique solution,
stability of systems without input and oscillation theory are investigated in [12]. To the best of
authors knowledge the problems with maximum and external input are not studied extensively.
The stability properties of these systems with input in the linear form were studied in [13,
14]. In [15] the Lagrange approach is presented and the Pontryagin-like Minimum Principle
is proved for optimal control problem with max-operator in the linear form. In this paper the
averaged problem includes the maximum of the state however it is controlled by a control of
the current time. Hence, the sets of control functions of the averaged and the original problems
are different, that is why we need to have some tools to recover one control function from the
other. For this reason, in the proposed algorithm we work with integral equations which include
maximum.

The paper is organized as follows. In Section 2 we give some notations, in Section 3 an optimal
control problem is introduced, then in Section 4 we develop an algorithm for the correspondence
between control functions in the averaged and in the original system. In Section 5 we justify the
application of the averaging method and, in the last section, functionals of the averaged and the
original optimal control problems are compared.

2. Notation and preliminaries. For a piecewise continuous function u : [0,∞) → Rr and
continuous functions g, γ : [0,∞) → R, such that 0 ≤ g(t) ≤ γ(t) ≤ t for any t ≥ 0 we denote
the componentwise “maximal” value of u over the time interval [g(t), γ(t)] by

ũ(t) =

(
sup

s∈[g(t),γ(t)]
u1(s), . . . , sup

s∈[g(t),γ(t)]
ur(s)

)T

(1)

and

x̌(t) =

(
max

s∈[g(t),γ(t)]
x1(s), . . . , max

s∈[g(t),γ(t)]
xn(s)

)T

.
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For any function f ∈ C ([0,∞);Rn) and any matrix A : [0,∞)→ Rn×n we introduce

‖f(t)‖ = sup
t≥0
|f(t)|, ‖A(t)‖ = max

1≤i≤n

m∑
j=1

sup
t≥0
|aij(t)|.

Let X and Y be two nonempty subsets of Rn. We define the Hausdorff distance between them
by

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖

}
.

The following notion of average will be used in this paper.
Definition 1 [16]. A continuous bounded function f : [0,∞) × D → Rn is said to have an

average f(x) if the limit

f(x) = lim
T→∞

1

T

T∫
0

f(t, x) dt, (2)

exists and for all (t, x) ∈ [0,∞)×D′ ×D′∥∥∥∥∥∥ 1

T

T∫
0

f(t, x)dt− f(x)

∥∥∥∥∥∥ ≤ qσ(T ),

for every compact set D′ ⊂ D, where q is a positive constant (possibly dependent on D′ ) and
σ : [0,∞) → [0,∞) is a strictly decreasing, continuous, bounded function such that σ(T ) → 0
as T →∞. The function σ is called convergence function.

3. Optimal control by the system with maximum of control function. In this paper we
consider the following optimal control problem with terminal functional:

ẋ(t) = ε [f(t, x(t), x̌(t)) +A(x(t))ζ (t, u(t), ũ(t))] , t ≥ 0,

x(0) = x0,

(3)

where x ∈ Rn is a phase vector; ε > 0 is a small parameter; f : [0,∞) × Rn × Rn → Rn is
continuous, L > 0 is some fixed constant; A ∈ C([0,∞);Rn×m); ζ : [0,∞)× U × U → Rr is a
continuous function, u is a piecewise continuous function, with values u(t) ∈ U ⊂ comp (Rr) .

A solution to problem (3) is understood to be an absolutely continuous function x = x(t),
t ≥ 0.

Let us consider the functional

J [u] = Φ
(
x
(
Lε−1

))
, (4)

where Φ: Rn → R is a continuous function.
A control function u∗ which provides the minimum of functional (4) is called an optimal

control function and the corresponding trajectory x∗ is called an optimal trajectory. As an optimal
solution to the problem (3), (4), we understand the pair x∗, u∗.
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Let us consider the corresponding averaged problem for the problem (3),

ẏ(t) = ε
(
f(y(t), y̌(t)) +A(y(t))v(t)

)
, t ≥ 0,

y(t) = x0

(5)

with the functional

J [v] = Φ
(
y
(
Lε−1

))
, (6)

where v ∈ V is a new control vector and the set V is defined as

V = lim
T→∞

1

T

T∫
0

ζ(t, U, U)dt =

 lim
T→∞

1

T

T∫
0

ζ(t, u(t), ũ(t))dt : u(t), ũ(t) ∈ U

 . (7)

In (7) we understand the integral of a set-valued function as Aumann integral [17], convergence
we understand in the sense of Hausdorff metric.

Sufficient conditions for existence of a unique solution to the Cauchy problem with max-
operator (without input signals) are given in [12, p. 65] (Theorem 3.13). We also refer to [3]
(Sections 2.2 and 2.6) for the results for general functional differential equations.

4. An algorithm for the correspondence of control functions. The control functions in the
original and the averaged systems are different and can belong to spaces of different dimensions.
A natural question is, that how to obtain the controller u for the system (3) having the controller
v for the system (5). By the following algorithm one can establish a correspondence between the
control functions u and v.

1. For an admissible controller v = v(t) we calculate the corresponding admissible controller
u = u(t) in the following way:

(a) first, calculate the points vi =
1

T0

∫ (i+1)T0

iT0

v(t) dt, for i = 0, 1, 2, . . . (T0 > 0 is an

arbitrary constant);
(b) then define

u(t) = {ui(t), iT0 ≤ t < (i+ 1)T0, i = 0, 1, 2, . . .} ,

where ui = ui(t) is such that

min
u(t)∈U

∥∥∥∥∥∥∥
1

T0

(i+1)T0∫
iT0

ζ(t, u(t), ũ(t))dt− vi

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
1

T0

(i+1)T0∫
iT0

ζ(t, ui(t), ũi(t))dt− vi

∥∥∥∥∥∥∥ . (8)

The set-valuedmapping ζ(t, U, U) is continuous and bounded, hence by theLyapunov theorem
[18] the set

V i
T0 =

 1

T0

(i+1)T0∫
iT0

ζ(t, ui(t), ũi(t))dt, ui(t), ũi(t) ∈ U
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is convex and compact. According to (7) limT0→∞ dH
(
V i
T0
, V
)

= 0. Hence, there exists vi ∈ V i
T0

the nearest to the vi, in other words, there exists a control function ui(t) in (8) such that

1

T0

(i+1)T0∫
iT0

ζ(t, ui(t), ũi(t)) dt = vi. (9)

2. For an admissible controller u = u(t) we define the corresponding admissible controller
v = v(t) in the following way:

(a) calculate

wi(t) =
1

T0

(i+1)T0∫
iT0

ζ(t, ui(t), ũi(t)) dt, i = 0, 1, 2, . . .

(T0 is an arbitrary constant);
(b) assign the control

v(t) =
{
vi(t), iT0 ≤ t < (i+ 1)T0, i = 0, 1, 2, . . .

}
,

where vi is obtained from the condition

argmin
v∈V

‖wi − v‖ = ‖wi − vi‖.

There exists vi as a minimum of the continuous function ‖wi − vi‖ on a compact set V.
Remark 1. The second part in the algorithm is not necessary for practical purposes but we

use it in the proof of the theorem below.
Remark 2. Control functions u = u(t) in 1(b) and v = v(t) in 2(b) are determined ambi-

guously.
5. Averagingmethod for controlled systemwithmaximum of control function and of the

state. The following theorem provides a justification for the averaging method for the controlled
system (3).

Theorem 1. Suppose that for the domain

Q = {t ≥ 0, x ∈ D ⊂ Rn, u ∈ U ⊂ comp (Rr)}

the following conditions hold:
(i) f = f(t, x, x̌) is a continuous function in t and there exist positive constants K and λ s. t.,

‖f(t, x, x̌)‖ ≤ K,∥∥f (t, x′, x̌′)− f (t, x′′, x̌′′)∥∥ ≤ λ (∥∥x′ − x′′∥∥+
∥∥x̌′ − x̌′′∥∥) ;

(ii) A is a continuous matrix and there exist K and λ such that

‖A(x)‖ ≤ K,∥∥A(x′)−A(x′′)
∥∥ ≤ λ ∥∥x′ − x′′∥∥ ;
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(iii) ζ = ζ(t, u, ũ) is continuous with respect to t, u, ũ;
(iv) uniformly exists (2);
(v) there exists ρ > 0 s. t. the solution y = y(t) to the averaged system (5), where y(0) =

= x(0) ∈ D′ ⊂ D defined for any t ≥ 0, belongs together with its ρ-neighborhood to the
domain D.

Then for any η > 0 and L > 0 there exists ε∗ = ε∗(η, L) > 0 s. t. for any ε ∈ (0, ε∗] and
t ∈
[
0, Lε−1

]
the following statements hold:

(i) for any admissible controller u of system (3) there exists a controller v of system (5), s. t.

‖x(t)− y(t)‖ ≤ η; (10)

(ii) for any admissible controller v of system (5) there exists a controller u of system (3),
s. t. (10) holds.

Remark 3. By assumption (iii) the function ζ is continuous so we denote M :=
:= maxt,u,ũ |ζ(t, u, ũ)|.

Proof. Let us notice that the function f(·) is a bounded function and satisfies the Lipschitz
condition. Indeed, according to the assumption (iv) and Definition 1 there is a function σ = σ(T )
such that the following estimation holds:

∥∥f(x)− f(x1)
∥∥ ≤

∥∥∥∥∥∥ f(x)− 1

T

T∫
0

f(t, x)dt

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

T

T∫
0

[
f(t, x)f(t, x1)

]
dt

∥∥∥∥∥∥+

+

∥∥∥∥∥∥ 1

T

T∫
0

f(t, x1) dt− f(t, x1)

∥∥∥∥∥∥ ≤ 2σ(T ) +
1

T

T∫
0

∥∥f(t, x)− f
(
t, x1

)∥∥ dt ≤
≤ 2σ(T ) + λ

∥∥x− x1∥∥ ∀x, x1 ∈ Q,

since σ(T )→ 0 as T →∞ one obtains∥∥f(x)− f(x1)
∥∥ ≤ λ∥∥x− x1∥∥ ∀x, x1 ∈ Q.

Let us use the integral form of (3) and (5),

x(t) = x0 + ε

t∫
0

(f(s, x(s), x̌(s)) +A(x(s))ζ(s, u(s), ũ(s))) ds,

y(t) = y0 + ε

t∫
0

(
f(y(s), y̌(s)) +A(y(s))v(s)

)
ds

for t ∈
[
0, Lε−1

]
. Then estimate the difference

‖x(t)− y(t)‖ ≤ ε
t∫

0

‖f(s, x(s), x̌(s))− f(y(s), y̌(s))‖ ds+
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+ ε

t∫
0

‖[A(x(s))−A(y(s))] ζ(s, u(s), ũ(s))‖ ds+

+ ε

∥∥∥∥∥∥
t∫

0

A(y(s)) [ζ(s, u(s), ũ(s))− v(s)]

∥∥∥∥∥∥ ds ≤

≤ ε

Mλ

t∫
0

δ(s)ds+

t∫
0

‖A(y(s)) [ζ(s, u(s), ũ(s)))− v(s)]‖ ds

 , (11)

i.e., (11) holds for any t ∈ [0, Lε−1]; then one gets

δ(t) ≤ ε

Mλ

t∫
0

δ(s)ds+ I1(t) + I2(t)

 , (12)

where δ(t) = maxµ∈[0,t] ‖x(µ)− y(µ)‖ and

I1(t) :=

∥∥∥∥∥∥
t∫

0

(f(s, y(s))− f(y(s)) ds

∥∥∥∥∥∥ ,

I2(t) :=

t∫
0

‖A(y(s)) [ζ(s, u(s), ũ(s))− v(s)]‖ ds.

Applying the Gronwall – Bellman lemma to (12), we obtain the inequality

δ(t) ≤ ε(I1(t) + I2(t))e
ε
∫ t
0 (λ+Mλ)ds = ε(I1(t) + I2(t))e

(λ+Kλ)L.

We divide the interval
[
0, Lε−1

]
into m equal parts by the points ti =

iL

εm
, i = 0, 1, 2, . . . ,m−1.

Consider t ∈ [tp, tp+1) for some p ∈ [0,m− 1]

I2(t) ≤ ε
p−1∑
i=0


ti+1∫
ti

‖(A(y(s))−A(y(ti))) (ϕ(s, u(s), ũ(s))− v(s))‖ ds+

+

ti+1∫
ti

‖A(y(ti)) (ϕ(s, u(s), ũ(s))− v(s))‖ ds

+

+ ε

t∫
tp

‖A(y(s)) (ϕ(s, u(s), ũ(s))− v(s))‖ ds ≤
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≤ ε
p−1∑
i=0

λ
ti+1∫
ti

‖y(s)− y(ti)‖ ‖ϕ(s, u(s), ũ(s))− v(s)‖ ds

+

+ ε

t∫
tp

‖A(y(s))‖
∥∥ϕ(s, u(s), ũ(s))− v(s)

∥∥ds ≤ 2ML

(
K +

KLλ

m2

)
.

Using estimation from [19], we have the following:

I1(t) =

[
2KL

m

(
λ
L

2
+ λmax(ω(γ, L), ω(g, L)) + 1

)
+

+2ελML

(
λ
L

2
+ λmax (ω(γ, L), ω(g, L)) + 2mε

)]
e2ελt,

where ω(·, ·) is a module of continuity. Let us collect the estimations for I1(t) and I2(t), by an
appropriate choice of sufficiently big m and sufficiently small ε the estimation for I2(t) can be
made sufficiently small. Thus,

‖x(t)− y(t)‖ ≤ η,

where
η = 2ε

[
MLK

(
1 +

Lλ

m2

)
+KL+ χ

]
+
KLλ

m
e(λ+Kλ)L.

The second statements of the theorem can be proved analogously.
6. Comparison of the functionals of the original and the averaged optimal control

problems. In the previous section we have shown that solutions to the original and the averaged
systems are close. But from this fact one cannot come to the conclusion that the correspondi-
ng functionals are the close as well. By this reason one needs to find an approximation to the
functionals.

Theorem 2. Let, for the domain

Q = {t ≥ 0, x ∈ D ⊂ Rn, u ∈ U ⊂ comp (Rr)} ,

the assumptions of Theorem 1 hold. Moreover, we assume that
(i) there exists λ such that ∥∥Φ(x)− Φ(x′)

∥∥ ≤ λ ∥∥x− x′∥∥ ;

(ii) there exists u∗ = u∗(t), an optimal control function for the problem (3), (4), and let
x∗ = x∗(t) be the corresponding optimal trajectory and J∗ the optimal value of the functional.

Then for any L > 0 there exist η1 > 0 and ε∗(L) > 0 such that for any ε ∈ [0, ε∗) the
following inequalities hold: ∣∣J [v∗]− J [u∗]

∣∣ ≤ η1, (13)

J [uv∗ ]− J [u∗] ≤ η1, (14)
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where J [v∗] is the optimal value of the functional of the problem (5), (6), uv∗ = uv∗(t) is a
control function to the problem (5), (6) constructed by the algorithm and corresponding to the
optimal control function v∗ = v∗(t) of the problem (5), (6), vu∗ = vu∗(t) is the optimal control
function of the problem (5), (6) constructed from u∗ = u∗(t).

Proof. Since the set V is convex and compact [18], the set of attainability of the problem (5),
(4) is compact [20]. So there exists an optimal solution to the problem (5), (6).

Let u∗ = u∗(t), v∗ = v∗(t), be optimal control functions for problems (3), (4) and (5), (6),
respectively.

Denote by x (t, u∗) and x (t, uv∗) the trajectories of the system (3) with the controllers
u∗ = u∗(t), and uv∗ = uv∗(t), respectively; by y (t, v∗) and y (t, vu∗) denote the trajectories of
the system (5) with control functions v∗ = v∗(t) and vu∗ = vu∗(t).

According to Theorem 1 we have

‖x (t, u∗)− y (t, vu∗)‖ ≤ η, (15)

‖x (t, uv∗)− y (t, v∗)‖ ≤ η. (16)

From (16) and condition (i) of Theorem 2 we obtain∣∣J [v∗]− J [uv∗ ]
∣∣ =

∣∣Φ (y (Lε−1, v∗))− Φ
(
x
(
Lε−1, uv∗

))∣∣ ≤
≤ λ |y (t, v∗)− x (t, uv∗)| ≤ λη (17)

and ∣∣J [u∗]− J [vu∗ ]
∣∣ =

∣∣Φ (x (Lε−1, u∗))− Φ
(
y
(
Lε−1, vu∗

))∣∣ ≤
≤ λ |x (t, u∗)− y (t, vu∗)| ≤ λη. (18)

Moreover,

J [uv∗ ] ≥ J [u∗] =: J∗,

J [vu∗ ] ≥ J [v∗] =: J
∗
.

(19)

For the values of the functionals J [u∗] and J [v∗] , one of the following inequalities is valid:

J [u∗] > J [v∗] (20)

or

J [u∗] ≤ J [v∗] . (21)

For the first case from (19), (20) and (17) one gets

J [uv∗ ] ≥ J [u∗] > J [v∗] ≥ J [uv∗ ]− λη

thus, ∣∣J [u∗]− J [v∗]
∣∣ ≤ λη. (22)
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For the second case from (19), (21) and (18) we have

J [vu∗ ] ≥ J [v∗] ≥ J [u∗] ≥ J [vu∗ ]− λη,

hence, (22) holds.
Moreover,

J [uv∗ ]− J [u∗] = J [uv∗ ]− J [v∗] + J [v∗]− J [u∗] ≤

≤
∣∣J [uv∗ ]− J [v∗]

∣∣+
∣∣J [v∗]− J [u∗]

∣∣ ≤ 2λη1. (23)

Choosing η1 = 2λη and taking into account (22) and (23), we obtain the statement of the theorem.
Remark 4. The set of attainability of the system (3) is bounded but if the set ζ(t, U, U) is not

convex then the set of attainability is not convex, see [20]. In this case optimal control function
in problems (3), (4) cannot exist, but there exists J0 = inf J [u], and inequalities (13), (14) take
the form ∣∣J0 − J [v∗]

∣∣ ≤ η1,
J [uv∗ ]− J0 ≤ η1.

Remark 5. Note that Theorem 2 is valid if instead of the problem (3), (4) with unfixed right
and we consider the problem with flexible one, i.e., with the restriction

ψj
(
x
(
Lε−1

))
≤ 0, j = 1,m.

Finally, we can formulate a numerical-asymptotic algorithm for solving an optimal control
problem with a small parameter and with supremum of the control function as follows:

1. For a given control problem with small parameter and supremum of control function (3),
(4) we define the averaged problem (5), (6).

2. For the known set of admissible control functions of the original system we construct
a set of admissible control functions for the averaged problem according to the algorithm of
correspondence (described above).

3. Solve optimal control problem of the averaged equation (5) with criterion (6) and find
v∗(t), y∗(t), J

∗
.

4. According to the algorithm by using the found optimal control function v∗ = v∗(t) of
the averaged problem we find the corresponding control function of the original problem u∗v =
= u∗v(t) which is asymptotically optimal for the problem (3), (4).

5. For the found control function u∗v = u∗v(t) we obtain a corresponding trajectory of
system (3), x(t) = x (t, u∗v) .

6. Calculate the value of the functional (4) on the trajectory from step (5).
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