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We study the oscillatory and nonoscillatory behavior of solutions for a class of forced impulsive nonlinear
neutral differential systems of the form

{(r(t) (y(t) + p)y(t — 1)) +a(OG (y(t — o)) = f (1), t#m, keN,
A(r(me) (y() + p()y (T — T))/) + h(mk)G(y(te — 0)) = g(71), k€N,

for various ranges of values of p(t). Sufficient conditions for the existence of positive bounded solutions
of this system are also obtained.

BuBueHO oCcIIMIIIOIOUY Ta HEOCIMITIOIOUY MOBEIIHKY PO3B’SI3KIB IUIST OMHOTO KJIacy HeJIHINHAX HeUTpallb-
HUX IudepeHIriaJbHIX CUCTEM 13 IMITYJIbCHOIO IIE€I0 BUTIISITY

{(r(t) (y(t) +pt)y(t — 1)) +a(G(y(t — o)) = f(t), t# 7, keN,
A(r(m) (y(me) + p(ri)y(m — 7)) + h(m)G(y(1i — 0)) = g(1,), k €N,

IS pi3HUX obracTeit 3HaYeHb p(t). TaKoX omep:KaHO TOCTATHI YMOBU iCHYBaHHS TONATHUX OOMEKEHUX
pO3B’SI3KiB IIi€] CUCTEMU.

1. Introduction. Consider a second order forced impulsive differential system of the form

{(r(t) (y(®) + p(Oy(t — 7)) +a()C(y(t — o)) = f(8), t4m, keN,

(E)
A(r (1) (y(mi) + p(r)y(m — 7)) + ()G (y(1 — o)) = g(1.), k€N,

where 7 > 0, o > 0 are real constants, G € C(R,R) is nondecreasing such that zG(z) > 0
for z # 0, ¢,r,h € C(R4,Ry), p € PC(R4,R), p(mx), r(7x), q(7) and h(7y) are constants
(keN), 7, for ke Nwith 7 <19 < ... <7, <...and limg_, o 7 = oo are fixed moments of
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impulsive effect, and f,g € C(R,R). For (E), A is the difference operator defined by
A(r(mi) (2 (k) = r(mk + 0)2' (7, + 0) — (7 — 0)2 (74 — 0),
y(me — 0) = y(7%) and yimg —7—0)=y(rp—7), keN.

The objective of this work is to establish the sufficient conditions for oscillation and nonosci-
llation of solutions of the impulsive system (E) for various ranges of p(¢). Here, we are concerned
with the oscillating system which remains oscillating after being perturbed by the instantaneous
change of state.

Impulsive differential equations are now recognized as an excellent source of models to si-
mulate processes and phenomena observed in theoretical physics, chemical technology, populati-
on dynamics, industrial robotic, economics, rhythmical beating, merging of solutions and non-
continuity of solutions. Moreover, the theory of impulsive differential equations is emerging
as an important area of investigation, since it is much richer than the corresponding theory of
differential equations without impulse effect. Due to the wide range application of this theory to
the real world problems, a good number of interests has been given to this study. We refer the
readers to the monographs [1 — 6], where a number of properties of their solutions are discussed
and the references cited there in. Our aim in this work is to discuss some oscillation properties
and existence of positive bounded solutions of the impulsive system (E).

In [7], Tripathy has considered the impulsive system

(y(®) + pt)y(t — 7)) +a()G(y(t — o)) =0, t#7, keN,
Ay(m) + p(me)y(me — 7)) + ¢(1)G(y(m — 0)) =0, k€N,

and studied the oscillatory character of the solutions of the system. For all ranges of p(¢), he
has established the oscillation criteria for the impulsive system (E{) which is highly nonlinear
but, G could be linear, sublinear or superlinear also. In [8], Tripathy and Santra have studied the
characterization of the impulsive system

(y(t) —ry(t — 7)) + qy(t — o) =0, t#m, keN,

(E1)

(E2)
Ay(me) —ry(m — 7)) + py(m —0) =0, k€N,
and linearized oscillation of the system
(y(t) = r()g(y(t — 7)) +a(t)f (y(t — 0)) =0, tAm keN
3

A(y(mw) = r(m)gy(me — 1)) +p(m) f (y(7 — 0)) =0, keN.

They have established the conditions for oscillation of the system (E;) using the pulsatile
constant and hence the linearized oscillation results carried out for (E3) by using its limiting

equations (E,). In another work [9], Tripathy and Santra have established sufficient conditions
for oscillation of all solutions and existence of nonoscillating solutions to impulsive equation

(r(®) (y(®) + p)y(t — 7)) + a(O)G (y(t — 0)) =0, t# 7, keN,
A(r(x) (y(i) + plre)y(me — 7)) + a(1) G (y(m — o)) =0, k€N,

*This work was supported by the Department of Science and Technology, New Delhi, India, through the letter
No. DST/INSPIRE Fellowship/2014/140 (dated Sept. 15, 2014).
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276 A.K. TRIPATHY, S. S. SANTRA

for various ranges of p(t). However nothing is known about (E). If f(¢) = 0 then (E) is reduces
to (E4) (see, for example, [7, 9]). If f(¢) # 0 then (E) is more general than (E,4). Of course, the

method which is employed for (E) and (E4), we find small difference in the technique. Altogether,
(E) can be handled by method of (E4). We may note that this type of work is very rare in the
literature signifying that the impulse of the differential equation follows a discrete type equation.
In this direction, we refer the reader to some of the related works [10—-33] and the references
cited there in.

A function y: [—p,+00) — R is said to be a solution of (E) with initial function ¢ €
€ C([—p,0],R), if y(t) = o(t) for t € [—p,0], y € PC(R4,R), 2(t) = y(t) + p(t)y(t — 7) and
r(t)Z'(t) are continuously differentiable for ¢ € R, and y(¢) satisfies (E) for all sufficiently large
t > 0, where p = max{r,0} and PC(Ry,R) is the set of all functions U: R; — R which
are continuous for ¢t € Ry, ¢t # 7%, k € N, continuous from the left side for ¢ € R, and have
discontinuity of the first kind at the points 7, € R, k € N.

A nontrivial solution y(t) of (E) is said to be nonoscillatory, if it is either eventually positive
or eventually negative; Otherwise, it is called oscillatory.

A solution y(t) of (E) is said to be regular, if it is defined on some interval [T}, +-00) C [to, +00)
and

sup {Jy(1)] : £ > Ty} > 0

for every T, > T. A regular solution y(¢) of (E) is said to be eventually positive (eventually
negative), if there exists ¢; > 0 such that y(¢) > 0 (y(¢) < 0) for ¢t > ¢;.

2. Sufficient Conditions for Oscillation. In this section, we discuss the oscillatory behaviour
of solutions of the impulsive system (E). In the sequel, we use the following assumption:

(Ag) Suppose there exists F' € C(R,R) such that (r(t)F'(t)) € C(R,R) and F(t) is a
solution of (r(t)F'(t))" = f(t) and A(r(m,)F' (1)) = g(7x). In addition, we assume that F'(t)
changes sign with —oo < liminf; o, F'(t) < 0 < limsup,_,, F'(t) < co.

Theorem 2.1. Let 0 < p(t) < a < oo, t € Ry, and (Ay) hold. Assume that:

(A;) there exists A > 0 such that G(u) + G(v) > AG(u + v) for u,v > 0;

(A2) G(uv) < G(u)G(v) for u,v € Ry,

(A3) G(—u)=—G(u) for u,v € Ry ;

(Ay) F*(t) = max{F(t),0} and F~(t) = max{—F(t),0},

[e.9]

dn 00 1 B )
(A“/o o)+ 2 vy =

Ao [ QG(F = a))dn+ Y HG(FH (=) =, T >0,

and

(A7) /T QG(F~(n—o))dn+ 3" HG(F~ (7~ 0)) = o0, T >0,
hold, where Q(t) = min{q(t),q(t — 1)}, t > 7, and Hy = min {h(Tk), h(m, — 7‘)}, k € N. Then
every regular solution of the system (E) oscillates.

Proof. Let y(t) be a regular solution of (E). For the sake of contradiction, let the regular
solution be nonoscillatory. So there exists ¢y > p such that y(¢) > 0, y(t—7) > 0 and y(t—0) > 0
for t > ty. Setting

() =y@) +p)y(t —7), t#m, kel,

2.1
2(tk) = y(m) + p(mw)y(m — 7), k€N, @D
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and
w(t) =z(1t) - F@),  w(m) = 2(mk) — F(7k) (2.2)
due to (Ay), it follows from (E) that
(rw' () = —q¢)G(y(t —0)) <0, t#m, keEN, (2.3)
A(r(m)w(ny)) = —h(m)G(y(ms — o)) <0, k€N, (2.4)

for t > t1 > to + 0. Consequently, (r(t)w'(t)) is nonincreasing and w'(t), w(t) are of either
eventually positive or eventually negative on [t2,00), t2 > t;. Since z(t) > 0, then w(t) < 0
for t > to implies that F'(¢) > 0 for ¢t > to which is absurd. Hence, w(t) > 0 for ¢t > t5. In
what follows, we consider the cases (r(t)w'(t)) < 0 or > 0 for ¢ > t5. Let the former hold for
t > ta. So, there exist C' > 0 and t3 > ¢, such that (r(¢t)w'(t)) < —C for ¢ > t3. Ultimately,
(r(me)w' (1)) < —C. Integrating the relation w'(t) < A

r(t)

, t > t3, from t3 to t(> t3), we obtain

w(t) —w(ts) — > w(n) < —C/Tc(lz),

t3<7 <t

that is,

w(t) <w(ts) — C

dn 1 ~ ~
/r(n)+ Z 7’(7%)]% as t— oo,

ts t3<ti <t

a contradiction to the fact that w(t) > 0 for ¢ > ¢5. Hence, (r(t)w'(t)) > 0 for t > t5. Ultimately,
z(t) > F(t) and hence z(t) > max{0, F(t)} = F*(t) for t > t5. Due to (2.1)—(2.3) becomes

0= (rit)w'®)) +qt)G(y(t — o)) + Ga) [(r(t — T)w'(t — 7)) + q(t — )G (y(t — 7 — 0))]
for ¢t > ¢, and because of (A1) and (A,), we find that
0> (r()w'(t)) + Gla)(r(t — )w'(t — 7)) + Q) [G(y(t — o)) + G(ay(t — 7 — 0))] >

> (r(w'(t)) + Gla) (r(t — T)w'(t — 7)) + AQ(t)G(2(t — o)) (2.5)
for t > t3 > to + o. Similarly, from (2.4), we obtain
0> A(r(m)w' (1)) + Gla)A(r(me — T)w' (16 — 7)) + AHRG (2(11, — 0)) (2.6)

for k£ € N. Integrating (2.5) from t3 to +o00, we get

3

A / Q)G (z(n = o))dn < —[r(n)w'(n) + G(a)(r(n — T)w'(n — 7))] )+

+ > Alr(m)w (1) + Ga) (r(me — 7w (7 — 7))] <

t3<1 <00

< = [r(w'(n) + Gla) (r(n = T)u'(n — 7)) |75~
2 Y HG(xm - o)

t3 <7 <00

due to (2.6). Since lim;_,o (7(t)w’(t)) exists, then the above inequality becomes
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278 A.K. TRIPATHY, S. S. SANTRA

A |: /Q(n)G(z(n —0))dn + Z H,G(z(m — 0))] < 00,

ts t3 <7 <00

that 1s,

[/Q F+ —0))d77+ Z HkG(F+(TkU))]<OO

t3 <7 <00

which contradicts (Ag).
If y(t) < 0 for t > to, then we set x(t) = —y(¢t) for ¢ > ¢¢ in (E) and we obtain that

{(T(t)(ﬂﬂ(t) +p(t)a(t = 7)) +a(O)G(x(t - 0)) = f(0), t#m, keN,

(E)
A(r(me) (@ (1) + p()a(me — 7)) + h()G(2(Tk — 0)) = g(7%), k €N,

where f(t) = —f(t), §(mx) = —g(73,) due to (A3). Let F(t) = —F(t). Then

—o0 < liminf F(t) < 0 < limsup F(t) < oo
t—o0 t—o00
and (r(t)f’(t))/ = (1), A(r(rk)f’(m)) = §(73,) hold. Proceeding as above for (E), we can find
a contradiction to (A7). Thus, the proof of the theorem is complete.
Theorem 2.2. Let —1 < p(t) < 0, t € R;. Assume that (Ag) and (A3)—(As) hold. If any
one of the following conditions:

(Ag) /T q(n)G(F*(n—o) d77+z (T6)G(F* (7 — 0)) = 00, T > 0;
(Ag) /Tooq(n)G(F_(n—i-T—U))dn—i—Zkl h(Tk)G(F_(Tk—‘rT—O')) =00, T>0;

A0) [ aG(E =)o+ 3 hAIG(E (7~ o)) =00, T > 0;
T -

(A7) / am)G(Ft(n+7—0))dn+ ZZ; hr)G(FH (i +7—0)) =00, T >0,
hold, then e:\F/ery regular solution of (E) oscillates.

Proof. On the contrary, we proceed as in the proof of the Theorem 2.1 to conclude that w(t)
and (r(t)w’(t)) are of either eventually positive or eventually negative on [t3,00). Assume that
w'(t) < 0 for t > to. Then as in Theorem 2.1, we find that w(t) < 0 and lim;_,o w(t) = —o0.
So, there exists ¢3 > to such that z(t) < F(¢) for ¢t > t3. If z(t) > 0, then F(¢) > 0 which is not
possible. Hence, z(t) < 0 and z(t) < F(t) for ¢ > t3. On the other hand, z(¢) < 0 for t > t3
implies that

y(t) < —pyt—7) <yt —7) <yt —27) < ... <y(tsz), t#m,

and also
y(me) <yl —7) < ... <y(ts), t#m, keN,

that is, y(¢) is bounded on [t3, c0). Consequently, lim;_,, w(t) exists, a contradiction. Therefore,
w'(t) > 0 for ¢t > t,. Here we consider the cases: w(t) < 0, (r(t)w'(t)) > 0 and w(t) > 0,
)

(r(t)w'(t)) > 0 on [ts, 00), t3 > to. With the former case w(t) < 0, we get z(t) < F(t) of course
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limy,o0 (r(t)w'(t)) exists. If z(t) > 0 then F(t) > 0, a contradiction. Hence, z(¢) < 0. Clearly,
—z(t) > —F(t) implies that —z(¢) > max{0, —F(t)} = F~(t). Therefore, for ¢ > t3

—y(t—7) <py(t —7) < 2(t) < —F (1),
thatis, y(t —o) > F~(t+7 —0), t > t4 > t3, and (2.3), (2.4) reduce to

(rw' @) +qt)G(F~(t+7—0)) <0, t#7, keN,
A(T(Tk)w’(m)) + h(Tk)G(F_(Tk +7— U)) <0, keN,

for ¢ > t4. Integrating the above impulsive system from ¢4 to +o0, we obtain

o

/q(n)G(F_(n+T—a))d77+ Z h(Tk)G(F_(Tk+T—U))<OO

ty t4 <7, <00

which contradicts (Ag). With the later case, it follows that z(¢
F(t) < 0 which is absurd. Therefore, z(t) > 0 and z(¢) < y(t)
limy o0 (r(t)w'(t)) exists. Since, F(t) = max{F(t),0} < z(t) <
(2.4) can be viewed as

) > F(t). If 2(t) < 0, then
for t > t3 > t9. In this case,
y(t) for ¢ > t3, then (2.3) and

(rw' () +q®)G(FH(t—0)) <0, t#m, keN,
A(r(me)w'(10)) + (k)G (F (1 — 0)) <0, keN.

Integrating the above impulsive system from t3 to 400, we get

/Q(U)G(F+(W—U))d77+ > Wm)G(FH (7 —0)) <o

a contradiction to (Ag). The case y(t) < 0 for ¢ > ¢, is similar. Hence, the proof of the theorem
is complete.

Theorem 2.3. Let —0co < —b < p(t) < =1, t € Ry, b > 0. Assume that (Ay), (A3)—(As),
(Ag) and Ajp) hold. Furthermore, assume that

(A7) /ooq (n G(iF‘(n—l—T—U))dn—l—Z:l h(Tk)G<ll)F_(Tk+T—U)> =00, T >0,

an
1
(A13) / G( F+(7]+T—O'>d77+z )G(bF+(Tk+T—U)>:OO,T>O.
Then every bounded solution of (E) oscillates.
Proof. The proof of the theorem can be followed from the proof of the Theorem 2.2. Hence,
the details are omitted.

In the following, we establish sufficient conditions for oscillation of all solution of (E) under
the assumption that

> dn o0 1
(A14) /0 @ + Zk:l T(Tk) < 0.
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 dn > dn . . .
Let R(t) = ——. Then —— < oo implies that R(t) — 0 as ¢ — oo, since R(t) is
. Ji r(n) o r(n)
nonincreasing.
Theorem 2.4. Let 0 < p(t) < a < oo, t € Ry. Assume that (Ag)—(A4), (Ag), (A7) and (A14)
hold. If

o n 00

(Ass) /T r(ln) [ A QU)G(FH(C—0)dC+ )~ HyG(F*(n —0))]dn = oo, T,T1 >
>0,
and ~ .

o) [ [ | QUG (=) + 307 HG(F (- a>)]dn o0, T, Ty >
>0,
hold, then every regular solution of (E) is oscillatory, where Q(t) and Hy, k € N, are defined
in Theorem 2.1.

Proof. Let y(t) be a regular nonoscillatory solution of the impulsive system (E). Proceeding
as in Theorem 2.1, we get (2.3) and (2.4) for ¢ > ¢;. In what follows, (r(¢)w'(t)) and w(t) are
monotonic functions on [tg,00), t2 > t1. Consider the case when (r(¢)w'(t)) < 0, w(t) > 0 for
r(t)w'(t)

r(s)

t > ty. Therefore, for s >t > ta, (r(s)w'(s)) < (r(t)w'(¢)) implies that w'(s) < , that

is,
w(s) < w(t) +rt)w'(t) / rCéZ)

Since, (r(t)w’(t)) is nonincreasing, then there exists a constant C' > 0 such that (r(t)uw’(t)) < —C

for ¢ > t5. As aresult, w(s) < w(t) — C/ C(lz) As s — oo, it follows that 0 < w(t) — CR(t)
t T

for ¢t > to. Clearly, w(r;) > CR(1), k € N. Therefore, z(t) > F(t) + CR(t) implies that

2(t)=CR(t) > F(t). If z2(t)—CR(t) < 0, then F(¢t) < 0, acontradiction. Hence, z(t)—CR(t) > 0

and, hence, z(t)—CR(t) > F*(t), thatis, z(t) > CR(t)+F*(t) > FT(t). Also, z(1x) > F* (%),

k € N. Consequently, (2.5) and (2.6) reduce to

(r(t)w' () + G(a) (r(t — T)w'(t — 7)) + AQ(t)G(F* (t — o)) <0,
A(r(m)w'(m)) + G(G)A(T(Tk — 7w (1 — T)) + )\HkG(F+(Tk — J)) <0

for t > t3 > to, t # 7, k € N. Integrating the above impulsive system from ¢z to ¢(> t3), we
obtain

[rm)w' ()], + Ga)[rin—m)w'(n—7)];, = > Alr(m)w (7))~

ta<Tp<t

t3<t <t

— G(a) Z A(T(Tk — 7w (1, — 7')) + )\/Q(n)G(FJF(T] — a))dn <0,
that is,

){/Q(n)G(F*(na))dnJr > HkG(F+(Tka))] <

ts t3<tr<t
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IN

[l () + G(a) (r( = )/ ( = )]}, <
<~ [(rw' ) + <>(r<t—7> (t—1)] <
—(1+G(a)) (r(t)w'(t))

implies that

(1+G {/Q —o))dn+ Y HkG(F+(TkU))] < —w'(t).

t3<T <t

Further integration of the above inequality, we obtain that

(HZ / !/Q —0))dC+ ) HkG(F+(TkU))]dn<

t3<71<n
< —[wm], + > Aw(n)=

t3 <71 <u

=—[wen]i + 2 lwlm+0) —w(n —0) <

t3 <71 <u

wits) + Y w7 +0).

t3<T<u

Since w(t) is bounded and monotonic, then it follows that

/ {/Q F+ ¢—o) dC+ZHkG F+(Tk—0')) dn < oo,

k=1

a contradiction to (As). The rest of the proof follows from the proof Theorem 2.1. Hence the
proof of the theorem is complete.

Theorem 2.5. Let —1 < p(t) <0, t € Ry. Assume that (Ay), (Az), (A4), (As)—(A;1) and
(A14) hold. Furthermore, assume that

(Ar7) /OO ! /n G(F*(C+r—0))dCdn+R(T) Y " h(m)G(F* (ry+7-0))
(Alg)/ / OG(F™(C+7—0))ddn+ R Y h(m)G(F~(r+7—0)) = o0
wo [ i /Tn OG(F* (¢ —0))ddn + R(T) Y hm)G(F* (= a)) = o0

00

an
(20)/ ! /77 (Q)G(F~ (¢ —0))d¢dn + R(T Zth F~ (1 —0)) = o0,

where T, T1 > O Then every regular solution of (E) osczllates

Proof. For contrary, let y(¢) be a regular nonoscillatory solution of (E). Then proceeding as
in Theorem 2.2 we obtain that w(¢) and (r(¢)w'(t)) are monotonic on [t2,c0). If w(t) < 0 and
(r(t)w'(t)) < 0 for ¢ > t3 > to, then we use the same type of argument as in Theorem 2.2 to get
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that y(¢) is bounded, that is, lim;_, ., w(t) exists. Clearly, z(t) < 0 implies that —z(t) > —F ()
and thus —z(¢) > F'~(t). Therefore, for ¢ > t3

—y(t—7) <pt)y(t —7) < 2(t) < —F~ ().
Consequently, y(t — o) > F~(t+ 7 —0), t >ty > t3 and (2.3), (2.4) yield

(rw' @) +qt)G(F~(t+7—0)) <0, t#m, keN,
A(T(Tk)w/(Tk)) + h(Tk)G(F_ (Tp +7— 0’)) <0, keN,

for ¢ > t,. Integrating the preceding impulsive system from ¢4 to 400, we obtain

o0

/q(n)G(F_(n fr—odn+ Y BE)G(F (47— ) < —r(w'(2),

ts ta <1 <00

therefore

1 [/q(n)G(F(n 47— a))d77+ Z h(Tk)G(F*(Tk + 7= 0))] < —w'(t).

T(t) i ta<T}, <00

Further integration of the last inequality we find

/1 [/q(g)G(F(C+TU))d<+ Z h(Tk)G(F(Tk+TU))]dT] <00

7“(77) tq <7 <00

ta ta

which contradicts (Ag). If w(t) > 0 and (r(¢)w'(t)) < 0 for ¢ > t3, then following to Theorem 2.4
we find 2(t) > F*(t)+ CR(t) > F*(t) and z2(t) > 0, thatis, y(t) > F*(t). The rest of the proof
can similarly be dealt with the proof of Theorem 2.2. Hence, the theorem is proved.

Theorem 2.6. Let —oco < —b < p(t) < —1, t € Ry. Assume that (Ay), (A3), (Ayg), (As)—
(A7), (A14), (Aj9) and (Ayp) hold. Furthermore, assume that

>~ 1 n 1 00 1
o) [ [ 06 (G €7 =) i+ B ST )Gk 7 -

— ) =
and
> 1 n 1. o0 1.
o [ s L6 (37 (¢ r ) Jacan+ B ST n6 (5
—0)| = o0,

where T, T1 > 0. Then every bounded solution of (E) oscillates.

Proof. The proof of the theorem can be followed from the proof of the Theorem 2.5. Hence,
the details are omitted.
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3. Sufficient conditions for nonoscillation. This section deals with the necessary conditions
for oscillation to show that the impulsive system (E) admits a positive bounded solution for various
ranges of p(t).

Theorem 3.1. Let p € C(R+, [—1 ]) and assume that (Ag) hold. If

pm)fiéﬂ/ «+z: ]m<m

then the system (E) admlts a positive bounded solution.
Proof. (i)Let —1 < —b<p(t) <0, t R4, and b > 0. Due to (A,3), it is possible to find a

T > p such that
t o]
1 1-b
/T@){/ dc+§:hn1dn<1mx)

7 " k=1

We consider the set
A4:{yy6CﬂT—m+mLM,Mﬂzoﬁnteﬁ—mT}md{£b§m0gl}
and define ®: M — C([T — p, +00), R) by the formula
0, te[T—pT),
@) = { vl -+ [ | [ a6t - ace

1-0
—I—Zk ) (11)G (Tk—a))]dn—i—F(t)—l—lO, t>T,

1-0
where F'(t) be such that |F(t)| < 0 For every y € M,

T - 1—-b 1—b
(®y)(t) < —p(t)y(t —7) + G(I)T/T(n) [/q(c)dg + ;h(m ] dn+ 5=+ 5 <

n

1—b 1-b 1-b _1+3b
<b < 1
=P T Ttio S T1 <

and
1-b  1-b 1-b 1—b
dy)(t) > F < _
(@y)(t) 2 () + =5~ = =5+ 5 20

implies that (®y)(t) € M. Define u, : [T — p,+00) — R by the recursive formula

up(t) = (Pup—1)(t), n>1,
with the initial condition
0, te[T —pT),
t>T.

Inductively it is easy to verify that
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1-0b
W < Un—l(t) < Un<t) <1
for t > T. Therefore for t > T — p, lim,, o0 u,(t) exists. Let limy, o0 upn(t) = u(t) for ¢t > T —p.
By the Lebesgue’s dominated convergence theorem u € M and (Pu)(t) = u(t), where u(t) is a
solution of the impulsive system (E) on [T'— p, o) such that u(¢) > 0. Hence, (A g) is necessary.
.. 1 .
(i) If p(t) = —1, t € R4, we choose —1 < py < 0 such that py # —5 In this case, we can

apply the above method. Here, we note that

t [e'e]
1 > 1+ 2pg 1+ 2po 1+ 2po
— — - < F(t) < ——.
|+ ! [atodc+ ;hm)] < o and <R <
T n -
We set

M = {y: y e C([T — p,+),R), y(t)=0 for t € [T — p,T] and 0 <y(t) < —p()}.

Also, we define ®: M — C([T — p,+0),R) by

0, te[T—pT),
(Py)(t) = y(’f—TH/T ,r(ln)[/oo a(Q)G(y(¢ — o)) dC+
+Z;O:1 () G (y( —0))}dn+F(t)+ 2T0P07 t>T.

This completes the proof of the theorem.

Theorem 3.2. Let p € C[R4,[0,1)]. Let G be Lipchitzian on the interval of the form [a, ],
0<a<b<oo. If(Agp) and (Ayz) hold, then the impulsive system (E) admits a positive bounded
solution.

Proof. Let 0 < p(t) < a < 1. Itis possible to find ¢; > 0 such that

1|7 = l—a

/7"(77) {/Q(C)dé + Zh(Tk)] dn < K

i " k=1

where K = max{K;,G(1)}, K; is the Lipschitz constant on [2(1 —a), 1]. Let F(t) be such

1—
that |F(t)| < ? for t > to. For t3 > max{t1,t2}, we set X = BC([T, c0),R), the space of

real valued continuous functions on [t3,00]. Clearly, X is a Banach space with respect to sup
norm defined by

Jell = sup {J2(0)] : ¢ > t3}.

Let’s define
S—{ueX: %(1—@)§u(t)§1, tZtg}.
We notice that S is a closed and convex subspace of X. Let ®: S — S be such that
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(®y)(ts + p), t € [ts, ts + pl,

(Py)(t) = * 1 >
[ st - oy
+ Z:;l h(Tk)G(y(Tk — O')):| dn, t > t3+ p.
Forevery y € X, (®y)(t) < F(t) + Q:_TG <1 and
yi 1 yi = 9+4+a
(®4)(6) > ~p(0)y(t ~ 7) - G(1) / o ! / d(0)G-+ 32| dn + F(0)+ 275" >
l-a 1—a 94a 3
- T T R G

implies that (®y) € S. Now for y; and y2 € S, we have

[(@y1)(1) — (Ry2) ()] < alya(t — 7) —p2(t — 7)|+

+t/r(ln) {/q(ma(yl(ga)) — G(ya(¢ — 9))]d¢+

n

+ Zh(Tk)’G(yl(Tk — U)) - G(yz(Tk - 0'))‘] dn,

k=1
that is,
|(@y1)(t) — (Py2)(t)] <
oo 1 o0 0o
< allys = w2l + v —wellKy [ o5 [ a(Qde+ > h(m)|dn <
1—-a da +1
<o+ — v -l = ly1 = w2l|-
) )
4a+1 . . . . . R

Therefore, ||(Py;) — (Py2) H < |ly1 —y2|| implies that & is a contraction. By using Banach’s

fixed point theorem, it follows that ® has a unique fixed point y(¢) in [2(1 —a), 1]. Hence,

(®y) = y and the proof of the theorem is complete.

Remark 3.1. We can not apply Lebesgue’s dominated convergence theorem for other ranges
of p(t), except —1 < p(t) < 0 due to the technical difficulties arising in the method. However,
we can apply Banach’s fixed point theorem to other ranges of p(¢) similar to Theorem 3.2.
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4. Discussion and example. In this work, we have undertaken the problem and established
the sufficient conditions for oscillation and nonoscillation of solutions of the impulsive system (E).
However, we failed to establish the necessary and sufficient conditions for oscillation of all
solutions of the system (E). It seems that some other method may require to establish the
necessary and sufficient conditions for oscillation.

Open Problem: In this work, we have seen that (Ag)—(A13) and (A;5)—(A,3) are the
sufficient conditions for oscillation of all solutions of (E) in which we are depending explicitly
on the forcing function. However, we are locked with the forcing function in (A,3) to establish
the existence of nonoscillatory solutions of (E). In contrast to (A,3), can we find the sufficient
condition for oscillation of solutions of (E) in the format of

o) [T | e S i = o

Indeed, this format could be more feasible not only for (E), but also for its homogeneous
counterpart. We conclude this section with the following example to illustrate our main result:
Example 4.1. Consider the impulsive system

(y(t) +y(t—7T))" +y(t - %) = cos(t— %), t >

™
47

/ m T (Es)
A(y(re) +y(me =) + h(Tk)y<Tk - Z) = 2sin(h) cos (k: — 4>, :
where
(Tk)—m, Tk = K, eN, (u) = u, f()—COb( 4),

Indeed, if we choose F(t) = — cos (t — Z), then (r(t)F'(t))" = F"(t) = f(t) and

A(r(m)F' (1)) = F' (T + h) — F'(mi, — h) =
=F'(k+h)—F'(k—h) =
= V2sin(h)(sin(k) + cos(k)) = g(7), k€ N.

Clearly,
s 9 3 <t<9 il
F+(t): —CO0S t—z , n7r—|—z_t_ mr—i—z,
0, otherwise,
and
s<t W) o+ <t < onm 4 T
co —— 1, nrt+ — <t <2nwm + —,
F (t) = 4 4 4
0, otherwise,
implies that
—si <t <
o <t—7r> _ sin(t), 2nm + 7w <t < 2n7w + 27,
4 0, otherwise,
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and
< 77) sin(t), 2nm + 21 <t < 2n7m + 3,
F(t—2)=
2 0, otherwise.
Since
(%) 0 2nmw+427
T .
/F+ (n - 4)6177 => / [— sin(n)]dn = oo,
z =097 7
then for n =0,1,2,..., we get

[ (=35 (2 )P (- 5) =

INE]

Clearly, (A1) - (A7) are satisfied. Hence, by Theorem 2.1 every solution of (Es5) is oscillatory.
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