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A class of partial differential equations of evolution (stemming from the groundwater flow problems)
depending on a parameter T is studied. The existence of an open interval T° of parameter T and of a
function T — O(1), ©: T° — (0,+00), is proved with the property that any nonzero global solution
u: RY x Q — R of the equation cannot remain nonnegative (nonpositive) throughout the set J x Q, where
J C R is any interval the length of which is greater than O (7). In other words, such solutions are globally
oscillatory and ©(1) is the uniform oscillatory time. The interval T° as well as the function © are explicitly
determined.

Busuaemuca kaac esoaoyitiHux oughepeHuiarbHux pieHAHb 3 YACMUHHUMU NOXIOHUMU I3 NAPAMEMPOM
T, AKI pO32A0arOMbCs 8 3a0a4ax meyii nio3emHux 800. /[08edeHo ICHYB8AHHA 8IOKPUMO0 THMEPBANY
T° napamempa ™ ma pynxyii 7 — O(1), ©: T° — (0, +00), AKi 3a0080AbHAIOMb MAKY 6AACMUBICINb!
6y0b-AKULL HEHYAbOBULL 2400aabHULL p036°A30K u: RT X Q — R pisnanHA He MOXHCe 3AAULUAMUCA He-
8i0°emHuM (HedodamHum) Ha mHoxcuni J x Q, 0e J C RT — 6yOv-akuil inmepsan, d0IUHA AKO20
nepesuwiye O(1). IHwumu caosamu, maxi po3s’asku € 2A00aAbHO KOAUSHUMU, d O(T) — DIBHOMIDHUM
koauenum wacom. Inmepsan T° ma ynkuiro © 3natideno 6 A6HOMY 6U2AAOL.

1. Setting up of the problem. We are interested in the hyperbolic reaction-diffusion equation

9%u ou
Tw+25(l‘,7')a—|—[/u+f(l‘,7,u)—O (1)
for the function
(t,z) = u(t,z), u:RT xQ — R, (2)

7 € T = (0, +00) plays a role of parameter.

Here RT = [0, +00), @ C R" is a bounded domain (with sufficiently regular boundary), L
is an elliptic operator, § and f are functions satisfying reasonable smoothness, sign and growth
conditions, f(z,7,0) = 0.

Throughout this paper we use the following assumptions:

Let H = Ly(Q), V C W(Q) be closed, V([)/'Ql(Q) C V. We identify H with its dual H' and H’
with a dense subspace of the dual V' of V, thus V' — H < V' both embeddings are continuous

and dense and we are entitled to denote the duality pairing on V' x V' by the same symbol (-, -)
as the scalar product in H.
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Further, let 4(-, -) be a bilinear continuous V-elliptic form on V' x V. Anisomorphism L: V' —
— V' is defined by the formula ¢(u,v) = (Lu,v), u,v € V. The operator L may be viewed also
as an unbounded operator, L: D(L) C H - H,D(L) ={u eV | Lu € H}.

Let £* (u,v) = £(v,u) be the adjoint form with the analogously defined adjoint operator L™
for which (Lu,v) = (u, LTv), u,v € V.

Let Lt possess the (so-called principal) eigenvalue \; and associated (principal) eigen-
function v; which are both real, the function v; is bounded and positive in €2 (cf. [1, 5, 6]).

A simple example: H = Ly(0,7), V = W1(0,7), £(u,v) = / Wv'de, \y = 1,01 = sinz.
0

More generally: H = Ly(2),V = I/?/%(Q), let A(z) = (a;())},—; be a matrix of functions
from C1(Q), which is symmetric and positive definite uniformly with respect to z € €2, B(z) =
= (bj(z))}_, be a vector of functions from CHQ), c € C(Q),

Uu, v) = /(A(:E)gradugradv + (B(z)grad u)v + ¢(x) wv) dz,
Q

hence
Lu = —div (A(z)grad u) + B(x)grad u + ¢(z) u,

LTz = —div (A(x)grad z) — div (B(z) 2) + c(z) 2.

2. Example of application. The problem may be considered an abstract extension of the
problem studied in [12] — oscillations for an equation arising in groundwater flow with relaxati-
on time.

A conventional form of groundwater flow equation (e. g., [11]) is obtained by means of
the combination of the conservation law and the classical constitutive relation — Darcy’s law.
Using the Cattaneo approach [3] Bodvarsson [2] modified the Darcy law by adding a linear
inertia term proportional to the time derivative of the fluid-phase flux density w:

7'661;) +w = —p Kgrad h,
where h is the hydraulic head, K the hydraulic conductivity, p the density of the fluid phase, 7
the relaxation time accounting for inertial effects. The groundwater equation assumes then the
form (see [12])

2

0“u ou
Tpssﬁ—i—(pss—l—TD)f

5 — pdiv (Kgradu) + Du = 0,

u is the hydraulic head (up to a constant), Ss the specific storativity, D a positive function of
space coordinates. For another approach based on the Biot concepts see [13].

The so-called relaxation time T is a measure of inertia effects incorporated into the final
model — the flux does not start at time ¢ when the gradient is imposed but at time ¢ + 7:

T%l:‘f‘w%'rw(t"i_ﬂ‘)_w(t?‘) —i—w(t,~) :w(t-i-’i',-).
T
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3. Global solutions. We assume that functions are smooth enough to ensure the local result:
for any (ug,u;) € V x H the initial-boundary value problem given by Eq. (1) and by initial
conditions u(0,-) = wup and 6—?(0, ) = wuy has a unique solution (¢,x) — wu(t,z) with finite
energy defined on the maximal interval, that is, u € C([0, tmax), V) N CH([0, tmax), H).

Sign, growth etc. conditions are assumed to make it possible the extension of solutions (e. g.,
by the a priori estimates method). Let U/ be the set of solutions u for which t,,x = 400 (the
so-called global solutions) and i/ # . The next theory applies to whatever global solution u €
€ U, provided it exists, this is why we are dispensing with specifying more detailed assumptions
ensuring the global existence.

4. Two fundamental auxiliary functions. Main auxiliary tools in the proof are the so-called
summit function and the universal comparison function introduced in [7]. These functions
proved to be a useful device in developing a new method for the study of oscillatory properties
of ordinary, partial and abstract differential equations (see, e. g., [8, 9, 10], for the idea see [4,
14)).

Let us denote

O:{(q,p)€R2|q>0,p>—\/§}.

The set O is the set of couples (¢, p) € R? for which solutions of the equation i + 2put + qu =
= 0,t € R, admit positive local maxima. Here @ (¢) = max{u(t), 0}. The summit function
is a function (g,p) — 93, 95: O — R, that to any (g, p) assigns the first positive ¢ where the
maximum of the solution satisfying «(0) = 0, u(0) = ¢(> 0) is attained (the value of ¥ is
independent of ¢). The summit function is continuous on O and monotonically decreasing in
each variable while the other is fixed. Its explicit form is:

1 _ 2
T + arctan M, —Va<p<Q,
Vi-1*  Va-p? p
T
o = 07
2v/q P
1 2
q}lg = —— arctan %, 0<p<./4
q—Dp
1
%7 b= \/av
VPP —q
. argtanhT, P> /9.

Further, the universal comparison function C'is a real function (¢, ¢, p,n) — C(t, q, p,n) defined
fort € R, (¢,p) € O and (¢,n) € O and possessing as a function ¢t — ¢(t) = C(t,q,p,n) with
q, p, n fixed, the following properties (remember that ¢+ = max{=+¢(t),0}) (see Fig. 1):
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Cit.q.p.n)

eir:+.9;

Fig. 1. Universal comparison function.

ce C?([0,924+0]), é+2(pét +né”) +qc=0, te 0,95+,
c(0) = c(Wi4+92) =0, ct) >0, te (0,08+9%),
¢0) =1, ét)>0, te 0,99, (W) =0
¢ty <0, te (V5,98498], ¢(08+9]) = —exp(—pdi+nvf).

(See [7] for the explicit formula of ¢.)
Fundamental lemma. Let ¢, M and m be constants such that

g>0, —y/g<m<M<.\/.

In other terms: let
(¢,—M) € O, (q,m) € O.

Let J C RT be an interval of the length
|J| > 97, + 99,.

Then there is a constant g > 0 such that for any ¢ € (0,e¢) and any interval J, = [t1,t2] C J,
|J| > |J1| = 997, + 9% © there exists a function t — ~(t) with the properties

S C2([t17t2])7 (2&)
¥>0 in (t1,t2), ~(t1) = (t2) =0, (2b)
(t1) > 0, A(t2) <0, (2¢)

and satisfying the equation
F+2(-MAyT+miy )+ (g—e)y =0 in (t1,t2).
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For the proof it is sufficient to choose ¢( such that
(q—e0,—M) €O, (¢—e9,m)€O,
that is,

qg—c0 >0, —vg—cog<m<M</q—eg,

to use the fact that the function (¢, p) — ¥} is monotonically decreasing in ¢ for p fixed, hence,
forany € € (0, ¢9),

[J] = | h] = 057 + 95 > 91y + 05,

and finally to define
W(t) = O(t - t17q - _M7 m)a

where C'is the universal comparison function.
Corollary. Let 7 > 0 be fixed. Let q, M and m be constants such that for

=2 M =Y mmp=" ©)
the following holds:
(q(1),=M(7)) € O, (q(7),m(7)) € O. “4)

Let J C RT be any interval of the length

q(7) q(T)
|J| > CAN YIRS ey

Then there exists a constant ey > 0 such that for any € € (0,¢¢) and any interval J, = [t1,t2] C J
of the length ﬁ‘i(ﬁ(f)/ T+ 193,52)_5/ " there exists a function t — ~(t) with the properties (2) and
satisfying the equation
TH+2(-MAT+myT )+ (q—e)y =0 in (t1,t2). 5)
S. Main results.

Theorem. Let the following assumptions be satisfied:
Let there exist nonnegative constants o and (31 and a positive constant o such that

0<ag<éx7)<a+pr, €0, 7€T. (6)

Let there exist constants fy and f_ such that

A1+ fr > 4o B, { S u) i ;J:Z’ reQ, T7eT. (7)

flx,m,u)
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Then there exist open intervals T C T and T° C T, respectively, of parameter T such that for
any 7 € T2 any non identically zero global solution u € U cannot remain nonnegative (non-
positive, respectively) throughout the set J x Q, where J C R is any interval the length |J| of
which is greater than

19q_+(T) + 9% (7) (ﬁq_ (r) )+ Pa- respectively) ,

M(T) m(T) —M(T m(T) "’
where
AL+ o o
q(r) = 25 ) = S () = 22
T T T

In other words, let uw € U be any global solution, then
u=0 on R xQ
if either

uw>0, teJ JCRY 2eQ, \J!>19Z+A(4T()T)+ﬁf;((f)) (if T €T,

or
u<0, teJ JCR", ze€Q, |J|> 19‘1_‘]\(;()T) +193n‘((:)) (if 7€ TY).
Moreover, there exists an interval T° C T of parameter T and a function T — O(1),0: T —
— (0, +00), such that the implication is valid:

meas {(t,z) € J x Q | u(t,z) > 0} > 0, and simultaneously
reT? |J| >0 =
meas{(t,z) € J x Q | u(t,z) < 0} > 0.

In terms of [9]: for T € T° Eq. (1) is uniformly globally oscillatory with the oscillatory
time O(T).

Proof. 1. For at € T assume that u € U, u is nonnegative on J x Q, J C R is any interval
with the length |J| > ©,(7), where

_ 92+ (7) ()
O4(r) = 19’1_+M(T) + 193;(7) :

g+ (1), M(7) and m(7) are defined as in (3) with
¢g=q+ =M+ [fr, M=o1+phr, m=a.

We prove that then necessarily u = 0 on J x Q and hence on R™ x Q.
2. We verify that assumptions (4) of Corollary from Sect. 4 are fulfilled. First, g+ > 0 since

M+ fr>40161 >0 €]

by (7). In the case 5; = 0 the assumption (4) is ensured for

e 72 ( a% —I—oo>
T = , .
* A+ [+
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If 51 > 0itis easy to check (we repeat partly the idea of the proof from [12] for the sake of
completeness) that the validity of the quadratic inequality in 7

B2 4 20181 — (M + f)]T+ad <0 9)
ensures that (4) is true. In view of (8) the discriminant is positive,

Dy =M+ f4+) M+ f+ —4aip) > 0,
and the inequality (9) holds for

20181+ M+ fr VD
1 _2 1,2 1°1 1 + +
TeT = (ry,m3), 7= 252 )

where the roots T}F’Q of the corresponding quadratic equation fulfil

—2a1 81 + A1+ [+
B3 ’

1.2 _
TITY =

1, 2 _
Tyt TE =

Ll V1 V)

Q‘Q

hence they are positive. We set
70 12
P = ()

By Corollary from Sect. 4 there exists a constant £y > 0 such that for any ¢ € (0,¢9) and any
T)—€e/T

interval J; = [t1,t2] C J of the length ﬁq_(;w)(f)/ T4+ 19?75(7) we have a function ¢ — ~(t) with
the properties (2) and (5).
3. We use (t) v1(z) as a test function in Eq. (1). In virtue of (2a) and (2b)

0=r / Bt (b, ) — 4(t) u(t, 2)] on (2) da+
Q

to
+ // (74 = 26(z, ) (%" —=47) + i) wor + f(z, 7, u)yo1| da dt.
t1 Q
Estimating, for « nonnegative in J; x €, we get in view of (6), (7) and (2c) that

to
0= // [T:Y +2(—o — B17) T + 2007 + (M1 + f+)7] uvy drdt =
t1 Q

to
= 5//’yu vy dz dt. (10)
t1 Q

4. In virtue of ¢ > 0,v; > 0Oon Q,~ > 0Oon J; = (t,t2) and inequality (10) we get
u = 0on J; x , hence (due to the unique solvability of the initial-boundary value problem)
on RT x Q.
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5. For u nonpositive the proof goes along the same lines by replacing f, D, T}F’Q, 79 and
O (1), respectively, by f_, D_, 7% 70 and ©_(r), respectively. We set

7-? = (Ti,"‘OO) if 61 =0, 7-1) = (TE,TE) if 51 > 0.

If 51 = 0 we define
T = (max{Tl,T}r} ,—I—oo) .

1 < 72 provided that f_ < fy and 71 < 72 provided that

f+ < f-. Hence, the intersection of intervals 7 and 7 is nonempty and we put

T = TINT = (Le) o (rhr2),

If g1 > 0itis easy to verify that 7

according to whether f_ < fi or fi < f_. Finally, we define
O(r) = max {0, (1), 6_(r)}.
The theorem is proved.
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