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In recent results on representation of solutions of systems of delayed differential equations the condition
that the linear parts are given by pairwise permutable matrices was assumed. In this paper it is shown how
this strong condition can be avoided, and representation of solutions of systems of differential equations
with nonconstant coefficients and variable delays is derived. The results are applied to a system with two
constant delays. Also the nonexistence of blow-up solutions is proved for nonlinear systems.

OcmanHi pe3yavmamu npo 300pajxceHHA po38’A3Ki6 cucmem OupepeHUuiarbHUX PIBHAHD i3 3aNI3HEHHAM
O6yAU OMPUMAHI 30 YMOBU KOMYMYBAHHA MAMPUUD, U0 BUSHAUAIOMY AIHIUMHI wacmuHu. Y cmammi no-
KA3aHO AK MOXCHA NO30YMUCA ULET CUABHOL YMOBU MA OMPUMAHO 300paNCeHHs PO38 A3KI8 cucmem Ou-
epenyianbHUX pieHANHb 3 HECHAAUMU KOeDIYyIEHMAaMU Ma 3ani3HeHHAMU, W0 3MmiHotombca. Li pe3yab-
mamu 3acMoco8aro 00 CUCeMU 3i CMAAUMU 3ani3HeHHAMUY. TaKoN 0aa HeAIHIUHUX cuchiem 008e0eHO
8i0cymHicmb 8UOYX08UX PO38’A3KIE.

1. Introduction and preliminaries. Systems of linear differential equations with one or multi-
ple constant delays were considered in [5, 6] and solutions were represented using matrix
polynomials of a time-dependent degree. In the case of multiple delays, pairwise permutabi-
lity of matrices representing coefficients of linear terms was a necessary condition for deriving
the representation. That means that the matrices A, By, ..., B, in the equation

#(t) = Ax(t) + Bix(t — 1) + ...+ Bpz(t — ) + f(t), t >0,
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522 M. MEDVED’, M. POSPISIL

had to satisfy AB; = B;A, B;B; = B;B; foreachi,j = 1,...,n. For now the most general case

with nonconstant coefficients and variable delays was investigated in [9]. We recall this result.
Theorem 1.1. Letn € N, B; € C([0,00), L(RY,RN)), g; € G° fori = 1,...,n and

G = {g € O([s,00),R) | g(t) <t on [s,00),g is increasing},

f € C(]0,00),RY), v := min{g1(0),...,9.(0)}, @ € C([r,0],RN). Then the solution of the
equation

i(t) = Bi(t)z(91(t)) + ... + Bu(t)z(gn(t)) + f(t), t >0, (1.1)

satisfying the initial condition

z(t) = ¢(t), v <t<0, (1.2)
has the form
[ o(t), v <t<O0,
Xﬁ%@%%tm (0) + /°X£?¢?%aﬂx
#lt) = L5) - Ba(s)(gn(s))] dst (13)
Xﬁxﬁ%a@() 0<t,
where
_ (), telr0),
oo ={ 7" 1500 (9

O, t <s,
Y(t,s), s <t < gnl(s),
ngﬁ/ Y (£, ¢1) Bon(a1)Y (g (1), $)ddgs + . .
t '"l
+l/ 9 Y'(t,q1) Bm(q1) %
Xplaim(t,s) = ol (15)
o Y (9m(q1), q2) Bm(g2) %
9m (S
gm qK— 1)
. X /_1 Y (9m(qk—1), ) %
XBm(Qk) 9m(ar), s)dqy . . . dq1, .
1
\ g (s) <t < g V(s),k € N,
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REPRESENTATION OF SOLUTIONS OF SYSTEMS OF LINEAR DIFFERENTIAL... 523

where Y (t,s) = Xg]'?f’ ,;,iml '(t,s), form = 2,...,n,the N x N zero matrix ©, and

O, t <s,
I, s <t<gls),
t
I —|—/ dgr + ...+ B(q1)x
XP(t,s) = o D ——

9(a1) 9(ar-1)
></ / B(qx)dgy - - - dqu,

g~ (s 97(s)

g7F(s) <t < g7*H(s), kel
Note that the pairwise permutability of B;(t), ..., B,(t) was not needed. However, a result

from [9] on the equation involving a nondelayed term on the right-hand side was stated only
for the case of pairwise permutable constant coefficients. In the present paper we show how to
tackle this problem without permutability condition and even for nonconstant coefficients. So
this is the most general case for the delay functions from the class G°.

To illustrate our results, we consider a system of delayed differential equations with constant
coefficients and two constant delays in Section 3, and derive a formula for its solution. A known
result for permutable matrices [10] (see also [3]) is obtained as a particular case.

In the final section we apply results of Section 2 to prove a criterion on a nonexistence of
blow-up solutions for differential equations with variable coefficients and nonconstant delays.
By such a solution we understand a function z: [a,b) — R™ witha € R, a < b < oo such that
lim;_,7— ||z(t)|| = oo for some a < T < b and a vector norm || - ||. We note that the main result
of this section (Theorem 4.1) is a generalization of a weaker result from [7].

Further applications of results of this paper can be achieved, e.g., in stability theory [6—-9]
or Fredholm boundary-value problems [2].

2. Representation of solutions of general time dependent systems. In this section we shall
investigate systems of differential equations with multiple variable delays. For the simplicity we
start to consider the equation with constant coefficients,

i(t) = Az(t) + Biz(g1(t)) + ... + Bpz(gn(t)) + f(t), t > 0. (2.1)

Theorem 2.1. Letn € N, A, B;,i = 1,...,n, be N x N matrices, g; € G° fori = 1,...,n,
v == min{g1(0),...,9,(0)}, f € C([0,00),RN) and ¢ € C([y,0],RN) be given functions. Then
the solution of the initial value problem (2.1), (1.2) has the form

(1), vy <t <0,
o) — | X0 / X(t,9)[Bub(gi(s)) +

t

.+ Bp(gn(s))]ds —l—/o X(t,s)f(s)ds, 0<t,

for ) given by (1.4), and
v At 5 B1,. ,Bn —As
X(t,s) =e thlf (t,s)e

for XJBn (¢ 5) defined by (1.5), and B;(t) = e~ 4 B;e9® fori = 1,... n.
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524 M. MEDVED’, M. POSPISIL

Proof. Let 2(t) = eMy(t). Then y(t) satisfies

§(t) = Bi(t)y(g1(t) + ...+ Ba(®)y(gn(t)) + f(1), >0,

(22)
y(t) = o(t), v <t<0,
for f(t) = e~ f(t), 3(t) = e~ *(t). Theorem 1.1 implies
o(1), v <t <0,
Xff,’ @Jf" t,0)9(0) + / Xfl{’ ug,]f" t,s)
vt =9 [Bl( Y0(91(5)) + - - + Bu(8)D(gn(s))] ds+ (2.3)
t -
+ / Xgian (t) f(s)ds, 0<t,
0
where
oy _ @), tE[v,0),
ww‘{e, t ¢ [v,0). (2.4)

Note that 3(0) = ¢(0), and ¥(gi(t)) = e A9y (gs(t)) for i = 1,...,n. The statement is
obtained when one returns back to z(t).
Now, we turn to variable coefficients. So we shall consider the equation

i(t) = A@)(t) + BuO(@ () + ..+ BalD)r(ga®) + f(), t>0. (25
Theorem 2.2. Let n € N, A, B; € C([0,00), LRY,RN)), g; € G fori = 1,...,n,v =
:= min{g1(0),...,9,(0)}, f € C([0,00),RN) and ¢ € C([y,0],RY) be given functions. Then
the solution of the initial value problem (2.5), (1.2) has the form
<p( v <t<0,

..+Bn(s)w(gn( d5+/ X(t,s)f(s)ds, 0<t,

for 1 given by (1.4), and X(t,s) = <I>(t)X """ (t $)®~1(s) for XJ1:Bn (¢, 5) defined by (1.5),
Bi(t) = @7 1(t)B;(t)®(gi(t)) fori = 1,....n and ®(t) is a fundamental matrix satisfying

o(t) = AW)D(t), t >,
(2.7)

with

_ Alt), t>0,
Alt) = { A(0), t <0,
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REPRESENTATION OF SOLUTIONS OF SYSTEMS OF LINEAR DIFFERENTIAL... 525

where ® at 0 is considered one-sidedly.

Proof. Let z(t) = ®(t)y(t). Then y(t) solves (2.2) with f(t) = ®~1(t) f(t), B(t) = D 1(t)¢(t)
and B;(¢) as in the statement of the theorem. So, y(¢) has the form (2.3). When one returns to
x(t) the statement immediately follows.

Remark 2.1. Note that from (1.5) it follows that X235 (¢, s) does not depend on the
values of B;(q) on [0, g; ' (s)) for eachi = 1,...,n. Consequently, we can take any extension of
A(t) onto [y, co) instead of A(t) and the same solution z(¢) given by (2.6) results.

Next, we consider a particular case of matrix functions A4, By, ..., B,.

Corollary 2.1. Let n € N, B; € C([0,00), L(RYN,R)) fori = 1,...,n, Q € CY(R, L(RY,
RM)) be a nonsingular T-periodic matrix with Q(0) = I, R be a constant N x N matrix, g; € G°
fori=1,...,n,7 := min{g1(0),...,9,(0)}, f € C([0,00),RY) and ¢ € C([y,0],RY) be given
functions. Then the solution of the initial value problem consisting of the equation

@(t) = <Q(t) + Q(t)R> Q™ (t)x(t) + Bi(t)z(g1(t) + ... 4+ Bu(t)x(gn(t)) + f(t), t >0,
and initial condition (1.2) has the form (2.6) for  given by (1.4), X (¢, s) = ®(£) X2t (¢, 5)x
x®~1(s) for Xflf.’jj;éf" (t,s) defined by (1.5),

Bi(t) = 7 (1) By()@(gi(1)), i =1,...,n,
and

Qe — t>0,
®(t) = { QORI

Proof. Noting that ®(¢) is a C'! function satisfying (2.7) with

a0 - | (@@ +emr)Q7 @), + >0
Q0)+ R, t <0,
the statement follows from Theorem 2.2.

3. Derivation of a formula for solutions of time independent systems. Here, we apply our
results to find a solution of a system with linear terms represented by nonpermutable constant
matrices and constant delays.

Let us consider the initial value problem consisting of the equation

l'(t) = le(t - 7'1) + B2$(t — TQ) + f(t), t >0, (31)

and initial condition (1.2) where 7,79 > 0, By, By are constant N x N matrices and f €
€ C([0,00),RM), » € C([v,0],RY) are given functions with v = — max{r, 72}. The assumpti-
ons of Theorem 2.1 are satisfied with A = © and g;(¢t) = t — 7; for i = 1, 2. Hence the theorem
gives a solution of (3.1), (1.2). In this case, X (t,s) = X, 5{;,]23 ?(t, s) and the formula for the soluti-
on can be simplified. Note that X5 (-, s) is a matrix solution of

Xt) =B X(t—m1), t>s,

X(s) =1
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526 M. MEDVED’, M. POSPISIL

Thus we can use [5] to write

=)

XBi(t, s) Z pi(L=im =) ”1 _3) (3.2)

with the floor function |-|. Here we used the property of empty sum, i.e.,
D a(i) = a(i) =0
i=a 1€ED

for any function z provided that a > b. We shall compute Xflféf *(t,s) for s+ km <t <
< s+ (k+ 1)1, k € N. In the following we use the step function

0, t<0,
U(t):{l t>0.

Let1 < K < k be an arbitrary fixed integer to extend the sums to infinity. Then

t q1—T2
XK(t,S) = / AXVQB1 t CI1 / X 7'2,(]2)32 c..
s+ Ko +(K-1)T
qK—-1—T2
/ X (gr—1 — 72, qx) Ba X)) (qx — 7, 8)dasc - . dg1 =
s+T2
FS  (t—iom — q)®
i — 071 — 41 .
= ZB;O ol U(t—ZOTl —Q1)B2...
s+K1o i0=0
K —-2—T2 00 ) .
Z BiK72 (QK—Q — T2 —1K-2T1 — QK—l)ZK_2
1 i | X
s+27o ir—2=0 K=
o(qr—2 — T2 —ix 2T — qx—1)B2X
qK—-1—T2 i
—i T — K-1
% ZBZKlqu T2 Kl‘l CIK) x

i =0 i1}
s+72 K—-17=
Ty —igT — 8)'K

o0
. i (aK
o(qr_1—To —ip_17T1 — B BZK(
(gg—1 — T2 —iK—1T1 — qK) B> E ) i

i =0

o(qx — 1o —igT — S)dqK ... dq. (3.3)
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REPRESENTATION OF SOLUTIONS OF SYSTEMS OF LINEAR DIFFERENTIAL... 527

The last integral on the right-hand side is equal to

o0
Y B 'BBifo(qr-1—2m2 — (ik-1+ix)7 — 8)x

ik -1,k =0

qK—-1—T2—iK—-1T1

K-1—To — K171 — Q) K1
" (q e k)"
TK—1-

S$+To+iKT1

QK — T2 —igT — 8)'K
( LD L
1K -

X

- i Bik-1 B, BiK (qr—1 — 212 — (ig—1 +ig)m — 8)'K-1TiKTL
Lo (i1 +ix + 1)

X
g1, =0

X o(q—1—2170 — (igk—1 +ig)T — 8) =

_ i (qrc—1 — 270 — jrg 171 — 8)IK—1T1

o(qr—1—2m — jxk—1T1 — §)X

x Y By ByBI¥,
Jx=0

where we used the substitution qx = s+ 7o +ix71 +&(qx—1 — 272 — (ix—1 +ix)71 — s) leading
to a multiple of Euler beta function, and then we changed ix_1 + ix — jx—1,ix — JK-
Consequently, the last double integral on the right-hand side of (3.3) is equal to

00 JK—1
Z B{*7?By Z BV ByBI o (qr—2 — 372 — (ik—2 + jK—1)T1 — 8) ¥
iK—2,Jk—-1=0 jr=0

qK—2—T2—1K_2T1 )
N T —
(qr—2 — T2 —iK—2T1 — qK—1)"52
X - ' X
1K—92:

s+2m+jKk 171

(qrc—1 — 272 — jg 171 — s)IK-111

. dgg 1 =
(Jr—1+1)!
00 A JK-1 ) .
= Y. BBy ) B '¥ByB{*x
1Kk —2,Jk—-1=0 jr=0

» (qr—2 — 310 — (ix o+ jr_1)T1 — 8)K-2TIK-112
(ik—2+ jrk—1+2)!

X
X o(qr—2—3m — (ik—2 + jxk-1)T1 — 8) =
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528 M. MEDVED’, M. POSPISIL

K—2 — 3Ty — j—2T1 — 8)7K-27F .
= > ¢ ) 0(gr—2 — 3T — jrk—2T1 — 8) X

e (jr—2 +2)!
JK—1
% Z B]KzJK 1B ZBJKleBBJK
Jr—-1=0 Jjx=0

for jx_o = ix—2 + jx—1. Analogously for other multiple integrals. Finally, the right-hand side
of (3.3) is equal to

00 J1 JK-1 ) ) '
> BPByY B{"By... Y B ¥ByBi¥o(t — K7y — (io + j1)T1 — 5) X
10,J1=0 Jj2=0 jr=0
t—igT1 . .
(t—iom — 1) (@1 — K79 — j1myp — s)/1HE-L
X : : dg1 =
7,0! (]1 + K — 1)!
s+Kto+j17T1
00 A J1 o JK—1 ‘ ' 4
> BBy B{'™B,... > B{*'ByB{¥x
10,51=0 Jj2=0 Jrk=0

(t — Ko — (ig + j1)m1 — s)l0 T+

o(t— K — (ig + j1)11 — ) =

(i + j1 + K)!
LthTzfsJ )
_ TZI (t—KTQ—j()Tl—S)JOJrKX
= (Jo + K)!
Jo o J1 o JK-1 ' '
x Y B{*™By Y B{"B,... Y B '*B,Bi¥,
Jj1=0 Jj2=0 Jrx=0
where jo = ig + j1. Now changing jo — 40, jo — j1 — #1,--.,JKk—1 — jKk — tx We get
\‘t—K‘rQ—sJ
1 io ip—i1
t— Km — — 7“0+K
Xty = S0 IR S B Y BB
10=0 (ZO + i1=0 12=0
t—K1g—s
io—(i1+..+ig_1) LTiJ ‘ )
0—(i1 Z K—1 BiKB2Bi0*(“+"'”K) _ 21: (t — K1y —igry — s5)0tK .
=0 ' ' 20 (io + K)!

x> BIByBPB,...BJ¥ByB (1K)
i1,y >0
i1+ i <ig

for each K € Nsuchthatl < K < kand s+ kmn < t < s+ (k+ 1)72. So, we obtain the
following result.
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REPRESENTATION OF SOLUTIONS OF SYSTEMS OF LINEAR DIFFERENTIAL... 529

Proposition 3.1. The solution of the initial value problem (3.1), (1.2) has the form

(P(t)7 v <t<0,
T1
o) — 4 X0+ B /0 X(t ol = st )
T2
—i—Bg/ X(t,s)p(s —TQ)]dS-I-/ X(t,s)f(s)ds, 0 <t,
0 0
where
=] =5
T2 T1 o K o . _ ,LO+K
X(ts) = yoo U ] P
K=0  io=0 (io + K)!
x Y BUB:BPB...BFByBY ),
i1 ey >0
i1+ ik <io
Proof. From the previous arguments it follows that the solution has the form
Qo(t)) 7 <t <0,
t
y = | X@0R(0)+ [ X(t5)[Brots - m)+
o(t) = , X
+Batp(s — m2)]ds —I—/ X(t,s)f(s)ds, 0<t,
0
with
=
X(t,s) = Y Xg(ts)
K=0
t —
for X (t,s) defined as Xy(¢,s) := Xfll (t,s)of (3.2)and by (3.3)for K = 1,..., { SJ . Note
T2

that X (¢,s) = © whenever ¢ < s. That gives formula (3.4).
In particular, we obtain the known result (see [10]).
Corollary 3.1. If B1 By = By By, then the solution of (3.1), (1.2) has the form (3.4) where

(t —it — jro — 8)*H7

X(t,s) = § BB}
1,720
iT1+jm2<t—s

il

Proof. Applying

& T glK!
01500yt 20

i1+...+ix <io

the statement follows immediately.
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530 M. MEDVED’, M. POSPISIL

4. Nonexistence of blow-up solutions. The results of Section 2 may be applied, e.g., in stabi-
lity or controllability theory. In this section we illustrate the results by proving a nonexistence
of blow-up solutions.

First we recall the following estimation from [9].

Lemmal. Lets € R,n € N, B; € C([s,00), LRV, RY)) and g; € G* fori = 1,...,n.
Then

s

foranyt > s.

Theorem 4.1. Let n € N, A, B; € C([0,00), LRY,RN)), g; € G fori = 1,...,n,v =
:= min{g1(0),...,9.(0)}, f € C([0,00) x R®TUN RN and » € C([y,0],RN) be given functi-
ons. Let z: [y,b) — RY with 0 < b < oo be a continuous solution of the equation

(t) = +ZB )+ [ a(t),2(g1(t), -, 2(gn(1), ¢ =0, (4.1)
satisfying the initial condition (1.2). If
£ (o, un)ll < Ri®wi(lluall), (£ uo, ... un) € R x ROFON

where R;, wi, i = 0,...,n, are continuous nonnegative functions defined on [0,0), and w;,
i = 0,...,n, are nondecreasing such that wo(0) + ... + w,(0) > 0 and

e}

/ du
) wo(u) + Z?zl wi(2u)

= 0oQ,

then lim; ,p- ||z(t)|| < oo forall T € (0,b).
Proof. Let us suppose in contrary that there exists a smallest 7" € (0, b) such that

li t)|| = oo.
i o (2)] = o0

By Theorem 2.2 and in its notation, x(¢) satisfies
z(t) = +Z/X (t,8)Bi(s)(gi(s ))ds+/)?(t,s)p(s)ds (42)
0
fort > 0, where F'(t) = f(t,z(t),z(g1(t)),...,x(gn(t))).

Now, since

ISSN 1562-3076. Heainitini koausanns, 2016, m. 19, N2 4



REPRESENTATION OF SOLUTIONS OF SYSTEMS OF LINEAR DIFFERENTIAL 531
Gronwall lemma [4] yields

|8(t)] < exp / 1A(s)ds $, >0,

for an induced matrix norm | - ||. Similarly,

dt) =T~ [ &1 (s)A(s)ds, t >0,
/

i.e.,

t
o0l < ew? [AG)lds g, t= 0
0
Therefore, along with Lemma 4.1,

t

1X (9] < exp / 1A(@)lldg + / S 1Bi(g)ldg + / lA(@)ldg b =: M(t, s)
0 i=1 0

s

forany0 < s < t.

Hence, denoting ||¢|| := max,<;<o ||¢(t)], from (4.2) one obtains

min{t,g; " (0)}

lz(@)] < M(50)llell + / M(t, s)[| Bi(s) [l llds+

=1 0

n

+/M(t78) (Ro(S)WO(\w(S)H)JrZ i(s)wi(llz(gi(s))) )
0

i=1
for any ¢ > 0. Let us denote

o minfto ()
my = ||l max | M(t,0)+)
- i=1

0
n
my = | max M(t,s) [nax Ri(s), mn(s) := wo(s)+ Zw(2s).
0<t<T i=0,..,n i=1

Then the last inequality implies

t
le(®)]] < ma +mo / (s ||+sz le(gi(s)
0

ISSN 1562-3076. Heainitini koausanns, 2016, m. 19, N2 4



532 M. MEDVED; M. POSPISIL
for any 0 < ¢ < T. Note that the right-hand side z(¢) is nondecreasing, m; > ||¢| and

[z(gi@)l < sup [la(gi(s))I] < sup  |a(gi(s)|+  sup  [[z(gi(s))]| < 2z(¢).
Oss<t 0<s<g; ' (0) g; H(0)<s<t

Consequently,

t t

lz(@®)]] < z(t) < my —i—mg/wo(z(s)) + Zwi(%(s))ds =m —I—nm/n(z(s))ds
i=1

0 = 0
for any 0 < ¢ < T. The well-known Bihari inequality [1] implies

Qlz(t)])) < Q1) < Qma) +mat < Qmi) +maT, 0 <t < T,

where Q(z) = / ﬁ A contradiction follows from the limit
0

n(s)

Qllz@)]) — /77%2) — 0, t—T .
0
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