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The asymptotic properties of solutions of some third order differential equation are examined. Sufficient
conditions for the square integrability and oscillation of solutions are established.

Вивчаються асимптотичнi властивостi розв’язкiв деякого рiвняння третього порядку. Вста-
новлено достатнi умови квадратичної iнтегровностi та осциляцiйностi розв’язкiв.

1. Introduction. The aim of this paper is to study the qualitative behavior of solutions of a class
of nonlinear differential equations of the third order. In particular, we give sufficient conditions
for the existence of square integrable solutions of the nonlinear equation

(x′′(t) + p(t)x(t))′ + p(t)x′(t) + q(t)f(x(t)) = 0, (1.1)

where we assume that p, q : [t0,∞) → R and f : R → R are continuous, q(t) > 0, and xf(x) >
> 0 for x 6= 0. Some necessary and sufficient relationships between the square integrability of
the first and second derivatives of solutions are also presented.

The problem of obtaining sufficient conditions to ensure that all solutions of certain classes
of third order nonlinear differential equations are oscillatory or nonoscillatory is an important
one in the study of qualitative theory of ordinary differential equations. This problem has
been the subject of intensive study in the last three decades, and we refer the reader to the
monographs of Greguš [6] and Kiguradze and Chanturia [10], as well as the papers [2 – 5, 7 –
9, 11 – 16] and the references contained therein. By a solution of (1.1), we mean a function
x ∈ C3([Tx,∞)), Tx ≥ t0, that satisfies (1.1) on [Tx,∞). We only consider those solutions x(t)
of (1.1) that are continuable and nontrivial, i.e., that satisfy sup{|x(t)| : t ≥ Tx} > 0 for all
Tx ≥ t0. We assume that (1.1) possesses such a solution. A nontrivial solution of (1.1) is said
to be oscillatory if it has a sequence of zeros tending to infinity, and it is called nonoscillatory
otherwise. An equation is said to be oscillatory if all its solutions are oscillatory.

2. Preliminary results. First, we give some lemmas that we will use in the proofs of our main
results.
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Lemma 2.1. Let y(t) be a continuous and twice differentiable function on the interval [t0,+∞)

such that y(t) > 0 for t ≥ t0. If limt→∞
y′(t)

y(t)
= −∞, then limt→∞ y(t) = 0. If, in addition,

y′′(t) > 0, then limt→∞ y
′(t) = 0.

Proof. Since y(t) > 0, it follows that y′(t) < 0 for large t and hence limt→∞ y(t) exists
and y(t) is eventually decreasing. Suppose that limt→∞ y(t) = λ > 0. Let δ < 0 be a number

satisfying
y′(t)

y(t)
< δ on [t1,+∞) for some t1 ≥ t0. Then y′(t) < δy(t) < δλ < 0. This implies

y(t) < 0 for large t, which is a contradiction. If we have y′′(t) > 0, then limt→∞ y
′(t) = c < 0

would also give a contradiction.
Lemma 2.2. Let x(t) be a solution of (1.1). Then

F [x(t)] = x(t)
[
x′′(t) + p(t)x(t)

]
− 1

2
x′2(t) (2.1)

is nonincreasing on [T,+∞) for some T ≥ t0.
Proof. Differentiating and using the fact that x(t) satisfies (1.1), we see that

F ′[x(t)] = −q(t)x(t)f(x(t)) ≤ 0. (2.2)

Thus, F [x(t)] is nonincreasing for large t.
Next we define two classes of solutions of equation (1.1) as follows.
Definition 2.1. We say that a solution x(t) of (1.1) belongs to Class I if F [x(t)] ≥ 0 on

[Tx,+∞) for some Tx ≥ t0.
Definition 2.2. We say that a solution x(t) of (1.1) belongs to Class II if F [x(T )] < 0 for some

T > Tx.
3. Main results I. In this section, we study asymptotic properties of solutions of equation

(1.1) that belong to the Class I. Note that while we have assumed that q(t) > 0 for t ≥ t0, the
function p(t) need not be of constant sign. We also assume that the following conditions hold:

(H1) there are constants α and β such that

−∞ < α ≤ inf p(t) ≤ sup p(t) ≤ β < ∞ and ω = max{|α|, |β|};

(H2)
∫ ∞
t0

p(s)ds = +∞;

(H3) there exist constants N ≥ M > 0 such that

0 < M ≤ f(x)

x
≤ N for all x 6= 0;

(H4) there exists λ > 0 such that limt→∞
1

t

∫ t

t0

q(s)ds = λ < ∞;

(H5) there exists µ > 0 such that |p′(t)| ≤ µ < ∞ for all t ≥ t0.
We are now ready to prove our first result.
Theorem 3.1. Let x(t) be a solution of equation (1.1) belonging to Class I and assume that

q′(t) ≥ 0 and conditions (H1) and (H3)–(H5) hold. Then:

(i)
∫ ∞

x2(s)ds < ∞;
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(ii)
∫ ∞

x′2(s)ds < ∞;

(iii)
∫ ∞

x′′2(s)ds < ∞.

Proof. (i) Let x(t) be a solution in Class I and choose t1 ≥ t0 such that F (x(t)) ≥ 0 for
t ≥ t1. Multiplying (1.1) by x(t), we have

x(t)
[
x′′(t) + p(t)x(t)

]′
+ p(t)x(t)x′(t) + q(t)x(t)f(x(t)) = 0,

and then integrating by parts from t1 to t, we obtain

F [x(t)]− F [x(t1)] +
t∫

t1

q(s)x(s)f(x(s))ds = 0. (3.1)

Now x(t)f(x(t)) ≥ Mx2(t) by (H3), and since x(t) belongs to Class I, from (3.1) we see that
there is a positive constant c such that

t∫
t1

x2(s)ds ≤ c < ∞

for all t ≥ t1. Hence, (i) holds.

(ii) Suppose
∫ ∞
t1

x′2(t) = ∞. Since x belongs to Class I,

x(t)
[
x′′(t) + p(t)x(t)

]
≥ 1

2
x′2(t)

for t ≥ t1. Integrating from t1 to t, we obtain

3

2

t∫
t1

x′2(s)ds ≤ k0 + x(t)x′(t) +

t∫
t1

p(s)x2(s)ds,

where k0 = x(a)x′(a). Thus, from (H1),

3

2

t∫
t1

x′2(s)ds ≤ k1 + x(t)x′(t)

where k1 = k0 + ωc. Now limt→∞

∫ t

t1

x′2(s)ds = ∞ implies that for any A >
2k1
3

there exist

t2 ≥ t1 such that

0 <
3

2
A− k1 ≤ x(t)x′(t) for t ≥ t2.
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But
t∫

t2

x(s)x′(s)ds =
1

2
x2(t)− 1

2
x2(t2) >

(
3

2
A− k1

)
(t− t2) for t ≥ t2.

This implies limt→∞

∫ t

t2

x2(s)ds = ∞ contradicting part (i). Hence, there exists d > 0 such that

t∫
t1

x′2(s)ds ≤ d < ∞

for all t ≥ t1, and so (ii) holds.

(iii) Now assume that
∫ t

t1

x′′2(s)ds = ∞. Multiplying (1.1) by x′(t) and integrating from t1

to t, we obtain

t∫
t1

x′(s)
(
x′′(s) + p(s)x(s)

)′
ds = −

t∫
t1

p(s)x′2(s)ds−
t∫

t1

q(s)x′(s)f(x(s))ds.

Integrating the term on the left-hand side by parts, we have

t∫
t1

x′(s)
(
x′′(s) + p(s)x(s)

)′
ds = x′(t)

(
x′′(t) + p(t)x(t)

)
−

−
t∫

t1

x′′2(s)ds−
t∫

t1

p(s)x(s)x′′(s)ds− C0,

where C0 = x′(t1) (x
′′(t1) + p(t1)x(t1)) . Thus,

t∫
t1

x′′2(s)ds = −
t∫

t1

p(s)x(s)x′′(s)ds+

t∫
t1

p(s)x′2(s)ds+ x′(t)x′′(t)+

+ p(t)x′(t)x(t) +

t∫
t1

q(s)x′(s)f(x(s))ds− C0. (3.2)

Integrating the first term on the right by parts, applying conditions (H1), (H3), and (H5) as well
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as parts (i) and (ii) in the proof, we obtain

t∫
t1

x′′2(s)ds = C1p(t1) + 2ωd+

t∫
t1

p′(s)x(s)x′(s)ds+ x′(t)x′′(t)+

+

t∫
t1

q(s)x′(s)f(x(s))ds− C0 ≤ C1p(t1) + 2ωd− C0+

+
1

2

t∫
t1

∣∣p′(s)∣∣ (x2(s) + x′2(s)
)
ds+ x′(t)x′′(t) +

t∫
t1

q(s)x′(s)f(x(s))ds ≤

≤ C1p(t1) + 2ωd− C0 +
1

2
µ(c+ d) + x′(t)x′′(t)+

+
1

2

t∫
t1

q(s)
[
x′2(s) + f2(x(s))

]
ds ≤ C1p(t1) + 2ωd− C0+

+
1

2
µ(c+ d) + x′(t)x′′(t) +

1

2
q(t)

[
d+N2c

]
≤

≤ K0 + x′(t)x′′(t) +K1q(t), (3.3)

since q(t) is increasing, where C1 = x(t1)x
′(t1), K0 = C1p(t1) + 2ωd − C0 +

1

2
µ(c + d), and

K1 =
1

2
[d+N2c].

Since
∫ ∞
t1

x′′2(s)ds = ∞, we can find C > K0 + k1λ > 0 and t2 ≥ t1 such that

0 < C −K0 ≤ x′(t)x′′(t) +K1q(t) (3.4)

for t ≥ t2. Now, integrating (3.4) from t2 to t, we obtain

(C −K0)(t− t2)−K1

t∫
t2

q(s)ds ≤ 1

2
x′2(t),

or

t

(C −K0)−
t2
t
(C −K0)−

K1

t

t∫
t2

q(s)ds)

 ≤ 1

2
x′2(t).

In view of our choice of C and condition (H4), we see that x′2(t) → ∞ as t → ∞. This
contradicts part (ii) of the theorem and completes the proof.

In our next theorem, we replace condition (H4) by asking instead that the function q be
bounded above.
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Theorem 3.2. Let x(t) be a solution of equation (1.1) belonging to Class I and assume that
(H1), (H3), and (H5) hold, and there exists q1 > 0 such that q(t) ≤ q1 for all t ≥ t0. Then the
conclusion of Theorem 3.1 holds.

Proof. The proof of cases (i) and (ii) are the same as in the proof of the previous theorem.
In case (iii), from (3.3), we have

t∫
t1

x′′2(s)ds ≤ K0 + x′(t)x′′(t) +K1q1.

Similar to what we did in the proof of Theorem 3.1, there exist C1 > 0 and t3 ≥ t0 such that

0 < C1 ≤ x′(t)x′′(t).

An integration again contradicts part (ii) and completes the proof.
4. Main result II. In this section of the paper we consider solutions of equation (1.1) that

belong to the Class II. In our first result, we give sufficient conditions for a solution to be either
oscillatory or to converge to zero.

Theorem 4.1. Assume that condition (H2) holds and let x(t) be a solution of equation (1.1)
belonging to the Class II. Then either x(t) is oscillatory or x(t) → 0 as t → ∞.

Proof. Let x be a nonoscillatory solution of (1.1), say x(t) > 0 for t ≥ t1 for some t1 ≥ t0.
(The proof if x(t) < 0 for t ≥ t1 is similar.) To prove the theorem, we need to show that
x(t) → 0 as t → ∞. In view of Lemma 2.2, F [x(t)] < 0 for t ≥ t2 for some t2 ≥ t1. Define

R[x(t)] =
x′(t)

x(t)
+

t∫
t2

p(s)ds;

then

R′[x(t)] =
F [x(t)]

x2(t)
− 1

2

[
x′(t)

x(t)

]2
< 0,

and so R[x(t)] is decreasing on [t2,∞). This, together with condition (H2), implies

lim
t→∞

x′(t)

x(t)
= −∞.

By Lemma 2.1, x(t) → 0 as t → ∞, and this proves the theorem.
The above theorem easily yields the following corollary.
Corollary 4.1. Assume that (H2) holds. Then, any solution x(t) of (1.1) that has one zero is

either oscillatory or converges to 0 as t → ∞.
Proof. Suppose x(t) is a solution of (1.1) that has a zero at some t1 ≥ t0. Since F [x(t1)] =

= −1

2
x′2(t1) ≤ 0, x(t) belongs to Class II, and the conclusion follows from the theorem.

Next, we consider equation (1.1) with:
(H6) there exists a constant σ such that p(t) ≥ σ > 0;
(H7) q′(t) ≤ 0.
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Theorem 4.2. Assume that conditions (H2) and (H5) – (H7) hold and let x(t) be a solution of
equation (1.1) belonging to Class II. Then:

(iv)
∫ ∞

x′2(s)ds = ∞;

(v)
∫ ∞

x
′′2(s)ds = ∞.

Proof. Let x(t) be a solution of equation (1.1) belonging to the Class II. Then

F [x(t)] ≤ F [x(t1)] < 0

for t ≥ t1 for some t1 ≥ t0. Define

J [x(t)] = x(t)x′(t)− 3

2

t∫
t1

x′2(s)ds. (4.1)

Then, by (4.1),

J ′[x(t)] = F [x(t)]− p(t)x2(t) < F [x(t)] ≤ F [x(t1)] < 0 (4.2)

for t ≥ t1. Integrating (4.2) from t1 to t gives

J [x(t)] < F [x(t1)](t− t1)− J [x(t1)].

Hence,

J [x(t)] = x(t)x′(t)− 3

2

t∫
t1

x′2(s)ds → −∞ as t → ∞.

If
∫ ∞
0

x′2(s)ds < ∞, then x(t)x′(t) → −∞ as t → ∞, so there exist B > 0 and t2 ≥ t1 such

that x(t)x′(t) ≤ −B < 0 for t ≥ t2. An integration shows that

x2(t)/2 ≤ −B(t− t2) + x2(t2)

for t ≥ t2 which is impossible. Thus, (iv) holds.
To prove (v), note that

F [x(t)] = x(t)
[
x′′(t) + p(t)x(t)

]
− 1

2
x′2(t) ≤ 0, (4.3)
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so from (3.2), (4.3), and (H6), we obtain

−
t∫

T

q(s)x′(s)f(x(s))ds+ V1(t) + C0 +

t∫
T

x′′2(s)ds =

= −

 t∫
T

p(s)

(
x(s)x′′(s)− 1

2
x′2(s)

)
ds

+
1

2

t∫
T

p(s)x′2(s)ds ≥

≥ 1

2

t∫
T

p(s)x′2(s)ds ≥ σ

2

t∫
T

x′2(s)ds,

where V1(t) = −x′(t)(x′′(t) + p(t)x(t)). Furthermore,

−
t∫

T

q(s)x′(s)f(x(s))ds = −q(t)H(x(t)) +

t∫
T

q′(t)H(x(s))ds+ C1,

where H(x) =

∫ x

0
f(u)du ≥ 0 and C1 = q(T )H(x(T )). Since q′(t) ≤ 0, it follows that

C1 + C0 + V1(t) +

t∫
T

x′′2(s)ds ≥ σ

2

t∫
T

x′2(s)ds. (4.4)

By Theorem 4.1, either x(t) oscillates or x(t) → 0 as t → ∞. Assume that
∫ t

t0

x′′2(s)ds <

< ∞. If x(t) is oscillatory, then x′(t) is oscillatory, so choose an increasing sequence {tn} of
zeros of x′(t). In view of (4.4), we must have V1(t) → ∞ as t → ∞. But V1(tn) = 0 for t = tn,
n = 1, 2, . . . , which contradicts V1(t) → ∞ as t → ∞.

If x(t) → 0 as t → ∞, then there exists ε > 0 such that |x(t)| ≤ ε for large t, say for t ≥ T1
for some T1 ≥ T. Since V1(t) → ∞ as t → ∞, there exist D > µε2 and T2 ≥ T1 such that

D < −x′(t)x′′(t)− p(t)x(t)x′(t)

for t ≥ T2. Integrating, we obtain

D(t− T2) < −
t∫

T2

x′(s)x′′(s)ds−
t∫

T2

p(s)x(s)x′(s)ds ≤

≤ −1

2
x′2(t)− 1

2
p(t)x2(t) + k +

t∫
T2

∣∣p′(s)∣∣x2(s)ds,
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where k =
1

2
x′2(T2) +

1

2
p(T2)x

2(T2). From (H5),

(D − µε2)t < k +DT2,

for t ≥ T2, which is impossible. This contradiction shows that part (v) holds and completes the
proof of the theorem.

The following result is an immediate consequence of Theorems 3.1 and 4.1.
Theorem 4.3. Assume that q′(t) ≥ 0 and conditions (H1) – (H5) hold. If x(t) is a nonoscilla-

tory solution of equation (1.1), then lim inft→∞ ‖x(t)‖ = 0.

Proof. Let x(t) be a nonoscillatory solution of (1.1). If x(t) belongs to Class II, the conclusi-
on follows from Theorem 4.1. If x(t) is in Class I, and lim inft→∞ |x(t)| > 0, then there exists
λ > 0 such that

|x(t)| ≥ λ > 0.

This implies that limt→∞

∫ t

t1

x2(s)ds = ∞, which contradicts part (i) of Theorem 3.1. This

proves the theorem.
Before presenting our final result in this paper, notice that it follows from Theorems 3.1 and

4.2 that, if x is a solution in Class I, then

∞∫
x′2(s)ds < ∞,

and if
∞∫
x′2(s)ds < ∞,

then x is not in Class II, and so it must be in Class I. Therefore, we have the following necessary
and sufficient relationships holding.

Theorem 4.4. Assume that (H1) – (H3) and (H5) – (H7) hold, and let x(t) be a solution of
(1.1). Then:

x(t) belongs to Class I ⇐⇒


∞∫

t1

x′2(s)ds < ∞

 ⇐⇒

∞∫

t1

x′′2(s)ds < ∞

 ,

x(t) belongs to Class II ⇐⇒


∞∫

t1

x′2(s)ds = ∞

 ⇐⇒

∞∫

t1

x′′2(s)ds = ∞

 .

Proof. Once we note that condition (H7) implies q(t) is bounded from above, the conclusi-
ons follow from Theorems 3.2 and 4.2.

Concluding remarks. In view of the results above, it would be reasonable to ask what, if
anything, can be said about the square integrability of solutions belonging to Class II. In this
case we do know that F [x(t)] is negative and decreasing for t ≥ T, T large enough, so F [x(t)] →
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→ F0 ≥ −∞. If we assume for the moment that 0 < q0 ≤ q(t) ≤ q1, then from (H3) and (2.2),
we have

q0M

∞∫
T

x2(s)ds ≤ −F [x(t)] + F [x(T )] ≤ q1N

∞∫
T

x2(s)ds. (4.5)

If F0 = −∞, then
∞∫
T

x2(s)ds = ∞

as one might suspect for a solution in Class II. However, if F0 > −∞, then from the left-hand
side of (4.5) we see that

∞∫
T

x2(s)ds < ∞.

In order to exclude this situation, a condition implying q(t) → 0 at t → ∞ might be needed.
This is an open question at this time. Another interesting problem would be to establish suffi-
cient conditions for solutions of equation (1.1) to belong to Class I or II.
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