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We investigate linear boundary-value problems for first-order one-dimensional hyperbolic systems in a
strip. We establish conditions for existence and uniqueness of bounded continuous solutions. For that we
suppose that the nondiagonal part of the zero-order coefficients vanish at infinity. Moreover, we establish
a dissipativity condition in terms of the boundary data and the diagonal part of the zero-order coefficients.

Busuarombca AiHitiHi 2panuyHi 3a0a4i 048 0OHOBUMIPHUX 2INePOOATUHUX CUCHEM NePULO20 NOPAOKY Y
CMY3i. SHATIOEHO YMOBU ICHYBAHHA MA €OUHOCII OOMENEHUX HenepepBHUX PO36 A3KI6 3 YMOBU 3aHY-
AEHHA HA HECKIHYEeHHOCMI Hedid20HAAbHOL YACMUHU KOe@IyleHmi8 HYAb08020 NOPAOKY. Taxoix ecma-
HOBAEHO YMOBU OUCUNAMUBHOCHIL 8 MEPMIHAX 2PAHUYHUX OAHUX MaA 0la20HAAbHOL YACMUHU Koegili-
€HMIB HYAbOBO20 NOPAOKY.

1. Introduction. 1.1. Problem setting and our result. We investigate the general linear first-order
hyperbolic system in a single space variable

Opuj + aj(x,t)0u; + O bjp(x,thup = fi(z,t), (2,t) € (0,1) xR, j<mn, (1.1)
k=1

subject to the boundary conditions
uj(0,t) = (Ru);(t), 1<j<m, teR,

(1.2)
uj(1,t) = (Ru);(t), m<j<n, teR,

where 0 < m < n are positive integers and R = (Ri,..., R,) is a linear bounded operator
from BC,, to BC,,(R). Here and below by BC,, we will denote the vector space of all bounded
and continuous maps u: [0,1] x R — R™, with the norm

ulloo = max max sup |u;].
ltlloo = mas Jnax, teﬂgl il
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510 R. KLYUCHNYK, L KMIT

Similarly, by BC’}I we will denote a Banach space of all u € BC), such that d,u, ;u € BC,,
with the norm

[ully = l[ulloo + [[0zulloo + [|Orulloo-

Also, we use the notation BC,,(R) for the space of all bounded and continuous maps v: R —
— R™ and the notation BC}(R) for the space of all v € BC,(R) with ' € BC,(R). For
simplicity, we will skip the subscript nif n = 1.

We make the following assumptions on the coefficients of (1.1):

aj,bjx € BC' forall j<n and k <n, (1.3)
1ni;a] >0 forall j <m and supa; <0 forall m < j<n. (1.4)
7,z 7zt

Suppose also that

the restriction of the operator R to BC)

(15)

is a linear bounded operator from BC! to BC}(R)

and
forall 1 < j # k < n there exists bjz € BC! such that bj, = bj(ax, — a;). (1.6)

Let us introduce the characteristics of the hyperbolic system (1.1). Given j < n, z € [0, 1], and
t € R, the jth characteristic is defined to be the solution { € [0,1] — w;({, z,t) € R of the
initial value problem

Oew;(& x,t) =

a; (¢ ij<£ oy =t 17

To shorten the notation, we will simply write w;(§) = w;(&, x,t). Set

cj(§,z,1)

(6. 1) =expi< ) nesdn, diat) = HESE

(1.8)

ISSN 1562-3076. Heainitini koausanns, 2016, m. 19, N2 4
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Integration along the characteristic curves transforms the system (1.1), (1.2) to an integral form,

xT

uj(z,t) = ¢j(0,2,t)(Ru);(w;(0)) — /dj(&wﬂf)Zbjk(&wj(f))uk(fawj(f))d§+

0 k#j
+/dj(f,%t)fj(ﬁ,wj(f))df, 1<j<m, (1.9)
0

uj(z,t) = c;(L z, 1) (Ru)j(w;(1)) — /dj(&fﬂ,t)Zbjk(&wj(f))Uk(ﬁ,wj(ﬁ))dH

1 k#j
X

+ [ e nncas O m<i<n (1.10)

1

By a straightforward calculation, one can easily show that a C'- map u: [0,1] x R — R"is a
solution to the PDE problem (1.1), (1.2) if and only if it satisfies the system (1.9), (1.10). This
motivates the following definition.

Definition 1.1. A function u € BC,, is called a bounded continuous solution to the problem
(1.1), (1.2) if it satisfies (1.9) and (1.10).

Introduce an operator C': BC,, — BC,, by

cj(0,2,t)(Rv);(w;(0)) for 1 <j <m,

(Cu)sla ) = { ¢j(1,2, ) (Rv)j(w;(1)) for m < j <n. (L11)

Theorem 1.1. Suppose that the conditions (1.3) —(1.6) are fulfilled. Moreover, assume that
there exists { € N such that

IC 2(Beyy < 1, (1.12)

and

forall ¢ > 0 there exists a compact interval I C R such that
(1.13)
bji(z,t)] < e forall 1 <j#k<n, 2€[0,1] and t € R\ I

Then the problem (1.1), (1.2) has a unique continuous bounded solution u.

Example 1.1. The following example shows that if the conditions (1.6) and (1.13) are not
satisfied, then the statement of Theorem 1.1 is not true, in general. Specifically, we consider the
problem

2
Oyug + — Opug — ug = 0,
T

) (1.14)
Orug + p Ogug +u1 = 0,
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512 R. KLYUCHNYK, I KMIT
u1(0,t) =0, wug(l,t) =0. (1.15)

Obviously, the problem (1.14), (1.15) is a particular case of the problem (1.1), (1.2) and satisfies
all assumptions of Theorem 1.1 with the exception of (1.6) and (1.13). It is straightforward to
check that

u1 = sin g:ﬂsinl (t— g:n) , Uy = COS gmsinl (t— gaz) , LeN,
make an infinite set of linearly independent bounded continuous (27-periodic in ¢) solutions
to the problem (1.14), (1.15). This means that the kernel of the operator of the problem (1.14),
(1.15) is infinite dimensional. Thus, the uniqueness conclusion of Theorem 1.1 is not true.

In Subsection 1.2 we give a brief motivation of our investigations. In Section 2 we prove the
Fredholm alternative for (1.1), (1.2) (Theorem 2.1), while in Section 3 — a uniqueness result for
(1.1), (1.2) (Theorem 3.1). Theorem 1.1 will then straightforwardly follow from Theorems 2.1
and 3.1.

1.2. Motivation and state of the art. Systems of the type (1.1), (1.2) are used to model
problems of laser dynamics [12, 14, 16], chemical kinetics [17], chemotaxis [15] and populati-
on dynamics [3]. Another area of applications of such models is boundary control problems
[1, 13]. In many mathematical models the system (1.1) is controlled by the so-called reflection
boundary conditions what is a particular case of (1.2).

In [2] Coppel proved the Dichotomy theorem for the linear ODE, namely 2/ = A(¢)x. It
claims that the inhomogeneous equation 2’ = A(t)x + f(¢) has a unique bounded continuous
solution on R for every bounded and continuous function f if and only if the homogeneous
equation z/ = A(t)x has an exponential dichotomy on R. In [10] the authors provide a cri-
terion of the existence of exponential dichotomy on R for a strongly continuous exponentially
bounded evolution family on a Banach space in terms of existence and uniqueness of a bounded
continuous mild solutions. In this respect, our result is an important step towards the existence
of the exponential dichotomy for boundary-value hyperbolic problems.

The well-posedness of a particular case of (1.1), (1.2) was investigated in [5]. Specifically, the
authors studied the system (1.1) with the boundary conditions

uj(1,t) = pi(t), m<j<n

(1.16)

and investigated existence and uniqueness of continuous but not necessarily bounded solutions.
The main assumption imposed in [5] is a smallness of all b;;, in a neighborhood of —cc. It comes
from the Banach fixed point argument used in the proof of the main result. In comparison, in
the present paper, we allow for b;; to be elements of BC only, and for b;;, with j # k we impose
the assumption (1.13). Moreover, after the change of variables u; — v; = u; — p;(¢) in (1.1)
and (1.16) we get C' = 0. This means that the dissipativity conditions (1.12) is satisfied here
automatically (with £ = 1).

In [7-9] time-periodic solutions to the system (1.1) with reflection boundary conditions are
investigated. It is suggested a rather general approach to proving the Fredholm alternative in
spaces of time-periodic functions (in the autonomous case [8]) and in the space of continuous
and time-periodic functions (in the nonautonomous case [9]). In the present paper, we extend
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BOUNDED SOLUTIONS TO BOUNDARY-VALUE HYPERBOLIC PROBLEMS 513

this approach from the spaces of periodic functions to the spaces of bounded functions and

prove the Fredholm alternative for quite general boundary conditions. Note that, when the

problem (1.1), (1.2) is considered in the space of continuous and periodic in time functions,

then according to the standard terminology (1.12) means non-resonant behavior of (1.1), (1.2).
2. Fredholm alternative. We use the notation

o 0 if1<j<m,
11 ifm<j<n.

Define linear bounded operators D, F': BC,, — BC,, by

T

(Du)j(z,t) = —/dj(&x,t)Zbjk(&wj(é))uk(&wj(f))df, j<n, (2.1)
B k#j
and
(Ff)j(z,t) = /dj(&x,t)fj(&wj(ﬁ))d& j<n (2.2)

On the account of (1.11), (2.1), and (2.2), the system (1.9), (1.10) can be written as the operator
equation

u=Cu+Du—+ Ff. (2.3)

Theorem 2.1. Suppose that all conditions of Theorem 1.1 are fulfilled. Let K denote the vector
space of all bounded continuous solutions to (1.1), (1.2) with f = 0. Then we have the following:

(i) dim K < oo and the vector space of all f € BC,, such that there exists a bounded conti-
nuous solution to (1.1), (1.2) is a closed subspace of codimension dim K in BC,,.

(ii) If dim IC = 0, then for any f € BC, there exists a unique bounded continuous solution
uto (1.1), (1.2).

One of the technical tools we employ for the proof is a generalized Arzela— Ascoli com-
pactness criteria for unbounded domains, see [11]. To formulate it, we need a corresponding
notion of equicontinuity.

Definition 2.1. A family ® C BC,, is called equicontinuous on [0, 1] x R if

® is equicontinuous on any compact set in [0, 1] x R, and

for any € > 0 there exists T' > 0 such that

w(z' ) —u(z" 1) < e (2.4)
forall ' z" € [0,1],allt ,t" € R\ [-T,T), and all u € ®.
Theorem 2.2 (a generalized Arzela— Ascoli theorem). A family ® C BC,, is precompact in

BC,, if and only if ® is bounded in BC,, and equicontinuous on [0,1] x R.
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Proof of Theorem 2.1. First observe that the operator I —C': BC,, — BC),, is bijective, what
straightforwardly follows from the Banach fixed-point theorem and the condition (1.12). Then
the operator I — C' — D is Fredholm of index zero if and only if

I—(I-C)"'D: BC, — BC, isFredholm of index zero. (2.5)

Nikolsky’s criterion [4] (Theorem XIII.5.2) says that an operator / + K on a Banach space is
Fredholm of index zero whenever K? is compact. Hence, we are done with (2.5) if we show
that the operator[(I — C)"!D]? = (I — C)"'D(I — C)~'D is compact. As the composition of
a compact and a bounded operator is a compact operator, it is enough to show that

D(I - C)™'D: BC,, — BC, is compact.

Since D(I —C)~'D = D?>+DC(I—-C)~'D and (I — C)~!' D is bounded, it is sufficient to prove
that

D? ,DC': BC, — BC, are compact. (2.6)

To show (2.6), we use Theorem 2.2. GivenT" > 0,set Q(T') = {(z,t) € [0,1] xR: =T <t <
< T}. Fix an arbitrary bounded set X C BC,,. For (2.6) it is sufficient to prove the following
two statements:

D?X and DCX are equicontinuous on Q(T) for an arbitrary fixed 7' > 0 (2.7)

and

given ¢ > 0, there exists 7' > 0 such that (2.4) is fulfilled for all
(2.8)
z,x €01, t,t € R\[-T,T], u € D*X and u € DCX.

We start with the proving (2.7). Denote by C,(Q(T)) (respectively C}(Q(T))) the Banach
space of continuous (respectively continuously differentiable) vector functions on Q(7'). As
CL(Q(T)) is compactly embedded into C,,(Q(T)) (due to the Arzela— Ascoli theorem), it is
sufficient to show that

= O(||lu||eo) forall u € X. (2.9)

D%l | cyqury + [ 2€4Iem)
|7l cxarry I PCMemlloy g
It should be noted that for all sufficiently large 7' the functions D?u and DCu restricted to Q(T)
depend only on u restricted to Q(27").

We will use the following formulas:

0y (§) = —aj(i ) exp/ (%;”) (1, w;())dn, (2.10)
¢ J
O (€) = exp / <623j> (n, ;) i, (211)
¢ J
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BOUNDED SOLUTIONS TO BOUNDARY-VALUE HYPERBOLIC PROBLEMS 515

that hold for all j < n,all {,z € [0,1], and all ¢ € R. Here and below by 0; we denote the
partial derivative with respect to the ith argument. Then for all sufficiently large T > 0 the
partial derivatives 9, D?u, 9;D*u, 0, DCu, and 9;DCu on Q(T) exist and are continuous for all
u € CHQ(2T)). Since C1(Q(2T)) is dense in C(Q(2T)), the desired property (2.9) will follow

from the bound

|>*

. HDCu|Q(T)‘

=0 (||lu
c1Q(T) (H ch(Q(zT))) 212)

forall u e CL(Q(2T)).

U‘Qm’ QT

This bound is proved similarly to [9] (Lemma 4.2):
We start with the estimate

HD2 = O (|ulle,(gry) forall u € CLQ(2T)).

u’Qm‘ CLQ(T))

Given j < nand u € CL(Q(2T)), let us consider the following representation for (D?u);(,t)
obtained after the application of the Fubini’s theorem:

(%), @.0) = S5 [ [ dineon. (6 (@t ot €. (©dgan, (213)

k5 Ik g
where

djkl(§7 n,x, t) = dj (ga z, t)dk(777 57 wj (f))bkl<na wk(nv 57 Wj (g))) (214)

It is easy to see that from (2.13) it follows that

HDQUIQ(T)HC,L(Q(T)) = Olllvllen @eny)-

Since
(O + a;j (2, 1) 0z )p(w; (&, @, 1)) = 0
forallj < n,¢ € CY(R),z,£ € [0,1],and t € R, one can easily check that

H [(at + aj(@, 1)0,) (D*u), |Q(T)} = O (llulle,@ery)

HCn(Q(T))
forall j <n and u € CLQ(2T)).

Hence the estimate

8, D? = O(|lulle, @ery)

will follow from the following one:

ulga ch@(T))

HatD2u‘Q(T)H = O(|lullc,(@ery))- (2.15)

Cn(Q(T))
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We are therefore reduced to prove (2.15). To this end, we start with the following consequence
of (2.13):

(D00 =303 [ [ 5 donat€om 06 ()] il on(. €0 (€)) d iy

kA Ik

Yy / / e (€2, )by (€, 05 (€)) X

ks 1k g

x Oy (0, &, w; (€))Oww; (§)Oaur (n, wie (1, & w; (€)))dédn.

Let us transform the second summand. Using (1.7), (2.10), and (2.11), we get

C;‘fsuxn,wk(n,f,wj(g))) — (Buton (1, € 05(6)) + Dran(m, €, 5 (€))ew; (€)]

X Ogur(, or(m, €, 05(£))) = (aj(f T ak@,ij(s))) -
X atwk‘(na éa Wy (5))82714(777 wk(% 57 Wy (5))) (216)

Therefore,

bjk(gv Wy (5))atwk(n7 57 Wi (g))82ul(777 Wk(Tla 67 Wy (g))) =

= aj(gvwj(f))ak(§7wj(f))l;jk(§aWj(g))jfUl(nvwk(mg?wj(f)))a (2.17)

where the functions Bjk € BC are fixed to satisfy (1.6). Note that Bjk are not uniquely defined
by (1.6) for (z,t) with a;j(z,t) = ax(x,t). Nevertheless, as it follows from (2.16), the right-
hand side (and, hence, the left-hand side of (2.17)) do not depend on the choice of bjj, since

d
dfgw(n,wk(n,&,wj(ﬁ))) = 0if aj(z,t) = ax(z,t).
Write

dekl (fa n,x, t) = djkl(£7 n,z, t)atwj (g)ak (ga Wy (5))aj (57 Wy (5))l~7]k(£7 Wy (5))7

where djy; are introduced by (2.14) and (1.8). Using (1.7) and (2.10), we see that the function
djri(€,n, x,t) is C'-smooth in € due to the regularity assumptions (1.3) and (1.6). Similarly, using
(2.11), we see that the functions dx (€, m, 2, t) and bjx (€, w;(£)) are C'-smooth in .
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By (2.17) we have

o (%), 0] = S5 [ [ 4 dsuleon. 0006, on(n.€.5(©)) d dt

kA 1Ak

Yy //ijl@, n,x,wjg w (1, wi (1, &,wj(€))) d€ dn =

kA 1k

=S5 [ [ 5 €m0 s (.. .00, (€1) d

ks kg

—Z2//agdjkl(ga777x7t)ul(nawk‘(nangj(g))) d£d77+

kA 1k

22 / [ &, (o, s, € w3 (€))] _ . (2.18)

k) 1k g

The desired estimate (2.15) now easily follows from the assumptions (1.3), (1.4), (1.6) and the
equations (2.13) and (2.18).

To finish with (2.9), it remains to show that

HDCU|Q(T)”C,L(Q(T)) + HatDCU’Q(T)HCn(Q(T)) - O(HuHCn(Q(QT))) (2 19)
forall u € CL(Q(2T)), |

as the estimate for 9, DCu follows similarly to the case of 9, D?u. In order to prove (2.19), we
consider an arbitrary integral contributing into DC'u, namely

Ty

/ ejk(€7 €T, t)bjk<€7 Wy (g))(Ru)k(wk(‘xk? 3 Wy (§>))d€7 (220)

xT

where
ej(& x,t) = dj(€, m,t)ep(m, £,wji(E))

and j < n and k < n are arbitrary fixed. From (2.20) it follows that

| DCulorlle, ey = Ollulle, @er))-
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Differentiating (2.20) in ¢, we get

Zj

/jt ek (&, 7, 8)bjk (&, w; (§))] (Ru) k(Wi (wk, §, wi(§))) dé+

+/ejk(&3?»t)bjk(&wj(i))at%(wka5,wj(5))37&%'(5)32(1%“%(%(%,&%‘(&)))dﬁ- (2.21)

T

Our task is to estimate the second integral; for the first one the desired estimate is obvious.
Similarly to the above, we use (1.7), (2.10), and (2.11) to obtain

C;lg (Ru)k(wk(mkv 3 w](f))) = [8$wk($ka €7wj(§)) + atwk(wka €7wj(§))a£w](€)] X

x Oz (Ru)(wi(zk, & w;i(§))) = <aj(§7cluj(§)) B ak(ﬁ,iuj(f))> -

X Ohwr (2, €, w; (§)) 02 (Ru )k (Wi (2k, €5 wj (£)))-

Taking into account (1.6), the last expression reads
bjk: (57 Wi (5))815‘*‘)]{: (xk:a &, Wy (5))82(Ru)k(wk ('rka &, Wi (g))) =

- d
= @j(f,wj(ﬁ))ak(ﬁaWj(f))bjk(ﬁ,wj(ﬁ))dfg (Ru)(wr (@, §,w;(£)))- (222)
Set
En(&,m,t) = i€, 1) 0w (§)ar (€, wi(€))aj (€, w; ()bin (€, wi(£)).
Using (2.10) and (2.22), let us transform the second summand in (2.21) as

/ejk(ﬁl’,t)bjk(ﬁawj(f))atw(ﬂfk,5,wj(5))@%‘(§)32(Ru)k(wk(ivk7fawj(é)))d§ =

x
Zj

:/%@%%@mm%m@w@mﬁz

T

= &6 @, t) (Ru)i(wr(@r, & wi(O)Iey —
= [ i) R oo, €.y (€)) de. )

The bound (2.19) now easily follows from (2.21) and (2.23). This finishes the proof of the bound
(2.12) and, hence the statement (2.7).

ISSN 1562-3076. Heninitini koausanns, 2016, m. 19, N2 4
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It remains to prove (2.8). Fix an arbitrary ¢ > 0. We have to prove the estimates
](DQU)(a;’, t') — (D*u)(z", t”)( <e (2.24)
and

](Dcu)(x’, t) — (DCuw) (2", )| < ¢ (2.25)

forallu € X andall z',2" € [0,1],¢,t" € R\ [-T,T] and some T > 0.
Let us prove (2.24). By (2.13), given j < nand u € X, we have

(D*u)(,t) — (D?u)(a" 1)

< (D) )|+ (D", ¢)| =

ZZ// djgi(&,m, @, ) X

kj 1k !

= 2max max  max
Jj<n x€[0,1] teR\[-T,T]

X b]k(£7 wj (ﬁ))ul(% wk(na g? Wy (5)))d€dn <

< M||ul|so Qx| max | max 165 (&, wj (€))brr(n, wi (1, & w;(6)))],

the constant M being dependent on n, a; and b;; but not on v € X and b;, with j # k.
Since ||u||~ is bounded on X, the desired estimate (2.24) now straightforwardly follows from
the assumption (1.13) and the fact that w;(&, z,t) — coast — +oc.

The estimate (2.25) can be obtained by the same argument, what finishes the proof of (2.8).

The theorem is proved.

3. Uniqueness of a bounded continuous solution.

Theorem 3.1. Suppose that the conditions (1.3), (1.4), and (1.12) are fulfilled. Then there is
€ > 0and T > 0 such that a bounded continuous solution to (1.1), (1.2) (if any) is unique
whenever

bjr(z,t)| < e forall 1 < j#k<n, €l0,1], and t € (—o0,T]. (3.1)

Proof, Given T € R, let II" = [0,1] x (—o00,T] and II; = [0,1] x [T, 00). Given T > 0,
consider the problem (1.1), (1.2) in IT~ T The system of integral equations can again be written
in the operator form « = Cu + Du + Ff with operators C, D, F': BC,,(II T) — BC, ( T
given by the rules (1.11), (2.1) and (2.2), respectively. As the operator I — C: BC,(II"7) —
— BC,(I17T) is bijective (by the condition (1.12)), the operator equation reads

=T -C)'Du+(I—-C)tFyf.

Because of assumption (3.1), the value of 7' > 0 can be chosen so large that the norm of the
operator D is sufficiently small. Consequently, for such 7" we have

I(I = C) ' Dllgpo,m-ry) < 1.
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By the Banach fixed-point theorem, there exists a unique function v € BC, (II"7) satisfying
(1.9), (1.10) in 17",
Now consider the problem (1.1), (1.2) in IT_7 with the initial condition

Ujli=—r = uj(z, -T), j < n. (3.2)

Existence and uniqueness of a continuous solution u € C,,(II_7) to the initial boundary-value
problem (1.1), (1.2), (3.2) follows from [6]. Summarizing, the problem (1.1), (1.2) in the strip
[0,1] x R has a unique continuous solution bounded at —oco. This immediately entails that a
bounded continuous solution to the problem (1.1), (1.2) (if any) is unique. The proof is therewith
complete.

To finish with Theorem 1.1, it remains to note that, by Theorem 3.1, dim X = 0. Then
Theorem 1.1 immediately follows from Theorem 2.1 (ii).
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