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We investigate linear boundary-value problems for first-order one-dimensional hyperbolic systems in a
strip. We establish conditions for existence and uniqueness of bounded continuous solutions. For that we
suppose that the nondiagonal part of the zero-order coefficients vanish at infinity. Moreover, we establish
a dissipativity condition in terms of the boundary data and the diagonal part of the zero-order coefficients.

Вивчаються лiнiйнi граничнi задачi для одновимiрних гiперболiчних систем першого порядку у
смузi. Знайдено умови iснування та єдиностi обмежених неперервних розв’язкiв за умови зану-
лення на нескiнченностi недiагональної частини коефiцiєнтiв нульового порядку. Також вста-
новлено умови дисипативностi в термiнах граничних даних та дiагональної частини коефiцi-
єнтiв нульового порядку.

1. Introduction. 1.1. Problem setting and our result. We investigate the general linear first-order
hyperbolic system in a single space variable

∂tuj + aj(x, t)∂xuj +
n∑
k=1

bjk(x, t)uk = fj(x, t), (x, t) ∈ (0, 1)× R, j ≤ n, (1.1)

subject to the boundary conditions

uj(0, t) = (Ru)j(t), 1 ≤ j ≤ m, t ∈ R,

uj(1, t) = (Ru)j(t), m < j ≤ n, t ∈ R,
(1.2)

where 0 ≤ m ≤ n are positive integers and R = (R1, . . . , Rn) is a linear bounded operator
from BCn to BCn(R). Here and below by BCn we will denote the vector space of all bounded
and continuous maps u : [0, 1]× R → Rn, with the norm

‖u‖∞ = max
j≤n

max
x∈[0,1]

sup
t∈R
|uj |.
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Similarly, by BC1
n we will denote a Banach space of all u ∈ BCn such that ∂xu, ∂tu ∈ BCn,

with the norm

‖u‖1 = ‖u‖∞ + ‖∂xu‖∞ + ‖∂tu‖∞.

Also, we use the notation BCn(R) for the space of all bounded and continuous maps v : R →
→ Rn and the notation BC1

n(R) for the space of all v ∈ BCn(R) with v′ ∈ BCn(R). For
simplicity, we will skip the subscript n if n = 1.

We make the following assumptions on the coefficients of (1.1):

aj , bjk ∈ BC1 for all j ≤ n and k ≤ n, (1.3)

inf
j,x,t

aj > 0 for all j ≤ m and sup
j,x,t

aj < 0 for all m < j ≤ n. (1.4)

Suppose also that

the restriction of the operator R to BC1
n

is a linear bounded operator from BC1
n to BC1

n(R)
(1.5)

and

for all 1 ≤ j 6= k ≤ n there exists b̃jk ∈ BC1 such that bjk = b̃jk(ak − aj). (1.6)

Let us introduce the characteristics of the hyperbolic system (1.1). Given j ≤ n, x ∈ [0, 1], and
t ∈ R, the jth characteristic is defined to be the solution ξ ∈ [0, 1] 7→ ωj(ξ, x, t) ∈ R of the
initial value problem

∂ξωj(ξ, x, t) =
1

aj(ξ, ωj(ξ, x, t))
, ωj(x, x, t) = t. (1.7)

To shorten the notation, we will simply write ωj(ξ) = ωj(ξ, x, t). Set

cj(ξ, x, t) = exp

ξ∫
x

(
bjj
aj

)
(η, ωj(η))dη, dj(ξ, x, t) =

cj(ξ, x, t)

aj(ξ, ωj(ξ))
. (1.8)
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Integration along the characteristic curves transforms the system (1.1), (1.2) to an integral form,

uj(x, t) = cj(0, x, t)(Ru)j(wj(0))−
x∫

0

dj(ξ, x, t)
∑
k 6=j

bjk(ξ, ωj(ξ))uk(ξ, ωj(ξ))dξ+

+

x∫
0

dj(ξ, x, t)fj(ξ, ωj(ξ))dξ, 1 ≤ j ≤ m, (1.9)

uj(x, t) = cj(1, x, t)(Ru)j(wj(1))−
x∫

1

dj(ξ, x, t)
∑
k 6=j

bjk(ξ, ωj(ξ))uk(ξ, ωj(ξ))dξ+

+

x∫
1

dj(ξ, x, t)fj(ξ, ωj(ξ))dξ, m < j ≤ n. (1.10)

By a straightforward calculation, one can easily show that a C1- map u : [0, 1] × R → Rn is a
solution to the PDE problem (1.1), (1.2) if and only if it satisfies the system (1.9), (1.10). This
motivates the following definition.

Definition 1.1. A function u ∈ BCn is called a bounded continuous solution to the problem
(1.1), (1.2) if it satisfies (1.9) and (1.10).

Introduce an operator C : BCn → BCn by

(Cv)j(x, t) =

{
cj(0, x, t)(Rv)j(ωj(0)) for 1 ≤ j ≤ m,
cj(1, x, t)(Rv)j(ωj(1)) for m < j ≤ n.

(1.11)

Theorem 1.1. Suppose that the conditions (1.3) – (1.6) are fulfilled. Moreover, assume that
there exists ` ∈ N such that

‖C`‖L(BCn) < 1, (1.12)

and

for all ε > 0 there exists a compact interval I ⊂ R such that

|bjk(x, t)| < ε for all 1 ≤ j 6= k ≤ n, x ∈ [0, 1] and t ∈ R \ I.
(1.13)

Then the problem (1.1), (1.2) has a unique continuous bounded solution u.
Example 1.1. The following example shows that if the conditions (1.6) and (1.13) are not

satisfied, then the statement of Theorem 1.1 is not true, in general. Specifically, we consider the
problem

∂tu1 +
2

π
∂xu1 − u2 = 0,

∂tu2 +
2

π
∂xu2 + u1 = 0,

(1.14)
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u1(0, t) = 0, u2(1, t) = 0. (1.15)

Obviously, the problem (1.14), (1.15) is a particular case of the problem (1.1), (1.2) and satisfies
all assumptions of Theorem 1.1 with the exception of (1.6) and (1.13). It is straightforward to
check that

u1 = sin
π

2
x sin l

(
t− π

2
x
)
, u2 = cos

π

2
x sin l

(
t− π

2
x
)
, l ∈ N,

make an infinite set of linearly independent bounded continuous (2π-periodic in t) solutions
to the problem (1.14), (1.15). This means that the kernel of the operator of the problem (1.14),
(1.15) is infinite dimensional. Thus, the uniqueness conclusion of Theorem 1.1 is not true.

In Subsection 1.2 we give a brief motivation of our investigations. In Section 2 we prove the
Fredholm alternative for (1.1), (1.2) (Theorem 2.1), while in Section 3 — a uniqueness result for
(1.1), (1.2) (Theorem 3.1). Theorem 1.1 will then straightforwardly follow from Theorems 2.1
and 3.1.

1.2. Motivation and state of the art. Systems of the type (1.1), (1.2) are used to model
problems of laser dynamics [12, 14, 16], chemical kinetics [17], chemotaxis [15] and populati-
on dynamics [3]. Another area of applications of such models is boundary control problems
[1, 13]. In many mathematical models the system (1.1) is controlled by the so-called reflection
boundary conditions what is a particular case of (1.2).

In [2] Coppel proved the Dichotomy theorem for the linear ODE, namely x′ = A(t)x. It
claims that the inhomogeneous equation x′ = A(t)x + f(t) has a unique bounded continuous
solution on R for every bounded and continuous function f if and only if the homogeneous
equation x′ = A(t)x has an exponential dichotomy on R. In [10] the authors provide a cri-
terion of the existence of exponential dichotomy on R for a strongly continuous exponentially
bounded evolution family on a Banach space in terms of existence and uniqueness of a bounded
continuous mild solutions. In this respect, our result is an important step towards the existence
of the exponential dichotomy for boundary-value hyperbolic problems.

The well-posedness of a particular case of (1.1), (1.2) was investigated in [5]. Specifically, the
authors studied the system (1.1) with the boundary conditions

uj(0, t) = µj(t), j ≤ m,

uj(1, t) = µj(t), m < j ≤ n.
(1.16)

and investigated existence and uniqueness of continuous but not necessarily bounded solutions.
The main assumption imposed in [5] is a smallness of all bjk in a neighborhood of−∞. It comes
from the Banach fixed point argument used in the proof of the main result. In comparison, in
the present paper, we allow for bjj to be elements of BC only, and for bjk with j 6= k we impose
the assumption (1.13). Moreover, after the change of variables uj → vj = uj − µj(t) in (1.1)
and (1.16) we get C = 0. This means that the dissipativity conditions (1.12) is satisfied here
automatically (with ` = 1).

In [7 – 9] time-periodic solutions to the system (1.1) with reflection boundary conditions are
investigated. It is suggested a rather general approach to proving the Fredholm alternative in
spaces of time-periodic functions (in the autonomous case [8]) and in the space of continuous
and time-periodic functions (in the nonautonomous case [9]). In the present paper, we extend
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this approach from the spaces of periodic functions to the spaces of bounded functions and
prove the Fredholm alternative for quite general boundary conditions. Note that, when the
problem (1.1), (1.2) is considered in the space of continuous and periodic in time functions,
then according to the standard terminology (1.12) means non-resonant behavior of (1.1), (1.2).

2. Fredholm alternative. We use the notation

xj =

{
0 if 1 ≤ j ≤ m,
1 if m < j ≤ n.

Define linear bounded operators D,F : BCn → BCn by

(Du)j(x, t) = −
x∫

xj

dj(ξ, x, t)
∑
k 6=j

bjk(ξ, ωj(ξ))uk(ξ, ωj(ξ))dξ, j ≤ n, (2.1)

and

(Ff)j(x, t) =

x∫
xj

dj(ξ, x, t)fj(ξ, ωj(ξ))dξ, j ≤ n. (2.2)

On the account of (1.11), (2.1), and (2.2), the system (1.9), (1.10) can be written as the operator
equation

u = Cu+Du+ Ff. (2.3)

Theorem 2.1. Suppose that all conditions of Theorem 1.1 are fulfilled. LetK denote the vector
space of all bounded continuous solutions to (1.1), (1.2) with f ≡ 0. Then we have the following:

(i) dimK < ∞ and the vector space of all f ∈ BCn such that there exists a bounded conti-
nuous solution to (1.1), (1.2) is a closed subspace of codimension dimK in BCn.

(ii) If dimK = 0, then for any f ∈ BCn there exists a unique bounded continuous solution
u to (1.1), (1.2).

One of the technical tools we employ for the proof is a generalized Arzela – Ascoli com-
pactness criteria for unbounded domains, see [11]. To formulate it, we need a corresponding
notion of equicontinuity.

Definition 2.1. A family Φ ⊂ BCn is called equicontinuous on [0, 1]× R if
Φ is equicontinuous on any compact set in [0, 1]× R, and
for any ε > 0 there exists T > 0 such that∣∣∣u(x

′
, t
′
)− u(x

′′
, t
′′
)
∣∣∣ < ε (2.4)

for all x
′
, x
′′ ∈ [0, 1], all t

′
, t
′′ ∈ R \ [−T, T ], and all u ∈ Φ.

Theorem 2.2 (a generalized Arzela – Ascoli theorem). A family Φ ⊂ BCn is precompact in
BCn if and only if Φ is bounded in BCn and equicontinuous on [0, 1]× R.
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Proof of Theorem 2.1. First observe that the operator I−C : BCn → BCn is bijective, what
straightforwardly follows from the Banach fixed-point theorem and the condition (1.12). Then
the operator I − C −D is Fredholm of index zero if and only if

I − (I − C)−1D : BCn → BCn is Fredholm of index zero. (2.5)

Nikolsky’s criterion [4] (Theorem XIII.5.2) says that an operator I + K on a Banach space is
Fredholm of index zero whenever K2 is compact. Hence, we are done with (2.5) if we show
that the operator[(I − C)−1D]2 = (I − C)−1D(I − C)−1D is compact. As the composition of
a compact and a bounded operator is a compact operator, it is enough to show that

D(I − C)−1D : BCn → BCn is compact.

SinceD(I−C)−1D = D2 +DC(I−C)−1D and (I−C)−1D is bounded, it is sufficient to prove
that

D2, DC : BCn → BCn are compact. (2.6)

To show (2.6), we use Theorem 2.2. Given T > 0, set Q(T ) = {(x, t) ∈ [0, 1]× R : − T ≤ t ≤
≤ T}. Fix an arbitrary bounded set X ⊂ BCn. For (2.6) it is sufficient to prove the following
two statements:

D2X and DCX are equicontinuous on Q(T ) for an arbitrary fixed T > 0 (2.7)

and

given ε > 0, there exists T > 0 such that (2.4) is fulfilled for all

x
′
, x
′′ ∈ [0, 1], t

′
, t
′′ ∈ R \ [−T, T ], u ∈ D2X and u ∈ DCX.

(2.8)

We start with the proving (2.7). Denote by Cn(Q(T )) (respectively C1
n(Q(T ))) the Banach

space of continuous (respectively continuously differentiable) vector functions on Q(T ). As
C1
n(Q(T )) is compactly embedded into Cn(Q(T )) (due to the Arzela – Ascoli theorem), it is

sufficient to show that∥∥∥D2u
∣∣
Q(T )

∥∥∥
C1

n(Q(T ))
+
∥∥∥DCu|Q(T )

∥∥∥
C1

n(Q(T ))
= O(‖u‖∞) for all u ∈ X. (2.9)

It should be noted that for all sufficiently large T the functionsD2u andDCu restricted toQ(T )
depend only on u restricted to Q(2T ).

We will use the following formulas:

∂xωj(ξ) = − 1

aj(x, t)
exp

x∫
ξ

(
∂2aj
a2
j

)
(η, ωj(η))dη, (2.10)

∂tωj(ξ) = exp

x∫
ξ

(
∂2aj
a2
j

)
(η, ωj(η))dη, (2.11)
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that hold for all j ≤ n, all ξ, x ∈ [0, 1], and all t ∈ R. Here and below by ∂i we denote the
partial derivative with respect to the ith argument. Then for all sufficiently large T > 0 the
partial derivatives ∂xD2u, ∂tD

2u, ∂xDCu, and ∂tDCu on Q(T ) exist and are continuous for all
u ∈ C1(Q(2T )). Since C1(Q(2T )) is dense in C(Q(2T )), the desired property (2.9) will follow
from the bound∥∥∥D2u

∣∣
Q(T )

∥∥∥
C1

n(Q(T ))
+
∥∥∥DCu|Q(T )

∥∥∥
C1

n(Q(T ))
= O

(
‖u‖Cn(Q(2T ))

)
for all u ∈ C1

n(Q(2T )).

(2.12)

This bound is proved similarly to [9] (Lemma 4.2):
We start with the estimate∥∥∥D2u

∣∣
Q(T )

∥∥∥
C1

n(Q(T ))
= O

(
‖u‖Cn(Q(2T ))

)
for all u ∈ C1

n(Q(2T )).

Given j ≤ n and u ∈ C1
n(Q(2T )), let us consider the following representation for (D2u)j(x, t)

obtained after the application of the Fubini’s theorem:

(
D2u

)
j

(x, t) =
∑
k 6=j

∑
l 6=k

x∫
xj

x∫
η

djkl(ξ, η, x, t)bjk(ξ, ωj(ξ))ul(η, ωk(η, ξ, ωj(ξ)))dξdη, (2.13)

where

djkl(ξ, η, x, t) = dj(ξ, x, t)dk(η, ξ, ωj(ξ))bkl(η, ωk(η, ξ, ωj(ξ))). (2.14)

It is easy to see that from (2.13) it follows that∥∥∥D2u
∣∣
Q(T )

∥∥∥
Cn(Q(T ))

= O(‖u‖Cn(Q(2T ))).

Since
(∂t + aj(x, t)∂x)ϕ(ωj(ξ, x, t)) = 0

for all j ≤ n, ϕ ∈ C1(R), x, ξ ∈ [0, 1], and t ∈ R, one can easily check that∥∥∥[(∂t + aj(x, t)∂x)
(
D2u

)
j
|Q(T )

]∥∥∥
Cn(Q(T ))

= O
(
‖u‖Cn(Q(2T ))

)
for all j ≤ n and u ∈ C1

n(Q(2T )).

Hence the estimate ∥∥∥∂xD2u
∣∣
Q(T )

∥∥∥
Cn(Q(T ))

= O(‖u‖Cn(Q(2T )))

will follow from the following one:∥∥∥∂tD2u
∣∣
Q(T )

∥∥∥
Cn(Q(T ))

= O(‖u‖Cn(Q(2T ))). (2.15)
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We are therefore reduced to prove (2.15). To this end, we start with the following consequence
of (2.13):

∂t[(D
2u)j(x, t)] =

∑
k 6=j

∑
l 6=k

x∫
xj

x∫
η

d

dt
[djkl(ξ, η, x, t)bjk(ξ, ωj(ξ))]ul(η, ωk(η, ξ, ωj(ξ))) dξ dη+

+
∑
k 6=j

∑
l 6=k

x∫
xj

x∫
η

djkl(ξ, η, x, t)bjk(ξ, ωj(ξ))×

× ∂tωk(η, ξ, ωj(ξ))∂tωj(ξ)∂2ul(η, ωk(η, ξ, ωj(ξ)))dξdη.

Let us transform the second summand. Using (1.7), (2.10), and (2.11), we get

d

dξ
ul(η, ωk(η, ξ, ωj(ξ))) = [∂xωk(η, ξ, ωj(ξ)) + ∂tωk(η, ξ, ωj(ξ))∂ξωj(ξ)]×

× ∂2ul(η, ωk(η, ξ, ωj(ξ))) =

(
1

aj(ξ, ωj(ξ))
− 1

ak(ξ, ωj(ξ))

)
×

× ∂tωk(η, ξ, ωj(ξ))∂2ul(η, ωk(η, ξ, ωj(ξ))). (2.16)

Therefore,

bjk(ξ, ωj(ξ))∂tωk(η, ξ, ωj(ξ))∂2ul(η, ωk(η, ξ, ωj(ξ))) =

= aj(ξ, ωj(ξ))ak(ξ, ωj(ξ))b̃jk(ξ, ωj(ξ))
d

dξ
ul(η, ωk(η, ξ, ωj(ξ))), (2.17)

where the functions b̃jk ∈ BC are fixed to satisfy (1.6). Note that b̃jk are not uniquely defined
by (1.6) for (x, t) with aj(x, t) = ak(x, t). Nevertheless, as it follows from (2.16), the right-
hand side (and, hence, the left-hand side of (2.17)) do not depend on the choice of b̃jk, since
d

dξ
ul(η, ωk(η, ξ, ωj(ξ))) = 0 if aj(x, t) = ak(x, t).

Write

d̃jkl(ξ, η, x, t) = djkl(ξ, η, x, t)∂tωj(ξ)ak(ξ, ωj(ξ))aj(ξ, ωj(ξ))b̃jk(ξ, ωj(ξ)),

where djkl are introduced by (2.14) and (1.8). Using (1.7) and (2.10), we see that the function
d̃jkl(ξ, η, x, t) isC1-smooth in ξ due to the regularity assumptions (1.3) and (1.6). Similarly, using
(2.11), we see that the functions djkl(ξ, η, x, t) and bjk(ξ, ωj(ξ)) are C1-smooth in t.
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By (2.17) we have

∂t

[(
D2u

)
j

(x, t)
]

=
∑
k 6=j

∑
l 6=k

x∫
xj

x∫
η

d

dt
[djkl(ξ, η, x, t)bjk(ξ, ωj(ξ))]ul(η, ωk(η, ξ, ωj(ξ))) dξ dη+

+
∑
k 6=j

∑
l 6=k

x∫
xj

x∫
η

d̃jkl(ξ, η, x, t)
d

dξ
ul(η, ωk(η, ξ, ωj(ξ))) dξ dη =

=
∑
k 6=j

∑
l 6=k

x∫
xj

x∫
η

d

dt
[djkl(ξ, η, x, t)bjk(ξ, ωj(ξ))]ul(η, ωk(η, ξ, ωj(ξ))) dξ dη−

−
∑
k 6=j

∑
l 6=k

x∫
xj

x∫
η

∂ξd̃jkl(ξ, η, x, t)ul(η, ωk(η, ξ, ωj(ξ))) dξ dη+

+
∑
k 6=j

∑
l 6=k

x∫
xj

[
d̃jkl(ξ, η, x, t)ul(η, ωk(η, ξ, ωj(ξ)))

]ξ=x
ξ=η

dη. (2.18)

The desired estimate (2.15) now easily follows from the assumptions (1.3), (1.4), (1.6) and the
equations (2.13) and (2.18).

To finish with (2.9), it remains to show that

‖DCu|Q(T )‖Cn(Q(T )) + ‖∂tDCu|Q(T )‖Cn(Q(T )) = O(‖u‖Cn(Q(2T )))

for all u ∈ C1
n(Q(2T )),

(2.19)

as the estimate for ∂xDCu follows similarly to the case of ∂xD2u. In order to prove (2.19), we
consider an arbitrary integral contributing into DCu, namely

xj∫
x

ejk(ξ, x, t)bjk(ξ, ωj(ξ))(Ru)k(ωk(xk, ξ, ωj(ξ)))dξ, (2.20)

where

ejk(ξ, x, t) = dj(ξ, x, t)ck(xk, ξ, ωj(ξ))

and j ≤ n and k ≤ n are arbitrary fixed. From (2.20) it follows that

‖DCu|Q(T )‖Cn(Q(T )) = O(‖u‖Cn(Q(2T ))).
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Differentiating (2.20) in t, we get

xj∫
x

d

dt
[ejk(ξ, x, t)bjk(ξ, ωj(ξ))] (Ru)k(ωk(xk, ξ, ωj(ξ))) dξ+

+

xj∫
x

ejk(ξ, x, t)bjk(ξ, ωj(ξ))∂tωk(xk, ξ, ωj(ξ))∂tωj(ξ)∂2(Ru)k(ωk(xk, ξ, ωj(ξ))) dξ. (2.21)

Our task is to estimate the second integral; for the first one the desired estimate is obvious.
Similarly to the above, we use (1.7), (2.10), and (2.11) to obtain

d

dξ
(Ru)k(ωk(xk, ξ, ωj(ξ))) = [∂xωk(xk, ξ, ωj(ξ)) + ∂tωk(xk, ξ, ωj(ξ))∂ξωj(ξ)]×

× ∂2(Ru)k(ωk(xk, ξ, ωj(ξ))) =

(
1

aj(ξ, ωj(ξ))
− 1

ak(ξ, ωj(ξ))

)
×

× ∂tωk(xk, ξ, ωj(ξ))∂2(Ru)k(ωk(xk, ξ, ωj(ξ))).

Taking into account (1.6), the last expression reads

bjk(ξ, ωj(ξ))∂tωk(xk, ξ, ωj(ξ))∂2(Ru)k(ωk(xk, ξ, ωj(ξ))) =

= aj(ξ, ωj(ξ))ak(ξ, ωj(ξ))b̃jk(ξ, ωj(ξ))
d

dξ
(Ru)k(ωk(xk, ξ, ωj(ξ))). (2.22)

Set
ẽjk(ξ, x, t) = ejk(ξ, x, t)∂tωj(ξ)ak(ξ, ωj(ξ))aj(ξ, ωj(ξ))b̃jk(ξ, ωj(ξ)).

Using (2.10) and (2.22), let us transform the second summand in (2.21) as

xj∫
x

ejk(ξ, x, t)bjk(ξ, ωj(ξ))∂tωk(xk, ξ, ωj(ξ))∂tωj(ξ)∂2(Ru)k(ωk(xk, ξ, ωj(ξ))) dξ =

=

xj∫
x

ẽjk(ξ, x, t)
d

dξ
(Ru)k(ωk(xk, ξ, ωj(ξ))) dξ =

= [ẽjk(ξ, x, t)(Ru)k(ωk(xk, ξ, ωj(ξ)))]
ξ=xj
ξ=x −

−
xj∫
x

∂ξ ẽjk(ξ, x, t)(Ru)k(ωk(xk, ξ, ωj(ξ))) dξ. (2.23)

The bound (2.19) now easily follows from (2.21) and (2.23). This finishes the proof of the bound
(2.12) and, hence the statement (2.7).
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It remains to prove (2.8). Fix an arbitrary ε > 0. We have to prove the estimates∣∣∣(D2u)(x
′
, t
′
)− (D2u)(x

′′
, t
′′
)
∣∣∣ < ε (2.24)

and ∣∣∣(DCu)(x
′
, t
′
)− (DCu)(x

′′
, t
′′
)
∣∣∣ < ε (2.25)

for all u ∈ X and all x
′
, x
′′ ∈ [0, 1], t

′
, t
′′ ∈ R \ [−T, T ] and some T > 0.

Let us prove (2.24). By (2.13), given j ≤ n and u ∈ X, we have∣∣∣(D2u)j(x
′
, t
′
)− (D2u)j(x

′′
, t
′′
)
∣∣∣ ≤ ∣∣∣(D2u)j(x

′
, t
′
)
∣∣∣+
∣∣∣(D2u)j(x

′′
, t
′′
)
∣∣∣ =

= 2 max
j≤n

max
x∈[0,1]

max
t∈R\[−T,T ]

∣∣∣∣∣∑
k 6=j

∑
l 6=k

x∫
xj

x∫
η

djkl(ξ, η, x, t)×

× bjk(ξ, ωj(ξ))ul(η, ωk(η, ξ, ωj(ξ)))dξdη

∣∣∣∣∣ ≤
≤ M‖u‖∞ max

k 6=j,l 6=k
max

x,ξ,η∈[0,1]
max

t∈R\[−T,T ]
|bjk(ξ, ωj(ξ))bkl(η, ωk(η, ξ, ωj(ξ)))|,

the constant M being dependent on n, aj and bjj but not on u ∈ X and bjk with j 6= k.
Since ‖u‖∞ is bounded on X, the desired estimate (2.24) now straightforwardly follows from
the assumption (1.13) and the fact that ωj(ξ, x, t) → ∞ as t → ±∞.

The estimate (2.25) can be obtained by the same argument, what finishes the proof of (2.8).
The theorem is proved.
3. Uniqueness of a bounded continuous solution.
Theorem 3.1. Suppose that the conditions (1.3), (1.4), and (1.12) are fulfilled. Then there is

ε > 0 and T > 0 such that a bounded continuous solution to (1.1), (1.2) (if any) is unique
whenever

|bjk(x, t)| < ε for all 1 ≤ j 6= k ≤ n, x ∈ [0, 1], and t ∈ (−∞, T ]. (3.1)

Proof. Given T ∈ R, let ΠT = [0, 1] × (−∞, T ] and ΠT = [0, 1] × [T,∞). Given T > 0,
consider the problem (1.1), (1.2) in Π−T . The system of integral equations can again be written
in the operator form u = C̃u + D̃u + F̃ f with operators C̃, D̃, F̃ : BCn(Π−T ) → BCn(Π−T )
given by the rules (1.11), (2.1) and (2.2), respectively. As the operator I − C̃ : BCn(Π−T ) →
→ BCn(Π−T ) is bijective (by the condition (1.12)), the operator equation reads

u = (I − C̃)−1D̃u+ (I − C̃)−1F̃ f.

Because of assumption (3.1), the value of T > 0 can be chosen so large that the norm of the
operator D̃ is sufficiently small. Consequently, for such T we have

‖(I − C̃)−1D̃‖L(BCn(Π−T )) < 1.
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By the Banach fixed-point theorem, there exists a unique function u ∈ BCn(Π−T ) satisfying
(1.9), (1.10) in Π−T .

Now consider the problem (1.1), (1.2) in Π−T with the initial condition

uj |t=−T = uj(x,−T ), j ≤ n. (3.2)

Existence and uniqueness of a continuous solution u ∈ Cn(Π̄−T ) to the initial boundary-value
problem (1.1), (1.2), (3.2) follows from [6]. Summarizing, the problem (1.1), (1.2) in the strip
[0, 1] × R has a unique continuous solution bounded at −∞. This immediately entails that a
bounded continuous solution to the problem (1.1), (1.2) (if any) is unique. The proof is therewith
complete.

To finish with Theorem 1.1, it remains to note that, by Theorem 3.1, dimK = 0. Then
Theorem 1.1 immediately follows from Theorem 2.1 (ii).
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