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This paper considers a nonlinear integro-differential equation of third order with delay. We establish suffi-
cient conditions which guarantee the globally existence and boundedness of the solutions of the equation
considered. We benefit from the Lyapunov’s second method to prove the main result. An example is also
given to illustrate the applicability of our result. The result of this paper is new and improves previously
known results.

Вивчається нелiнiйне iнтегро-диференцiальне рiвняння третього порядку з запiзненням. Наве-
дено достатнi умови глобального iснування та обмеженостi розв’язкiв розглянутих рiвнянь.
Для доведення основного результату використовується другий метод Ляпунова. Також наве-
дено приклад для iлюстрацiї отриманого результату. Отриманий результат є новим та по-
кращує отриманi ранiше результати.

1. Introduction. Qualitative properties of delay differential equations of third order have been
investigated in the literature by many authors. There have been obtained many interesting
results on the stability, boundedness, asymptotic behaviors, periodicity, and etc. of solutions for
various nonlinear delay differential equations of third order. In particular, for some works done
on the stability and boundedness of solutions to certain nonlinear delay differential equations
of third order, the readers can referee to Ademola and Arawomo [1], Bereketoğlu and Karakoç
[4], Omeike[12], Oudjedi et al. [13], Remili and Oudjedi [14], Sadek [15], Sinha [16], Tunç [18 –
23], Zhu [25] and the references therein.

In this paper, we discuss the global existence and boundedness of solutions of the third order
nonlinear integro-differential equation with constant delay, r :

(
q(t)

(
p(t)x

′
)′)′

+ a(t)f
(
t, x, x

′
)
x
′′
+ b(t)g(t, x)x

′
+ c(t)h(x− r) =

t∫
0

C(t, s)x
′
(s) ds, (1)

where r is a positive constant, namely, r is a constant delay; p and q are positive and continuously
differentiable functions on <+, <+ = [0,∞); a, b, c ∈ C1(<+, (0,∞)); f ∈ C(<+ × R2,<+);
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g ∈ C(<+ × <,<+); h ∈ C1(<,<) and C(t, s) is countinuous for 0 ≤ t ≤ s < ∞. Also x
′
, x
′′

and x
′′′

denote the first, second and third derivatives of the function x(t) with respect to t.
We can write equation (1) in a differential system form as

x′ =
y

p(t)
,

y′ =
z

q(t)
, (2)

z′ =

t∫
0

C(t, s)
y(s)

p(s)
ds−A(t)z −B(t)y − c(t)h(x) + c(t)

t∫
t−r

y(s)

p(s)
h
′
(x(s))ds,

where

A(t) =
a(t)

p(t)q(t)
f

(
t, x,

y

p(t)

)
and

B(t) =

p(t)b(t)g(t, x)− a(t)p
′
(t)f

(
t, x,

y

p(t)

)
p2(t)


are continuous and differentiable functions.

Besides, it should be better to summarize some papers in the literature on the qualitative
behaviors of nonlinear differential equations of third order with delay. Sadek [15] dealt with a
nonautonomous third order differential equation with constant delay, r,

x
′′′
+ a(t)x

′′
+ b(t)x

′
+ c(t)h(x(t− r)) = 0.

The author investigated the asymptotic stability of the solution x = 0. Tunç [18 – 23] obtained
some results on the stability and boundedness of solutions for various nonlinear differential
equations of third order with delay. In 2009, Omeike [12] considered the following nonlinear
differential equation of third order with a constant delay, r :

x
′′′
+ a(t)x

′′
+ b(t)g(x

′
) + c(t)h(x(t− r)) = p(t).

He studied the asymptotic stability and uniform boundedness of the solutions of this equation,
respectively, when p(t) = 0 and p(t) 6= 0.

Recently, Oudjedi et al. [13] gave criteria for the stability of solutions to the following third
order nonlinear delay differential equation:

(
q(t)

(
p(t)x

′
)′)′

+ a(t)x
′′
+ b(t)x

′
+ c(t)f(x(t− r)) = 0.

However, it is worth mentioning that in spite of the existence of many results on the stabi-
lity and boundedness of nonlinear differential equations of third order with and without delay,
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to the best of our knowledge there is no result on the globally existence and boundedness of
solutions of nonlinear differential and integro-differential equations of third order with and wi-
thout delay. To the best of our knowledge, this paper is the first attempt on the subject in the
literature to integro-differential equations. The motivation of this paper comes from the menti-
oned papers and the papers of Baxley [3], Changian et al. [5], Constantin [6], Graef and Tunç
[8, 9], Napoles Valdes [11], Tidke and Dhakne [17]. Throughout all the mentioned papers the
Lyapunov’s second method is used as a basic tool to verify the results therein. The aim of this
paper is to give certain sufficient conditions to ensure the global existence and boundedness of
solutions of Eq. (1). We prove a result on the topic by defining an appropriate new Lyapunov
functional. However, we should state that it is always difficult to find a suitable Lyapunov functi-
onal for higher order differential and integro-differential equations, which verifies the assumpti-
ons of the Lyapunov’s stability theorems (see Ahmad and Rama Mohana Rao [2], Èl’sgol’ts [7],
Krasovskii [10], and Yoshizawa[24]). The result obtained in this paper complements the previ-
ous ones in the literature on the qualitative properties of ordinary and functional differential
equations. Besides, it improves the existing results on the third order nonlinear ordinary and
functional differential equations in the literature to functional integro-differential equations of
third order, and it may be useful for researchers working on the qualitative behaviors of soluti-
ons of integro-differential equations of higher order with and without delay. This is the novelty
and originality of this paper.

We assume that there are positive constants a0, a1, δ0, δ1, m, n, L,M, and N such that the
following conditions hold:

(A1) 0 < m ≤ q(t) ≤ p(t) ≤ M, −L < p
′
(t) ≤ q

′
(t) ≤ 0 and p

′′
(t) ≥ 0,

(A2) h(0) = 0,
h(x)

x
≥ δ0, x 6= 0, |h′(x)| ≤ δ1,

(A3) 0 < a0 < a(t) < a1, a
′
(t) ≤ 0,

(A4) 0 < n ≤ c(t) ≤ b(t) ≤ N, −N < b
′
(t) ≤ c

′
(t) ≤ 0,

(A5) 0 < f0 ≤ f(t, x, y) ≤ f1, ft(t, x, y) ≤ 0,

(A6) 0 < g0 ≤ g(t, x) ≤ g1, gt(t, x) ≤ 0.

2. Main result. Our main result is the following theorem.

Theorem 1. Suppose that conditions (A1) – (A6) hold. Then all solutions of system (2) are
continuable and bounded provided that there exists α satisfying

M

a0f0
< α <

g0
Mδ1

≤ 1

such that

d =
LM2a1f1

m3
< n(g0 − αMδ1)
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and

r < min

2m

(
c0 −

(
1

2

∫ t

0
|C(t, s)| ds+ 1

m2

∫ ∞
t
|C(u, t)|du

))
2mλ+Nδ1

,

2m

(
c1 −

α

2

∫ t

0
|C(t, s)|ds

)
αNδ1

 ,

where

c0 =
1

M
(n (g0 − αMδ1)− d) , c1 =

1

M

(
αa0f0
M

− 1

)
,

t∫
0

|C(t, s)|ds < ∞

such that
t∫

0

|C(t, s)|ds < 2c1
α
,

and
∞∫
t

|C(u, t)|du < ∞

and

1

2

t∫
0

|C(t, s)|ds+ 1

m2

∞∫
t

|C(u, t)|du < c0.

Proof. To prove the theorem, we define a Lyapunov functional V (t) = V (t, x(t), y(t), z(t))
by

V (t) = V (t, x(t), y(t), z(t)) = e
− θ(t)

µ U(t, x(t), y(t), z(t)), (3)

where

θ(t) =

t∫
0

D(s)ds =
αM

2

t∫
0

(
2a1f1p

′2
(s)− p(s)Ng1p

′
(s)

p3(s)
− a2c

′
(s)

)
ds ≤

≤ αa1Mf1

t∫
0

(
− p

′
(s)

p3(s)

)(
−p′(s)

)
ds+

αMNg1
2m

+
αa2MN

2
≤

≤ αa1LM
2f1

m3
+
αMNg1

2m
+
αa2MN

2
< ∞, a2 =

Ng1
nm

+
La1f1
nm2

,
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and

U(t) = U(t, x(t), y(t), z(t)) = p(t)c(t)H(x) + αq(t)B(t)
y2

2
+

+ αq(t)c(t)h(x)y +
1

2
(A(t)q(t)y2 + αz2 + 2yz)+

+ λ

0∫
−r

t∫
t+s

y2(u)duds+

t∫
0

∞∫
t

|C(u, s)| y
2(s)

p2(s)
du ds (4)

such that H(x) =

∫ x

0
h(u) du. Also µ and λ are positive constants which will be determined

later. From the definition of U(t) in (4), we observe that our Lyapunov functional can be rewrit-
ten as follows:

U(t) = U1 + U2 + λ

0∫
−r

t∫
t+s

y2(u)duds+

t∫
0

∞∫
t

|C(u, s)|y
2(s)

p2(s)
du ds,

where

U1 = p(t)c(t)H(x) + αq(t)B(t)
y2

2
+ αq(t)c(t)h(x)y,

U2 =
1

2
(A(t)q(t)y2 + αz2 + 2yz).

First consider

U1 = p(t)c(t)H(x) + αq(t)B(t)
y2

2
+ αq(t)c(t)h(x)y.

By noting the assumptions of the theorem and since c(t)g(t, x) ≤ p(t)B(t), we have

U1 = p(t)c(t)H(x) + αq(t)B(t)
y2

2
+ αq(t)c(t)h(x)y =

= p(t)c(t)H(x) +
α

2
q(t)B(t)

(
y +

c(t)h(x)

B(t)

)2

− αq(t)c2(t)h2(x)

2B(t)
≥

≥ p(t)c(t)

x∫
0

(
1− αq(t)c(t)

p(t)B(t)
h
′
(u)

)
h(u) du ≥

≥ mn

x∫
0

(
1− αMδ1

g0

)
h(u)du ≥ δ2δ0

x∫
0

u du ≥ δ2δ0
2
x2,

where δ2 = mn

(
1− αMδ1

g0

)
.
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On the other hand, using assumptions (A1), (A3) and (A5), since α >
M

a0f0
we get

U2 =
1

2

(
A(t)q(t)y2 + αz2 + 2yz

)
=
α

2

(
z +

y

α

)2
+

1

2
y2
(
A(t)q(t)− 1

α

)
≥

≥ α

2

(
z +

y

α

)2
+

1

2
y2
(
a0f0
M
− 1

α

)
≥ δ3y

2 + δ4z
2,

where δ3 and δ4 are sufficiently small positive constants. Thus, taking into consideration the
above discussion, it follows that

U(t) ≥ δ2δ0
2
x2 + δ3y

2 + δ4z
2 + λ

0∫
−r

t∫
t+s

y2(u) du ds+

t∫
0

∞∫
t

|C(u, s)| y
2(s)

p2(s)
du ds.

Hence, it is evident, from the terms contained in the last inequality, that there exists a suffici-
ently small positive constant δ5 such that

U(t) ≥ δ5
(
x2 + y2 + z2

)
, (5)

where δ5 = min

{
δ2δ0
2
, δ3, δ4

}
. This implies that V (t) ≥ 0.

Let (x(t), y(t), z(t)) be a solution of (2). Calculating the time derivative of the functional
U(t), along the trajectories of system (2), we obtain

U
′
(t) = (p(t)c(t))

′
H(x) +

αq
′
(t)B(t)

2
y2 + α(q(t)c(t))

′
h(x)y+

+

(
αq(t)B

′
(t)

2
+
A(t)q

′
(t)

2
+G(t)

)
y2+

+

(
1

q(t)
− αA(t)

)
z2 + (y + αz)c(t)

t∫
t−r

y(s)

p(s)
h
′
(x(s)) ds+

+ (y + αz)

t∫
0

C(t, s)
y(s)

p(s)
ds+ λry2 − λ

t∫
t−r

y2(s) ds+

+
y2

p2(t)

∞∫
t

|C(u, t)|du−
t∫

0

|C(t, s)| y
2(s)

p2(s)
du,

where

G(t) =
A
′
(t)q(t)

2
+ α

q(t)c(t)

p(t)
h
′
(x)−B(t),
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and since (q(t)c(t))
′
= q

′
(t)c(t) + q(t)c

′
(t), we obtain the following:

αq
′
(t)B(t)

2
y2 =

α(q(t)c(t))
′
B(t)

2c(t)
y2 − αq(t)c

′
(t)B(t)

2c(t)
y2,

consequently, we have

U
′
(t) = (p(t)c(t))

′
H(x) +

α(q(t)c(t))
′
B(t)

2c(t)
y2 + α(q(t)c(t))

′
h(x)y+

+

(
αq(t)B

′
(t)

2
− αq(t)c

′
(t)B(t)

2c(t)
+
A(t)q

′
(t)

2
+G(t)

)
y2+

+

(
1

q(t)
− αA(t)

)
z2 + (y + αz)c(t)

t∫
t−r

y(s)

p(s)
h
′
(x(s)) ds+

+ (y + αz)

t∫
0

C(t, s)
y(s)

p(s)
ds+ λry2 − λ

t∫
t−r

y2(s) ds+

+
y2

p2(t)

∞∫
t

|C(u, t)|du−
t∫

0

|C(t, s)| y
2(s)

p2(s)
du. (6)

Now, we verify

F (t, x, y) = (p(t)c(t))
′
H(x) +

α(q(t)c(t))
′
B(t)

2c(t)
y2 + α(q(t)c(t))

′
h(x)y ≤ 0,

for all x, y and t ≥ 0. The last estimate can be written as

F (t, x, y) = (q(t)c(t))
′

(
(p(t)c(t))

′

(q(t)c(t))′
H(x) +

αB(t)

2c(t)
y2 + αh(x)y

)
=

= (q(t)c(t))
′

(
(p(t)c(t))

′

(q(t)c(t))′
H(x) +

αB(t)

2c(t)

(
y +

αc(t)h(x)

B(t)

)2

− αc(t)h2(x)

2B(t)

)
,

also by assumption (A1) and (A4) we obtain
(p(t)c(t))

′

(q(t)c(t))′
≥ 1, this requires

F (t, x, y) ≤ (q(t)c(t))
′

x∫
0

(
1− αc(t)

B(t)
h
′
(u)

)
h(u) du.
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From (A1) – (A6) we get
c(t)

B(t)
≤ M

g0
. In the same way, we have

F (t, x, y) ≤ (q(t)c(t))
′

x∫
0

(
1− αMδ1

g0

)
h(u)du ≤ (q(t)c(t))

′ δ2δ0
2mn

x2 ≤ 0.

Furthermore, using the assumptions of the theorem, we get

B(t) ≤ Ng1
m

+
La1f1
m2

and

B
′
(t) =

b
′
(t)g(t, x) + b(t)gt(t, x)

p(t)
− p

′
(t)b(t)g(t, x)

p2(t)
−

−
a
′
(t)p

′
(t)f

(
t, x,

y

p(t)

)
p2(t)

−
a(t)p

′′
(t)f

(
t, x,

y

p(t)

)
p2(t)

−

−
a(t)p

′
(t)ft

(
t, x,

y

p(t)

)
p2(t)

+

2a(t)p
′2
(t)f

(
t, x,

y

p(t)

)
p3(t)

≤

≤ 2a1f1p
′2
(t)−Ng1p(t)p

′
(t)

p3(t)
.

Hence, it is easily seen that

αq(t)B
′
(t)

2
− αq(t)c

′
(t)B(t)

2c(t)
+
A(t)q

′
(t)

2
≤ αq(t)

2

(
B
′
(t)− c

′
(t)B(t)

c(t)

)
≤

≤ αM

2

(
2a1f1p

′2
(t)−Ng1p(t)p

′
(t)

p3(t)
− a2c

′
(t)

)
=

= D(t)

and

G(t) =
A
′
(t)q(t)

2
+ α

q(t)c(t)

p(t)
h
′
(x)−B(t) ≤

≤ −
(p(t)c(t))

′
a(t)f

(
t, x,

y

p(t)

)
2p2(t)q(t)

+
b(t)

p(t)

(
α
c(t)

b(t)
q(t)h

′
(x)− g(t, x)

)
≤

≤ LMa1f1
m3

+
n

M
(αMδ1 − g0) =

1

M
(d+ n (αMδ1 − g0)) = −c0 < 0.
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We have also that

1

q(t)
− αA(t) = 1

q(t)
(1− αq(t)A(t)) ≤ 1

M

(
1− αa0f0

M

)
= −c1 < 0.

Therefore (6) becomes

U
′
(t) ≤ (D(t) + λr − c0)y2 − c1z2 + (|y|+ α|z|)N

t∫
t−r

∣∣∣∣y(s)p(s)

∣∣∣∣ ∣∣∣h′(x(s))∣∣∣ ds+

+ (|y|+ α|z|)
t∫

0

|C(t, s)|
∣∣∣∣y(s)p(s)

∣∣∣∣ ds− λ
t∫

t−r

y2(s) ds+

+
y2

p2(t)

∞∫
t

|C(u, t)| du−
t∫

0

|C(t, s)|y
2(s)

p2(s)
du.

Using the Schwartz inequality |uv| ≤ 1

2

(
u2 + v2

)
, we get

U
′
(t) ≤

D(t)− c0 + r

(
λ+

Nδ1
2m

)
+

1

2

t∫
0

|C(t, s)| ds+ 1

m2

∞∫
t

|C(u, t)| du

 y2+

+

α
2

t∫
0

|C(t, s)| ds+ αNδ1r

2m
− c1

 z2 +

(
Nδ1(1 + α)

2m
− λ

) t∫
t−r

y2(s) ds+

+

(
α− 1

2

) t∫
0

|C(t, s)| y
2(s)

p2(s)
du. (7)

By choosing λ =
Nδ1(1 + α)

2m
, we have from (7) that

U
′
(t) ≤ D(t)y2. (8)

It is now clear that the time derivative of V (t) defined by (3) along any solution of system (2)
leads that

V
′
(t) = e

− θ(t)
µ

(
−D(t)

µ
U(t, x(t), y(t), z(t)) +

d

dt
U(t, x(t), y(t), z(t))

)
.

Thus by (5), (8) and taking µ = δ5, we obtain

V
′
(t) ≤ e

− θ(t)
µ

(
−D(t)

δ5
δ5y

2 +D(t)y2
)

= 0.
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This implies that V
′
(t) ≤ 0. Since all the functions appearing in equation (1) are continuous,

it is obvious that there exists at least a solution of equation (1) defined on [t0, t0 + δ) for some
δ > 0. We need to show that the solution can be extended to the entire interval [t0,∞). We
suppose that on the contrary that there is a first time T < ∞ such that the solution exist on
[t0, T ) and

lim
t→T−

(|x(t)|+ |y(t)|+ |z(t)) = ∞.

Let (x(t), y(t), z(t)) be such a solution of system (2) with initial condition (x0, y0, z0). Since V (t)
is a positive definite and decreasing functional on the trajectories of system (2), V

′
(t) ≤ 0, we

can say that V (t) is bounded [t0, T ), that is,

V (x(T ), y(T ), z(T )) ≤ V (t0, x0, y0, z0) = V0.

Hence, it follows from (3) and (5) that

x2(T ) + y2(T ) + z2(T ) ≤ V0
K
,

whereK = δ5e
− θ(t)

µ . This inequality implies that |x(t)|, |y(t)| and |z(t)| are bounded as t → T−.
Thus, we can conclude that T < ∞ is not possible, we must have T = ∞.

Theorem 1 is proved.
Example. We consider the following third order nonlinear delay integro-differential equa-

tion:((
1 +

1

25et + 1

)((
1 +

e−t

25

)
x′(t)

)′)′
+

(
4 +

1

2 + t

)(
1 +

e−t

1 + y2

)
x
′′
(t)+

+

(
8 +

1

1 + t

)(
1 +

1

1 + t+ x2

)
x
′
(t)+

+

(
8 +

1

2 + t

)(
2x(t− 0.001) +

x(t− 0.001)

1 + x2(t− 0.001)

)
=

=

t∫
0

t

(1 + 50t2)2
x′(s) ds. (9)

When we compare equation (9) with equation (1), it can be seen the existence of the following
estimates:

p(t) = 1 +
e−t

25
, q(t) = 1 +

1

25et + 1
,

m = 1 ≤ q(t) ≤ p(t) ≤ 26

25
= M, −L =

−1
25
≤ p

′
(t) ≤ q

′
(t) ≤ 0, p

′′
(t) ≥ 0,

a(t) = 4 +
1

2 + t
, a0 = 3 < a(t) < 5 = a1, a

′
(t) ≤ 0,
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b(t) = 8 +
1

1 + t
, c(t) = 8 +

1

2 + t
,

n = 8 ≤ c(t) ≤ b(t) ≤ 9 = N, −N = −9 ≤ b
′
(t) ≤ c

′
(t) ≤ 0,

f
(
t, x, x

′
)
= 1 +

e−t

1 + y2
, f0 = 1 ≤ f

(
t, x, x

′
)
≤ 2 = f1, ft

(
t, x, x

′
)
≤ 0,

g(t, x) = 1 +
1

1 + t+ x2
, g0 = 1 ≤ g(t, x) ≤ 2 = g1, gt(t, x) ≤ 0,

h(x) = 2x+
x

1 + x2
,

h(x)

x
= 2 +

1

1 + x2
,

h(0) = 0,
h(x)

x
≥ 2 = δ0, x 6= 0,

∣∣h′(x)∣∣ ≤ 3 = δ1,

1

2

t∫
0

|C(t, s)|ds =
1

2

t∫
0

t

(50t2 + 1)2
ds =

1

200
< ∞,

1

2

t∫
0

|C(t, s)|ds+ 1

m2

∞∫
t

|C(u, t)| du =
1

2

t∫
0

t

(50t2 + 1)2
ds+

∞∫
t

u

(50u2 + 1)2
du ≤ 1

100
.

Thus, all assumptions (A1) – (A6) hold. Therefore, we can conclude that all solutions of
equation (9) are continuable and bounded.

Also the trajectories of solutions of equation (9) are shown in Fig. 1.

Fig. 1. Time evolution of the states x(t), y(t) and z(t) of equation (9).
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19. Tunç C. On the stability of solutions for non-autonomous delay differential equations of third order // Iran.
J. Sci. and Technol., Trans. A. Sci. — 2008. — 32, №4. — P. 261 – 273.
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21. Tunç C. On the stability and boundedness of solutions to third order nonlinear differential equations with
retarded argument // Nonlinear Dynam. — 2009. — 57, № 1 – 2. — P. 97 – 106.
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