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This paper is concerned with the existence and uniqueness of solutions for a coupled system of fractional
differential equations with coupled and uncoupled slit-strips integral boundary conditions. The existence
and uniqueness of solutions is established by Banach’s contraction principle, while the existence of soluti-
ons is derived by using Leray—Schauder’s alternative. The results are explained with the aid of examples.

Poszennadaembcesa icHy8anHA ma €OUHICMb PO3B8°A3KI8 3’ €OHAHUX CUCHEM HEeAOKAAbHUX OUepeHyianb-
HUX pIBHAHb 0p00O08020 NOPAOKY 3i 3’€OHAHUMU MA He3 COHAHUMU POUCNACHUMU CMYy2aMU 8 [HMe-
2PAABHUX 2DAHUYHUX YMOBaX. ICHY8aHHA Ma €OUHICMb PO36°A3KI8 BCMAHOBAEHO 34 OONOMOR0I0 Meo-
pemu Banaxa npo cmuckaroui 8i0obpaxcerna. IcHy8anHA po38’A3Ki8 008€0eHO 3 BUKOPUCIMAHHAM AAb-
mepuamusu Jlepesa — lllayoepa. Pezyavmamu nOACHEHO 3a 00NOMO2010 NPUKAAOIE.

1. Introduction. The study of boundary-value problems for linear and nonlinear differential
equations is a popular field of research and finds extensive applications in a variety of disciplines
of pure and applied sciences. The investigation of boundary-value problems of fractional-order
has recently picked up a great momentum and a variety of results of diverse interest, ranging
from theoretical to application aspects, are available in the literature on the topic. In particular,
the tools of fractional calculus have revolutionized the field of mathematical modelling and the
integer-order models in many physical and engineering phenomena have been transformed
to their fractional-order counterparts. One of the salient features accounting for this trend
is probably the nonlocal characteristic of fractional-order operators, which can describe the
hereditary properties of many important materials and processes. For examples and appli-
cations in physics, chemistry, biology, biophysics, blood flow phenomena, control theory, wave
propagation, signal and image processing, viscoelasticity, percolation, identification, fitting of
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experimental data, economics etc., we refer the reader to the books [1-3]. For some recent
work on the topic, see [4—-24] and the references therein. In a recent paper [25], the authors
discussed some new fractional boundary-value problems with slit-strips conditions.

The investigation of coupled systems of fractional order differential equations is also very
significant as such systems appear in a variety of problems of applied nature, especially in biosci-
ences. For details and examples, the reader is referred to the papers [26 —32] and the references
cited therein.

In this paper, motivated by [25], we study a coupled system of nonlinear fractional differenti-
al equations:

“Dia(t) = f(te(t)y(t)), tel0,1], 1<q<2

(11)
“DPy(t) = g(t,x(t),y(t), t€[0,1], 1<p<2,

supplemented with coupled and uncoupled slit-strips type integral boundary conditions respecti-
vely given by

U 1
z(0) =0, x(():a/y(s)ds—l—b/y(s)ds, 0<n<(<E<,
0 3

(1.2)
n 1
y(0) =0, y(¢) = a/m(s)ds+b/:p(s)ds, 0<n< (<&,
0 3
and
n 1
z(0) =0, z(¢) = a/x(s)ds—l—b/x(s)ds, 0<n<(<E<,
0 £
1 (13)

n
y(0) =0, y(¢) = a/y(s)ds+b y(s)ds, 0<n<(<E<l,
0

m—

where ¢D4, <DP denote the Caputo fractional derivative of order ¢ and p respectively, f, g:
[0,1] x R x R — R are given continuous functions, and a, b are real constants.

Here we remark that the differential equations with integral boundary conditions consti-
tute an important class of boundary-value problems. The concept of coupled and uncoupled
integral boundary conditions introduced in this paper is new. We can interpret these conditions
physically as the contribution due to finite strips of arbitrary lengths on the given interval is
related to the value of the unknown function at an arbitrary (nonlocal) position in the region
off these strips. The applications of strip-slit boundary conditions, for instance, can be found in
the works [33 -36].

The paper is organized as follows. In Section 2, we present the main results for a coupled
system of nonlinear fractional differential equations with coupled slit-strips integral boundary
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conditions while the results for uncoupled integral boundary conditions are discussed in Secti-
on 3. Our results rely on the standard tools of the fixed point theory and are well illustrated
with the aid of examples.

2. Coupled slit-strips integral boundary conditions case. First of all, we recall definitions of
fractional integral and derivative [1, 2].

Definition 2.1. The Riemann — Liouville fractional integral of order q for a continuous functi-

on g is defined as
t
(s)
> 0,
/ t—s) d
0
provided the integral exists.

Definition 2.2. For at least n-times continuously differentiable function g: [0,00) — R, the
Caputo derivative of fractional order q is defined as

t
°Dig(t) = n—q/ )" M ()ds, n—1<qg<n, n=][g+1,
0

where [q] denotes the integer part of the real number q.
Now we prove an auxiliary result which is pivotal to define the solution for the problem

(1.1), (1.2).
Lemma 2.1 (Auxiliary lemma). Given ¢,v¢ € C([0,1],R), the following system:

“DIa(t) = o(t), te[0,1], 1<q<2,

CDpy(t) = iﬁ(t), te [07 1]7 I1<p<y
1)

n 1
z(0) = 0, x(():a/y(s)ds+b/y(s)ds, O<n<(<E<l,
0 ¢

n 1
y(0) = 0, y(C):a/m(s)ds+b/1:(s)ds, 0<n< (<<,
0 3

can be written in the equivalent integral equations

n s 1
I S S B B B Gk SO = drds
"(0) = 2 <{ 0/0/ O v(r) drd +b£/0/ T (r)drd
F(C— ! F s —mp
. O/ = ¢(s)ds}+A{a 0/ 0/ T ol drds+
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/ (t—s)at
+ | 5 9(s)ds, (2.2)
/

[ (t— 5]
+ | T v(s)ds, (2.3)
/

where

A=la*+b(1-¢€)] /2 #0. (2.4)

Proof. 1t is well known that the general solution of the fractional differential equations in
(2.1) can be written as

Lo a1
z(t) = co+art + / (tF@)) o(s) ds, (2.5)
0
Lo -
o) = o+ [T (o) as )
0

where ¢y, ¢c; € R are arbitrary constants.
Applying the conditions z(0) = 0, y(0) = 0, it is found that ¢y = 0, c2 = 0. In view of the
nonlocal conditions
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x(s)ds + b/x(s)ds,
3
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we obtain a system of equations

n s
(s —7)Pt
Cc1—Acg = a Y(1)drds + b
0/0/ L'(p)

M\H
O\rn
S
| |
Sl
N— ,_s‘
L
=
.y
IS8
\]
jo 8
T

F
- / F— ol

n s
(s —7)at
—Aci +Ces3 = a o(1)drds + b
0/0/ I'(q)

m—
D\m
@
=1
= |
N— Q
L
=
)
<
\]
Q.
7

[t
- 0/ o s

where
A= [af +b(1-€%)] /2
Solving the system (2.7), (2.8), we have
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Substituting the values of ¢y, c1, 2, c3 in (2.5) and (2.6), we get (2.2) and (2.3). The converse
follows by direct computation.

Lemma 2.1 is proved.

2.1. Existence results. Let us introduce the space X = {z(t)|z(t) € C([0,1])} endowed

with the norm

|lz|| = max{|z(t)|,t € [0,1]}. Obviously (X,| - ||) is a Banach space. Also

let Y = {y(t)ly(t) € C([0,1])} be endowed with the norm ||y|| = max{|y(¢)|,t € [0,1]}.
Obviously the product space (X XY, ||(z, y)]|) is a Banach space with norm ||(z, y)|| = [|z||+]y||-
In view of Lemma 2.1, we define an operator 7: X x Y — X x Y by

Ty (x, y)(t)
T(z,y)(t) = ,
To(x, y)(t)
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1 s

(s —7)at
—I—b//r()f(T,.Z‘(T),y(T))deS—

q
0

o

L'(p)

|
S
—
—~
T
M|
—
S
A

_ ¢ _ gl
g(s,x<s>,y<s>>ds} [T gt al).ut) as.
0

For the sake of convenience, we set

1 1 cr+l i1 | ot
M= o e e P e M Gy @7
M = e g [ M G e ) 29
M = g [l P 1 ) 22
M= i e e g A G ] e

and

MO = min {1 — (M1 + Mg)]{il — (M2 + M4))\1, 1-— (Ml + Mg)k‘Q — (MQ + M4))\2},
(2.11)
ki, N\i >0, i=1,2.

The first result is concerned with the existence and uniqueness of solutions for the problem
(1.1), (1.2) and is based on Banach’s contraction mapping principle.

Theorem 2.1. Assume that f,g: [0,1] x R? — R are continuous functions and there exist
constants m;, n;, i = 1,2, such that for all t € [0,1] and u;,v; € R,i = 1,2,

|f(t,ur,u2) — f(t,v1,v2)] < malur — v1]| + malug — vo

and

lg(t, ur,u2) — g(t,v1,v2)| < nilur —vi| + nalug — va.

In addition, assume that
(M1 + M3)(my + ma) + (Ma 4+ My)(n1 +n2) < 1,

where M;,i = 1,2,3,4, are given by (2.7) — (2.10). Then the boundary-value problem (1.1), (1.2)
has a unique solution.
Proof. Define sup;¢(o 1) f(¢,0,0) = N1 < oo and sup¢(g 1) (¢, 0,0) = Na < oo such that

> (M + M3)Ny + (Mo + My)No
= 1 —[(My + M3)(my 4+ ma) + (M + My)(ny + no)|’
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We show that T'B, C B,, where B, = {(z,y) € X xY: ||(z,y)|| < r}.
For (z,y) € B,, we have

S

n
{aZJ“ . (g (), y(7) - 9(r,0,0)|+

1
+ 1g(7,0,0)] deS-l-‘b’/
3

Ty (2, y)(t)] =

011[62 AZ|

) m7ﬂ>yv»—mnmmu

o\m

¢
+|g(7,0,0)| des+/ ]f s,x(s),y(s)) — f(s,0,0)] + f(s,0,0))ds} +
0

F7 s—71)1 1
+A{a//( D (7, ().0() = £(7,0,0) + |1 (7,0,0)drds+
0 0

n s
+A{a// . " (mallel + mallyll + Ny) drds-+
0 0
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+|b|//5<3‘”“< lall = maly]l + Ny) drds-+
/ F(q) mil||x ma||lY 1 Tas

(na||z|| + n2lly|| + N2)ds +

+
O\A
~

(t —s)171

] T

(mallz]l +mallyll + N1) ds <

o

1 nptl 1—¢ptt P
< 2~ A7 [C\ | T(p+2) +C\b’m + |A‘1“(;0+1J (nalz]| + nzlly|l + N2)+
1 catl it g+l )
+{\<2—A2l [F(q+1) [Allal ( g 1A I T(q +2)]+F(q+1)}x

x (mallz]] + mallyll + N1) = Ma(na|[z]| + nallyll + No) + My (mallz]| + mellyl| + N1) =
= (Many + Mymy)||z| + (Mang + Mima)|ly[| + MaN2 + M1 Ny <

< (Many + Mimy + Mang + Myme)r + MaNgy + M Nj.

In the same way, we can obtain that

T gptl ¢l 1
[‘A”“’ fpra Al (+2)+CF(p+1)}+F(Q+1)}X

1
2 — A%

Do, y)(8)] < {

1

x (mlz|| +nallyll + N2) + NN

C +1 q+1

(18] 5 gy ol gy + €l g | (mllel + malll + ) =

= My(ni||z]| + n2lyll + N2) + Mz(ma||z|| + mallyl| + N1) =
= (M4n1 + Mgml)HJ}H + (M4n2 + Mgmg)HyH + MyNy + M3Np <

< (M47’L1 + Msmq + Myno + M3m2)7“ + My Ny + M3Nj.

Consequently, ||T'(z,y)(t)]] < r.
Now for (z2,y2), (z1,y1) € X x Y, and for any ¢ € [0, 1], we get

T1(22,y2)(t) — T1(z1,91)(1)] <

7 s— )Pl
< g ¢4l / / <F(;)|g<7,x2<f>,yz<7>>—g<7,as1<7>,y1<7>>|dfds+
0
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1 s

s—T1)P1

bl [ [ CT D latraa(e),ane) sl () nr)ards
¢ 0

<
+/“)N&MSMM$)j@wM$m@D®}+
0
[ (s—7)
+zs{au//'rf@wxﬂwxﬂ>fwwaﬂwxﬂwhw+
0 0
s—71)71
10 [ [ C S 1 rna(r). 1a(0) — S (7). (7)) drds+
¢ 0

1
g(s,z2(s),y2(s)) — g(s, z1(s), y1(5))d5}

¢
/
t s q—1
b T b o), e st 19 D s <
0

?7P+1 p+1 A Cp
+C|| ( 2)+| |F(p+1)

ka hmmrwm+mmrwm+

_l’_

1 Cq+1 1— §q+1 1
<2—A%[F@+1> *”A“”Hq+2ﬂ‘knq+w}x

X (my|lwy — w1 || +mally2 — y1l]) < Ma(nil|we — 21| + nally2 — yil))+

Q+
Allal g

+ My(ma||ze — 21| +ma2ly2 — v1l]) = (Many + Myma)||ze — o1 ||+

+ (Mang + Myma)|ly2 — 1l
and consequently we obtain
1T (22, y2) () — Ty (1, 1) | < (Mana+Mymy+Mang+Mymo)[[|22 — 21| + lly2 — i ll]. (2.12)
Similarly,
T2 (2, y2) (1) = To (w1, y1) || < (Mana+Mzmy+Myno+Mzms)|[|ze — 1| + lly2 — yull]. (2.13)
It follows from (2.12) and (2.13) that
1T (22, y2) () =T (21, 1) )| < [(My+M3)(ma+ma)+(Ma+My)(n1+n2)]([[ug—ur || +[[vz—val]).
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Since (M; + M3)(mq + ma) + (Ma + My)(n1 + n2) < 1, therefore, T is a contraction operator.
So, by Banach’s fixed point theorem, the operator 7" has a unique fixed point, which is the
unique solution of problem (1.1), (1.2).

Theorem 2.1 is proved.

In the next result, we prove the existence of solutions for the problem (1.1), (1.2) by applying
Leray — Schauder alternative.

Lemma 2.2 (Leray —Schauder alternative, [37, p. 4]). Let F': E — E be a completely conti-
nuous operator (i.e., a map that restricted to any bounded set in E is compact). Let

E(F)={x € E:x=\F(x) forsome 0< \< 1}

Then either the set £(F) is unbounded, or F has at least one fixed point.
Theorem 2.2. Assume that there exist real constants k;, A; > 0,1 = 1,2, and kg > 0, \yg > 0
such that for any xz; € R, 7 = 1,2, we have

|f(t, 21, m2)] < ko + k1|z1] + k2|22l
lg(t, x1,22)| < Ao + Ar]@1| + Aalz2].
In addition it is assumed that
(M + Ms)ky + (Mo + M)\ < 1 and  (My + Ms)ks + (Ms + My)s] < 1,

where M;, i = 1,2,3,4, are given by (2.7) — (2.10). Then there exists at least one solution for the
boundary-value problem (1.1), (1.2).

Proof. First, we show that the operator 7: X x Y — X x Y is completely continuous.
By continuity of functions f and g, the operator T is continuous.

Let @ C X x Y be bounded. Then there exist positive constants L; and Ly such that

[f (& 2@),y(O)] < Lo, gt x(t),y(t)] < L2 Y(z,y) € Q.
Then for any (z,y) € 2 we have

S

n
t (s — )Pt
T )0 < 5 5o c{w 0/ 0/ o —lo(r. (). y() s+
1 s( _ )pfl
el [ [ E T la(ra(e). gl lards+
€0

¢
(¢ - 5!
+ 0/ w\f(s,m<s>,y<s>>\ds}+

s

/ s—71) 1
T |Ar{|a /] (F(q)) F(rya(r),y(r)| drdst
0 0
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P s—T1) 1 ; —s
sl [ f (F(q))f(ﬂx(T),y(T))ldeer / “F(mm(s 2(s), <>>|ds} n
¢ 0

¢ - 1
T / =0 (s, w(s), y(s))ds <
0

I'(q)
L ol gy + M s+ 18I s g
== YT > T(p+2) rp+1)] 7
1 <q+1 +1 1_§q+1 1
+{rc2—A2! [r<q+1 +1Allal 755, 'A”b'r<q+2>]+r<q+1>}“’
which implies that
1 +1 f p+1 CP
T30 < ez [<lol gy + O gy + 18] ey | P
1 Cq—&-l nq—&-l g q+1 1 B
+{|<2—A2| M@H)*'A e e +2>]+r<q+1>}“‘
= MsLo + My L+.
Similarly, we get
1 np+ 1_§P+1 CP+1
ITa(z, )|l < {,CQ S [A||a| s A s s 1)} T 1)}L2+
1 natl 1 — gatl
+ - A2 [‘A’I’(qg—f— )-l—C] al ( )—i-C\ | g+ & 2)} Ly =MyLs + MsL,.

Thus, it follows from the above inequalities that the operator T is uniformly bounded.
Next, we show that T is equicontinuous. Let ¢, ¢y € [0,1] with ¢; < ¢2. Then we have

T (2(t2), y(t2)) — Ti(x(t1), y(t1))] <

< / [(ts — )77 — (11 — )97 f (5. 2(5), y(s)) [ds+
0

" 1q / (t2 — 5)71 (s, 2(5), y(s))lds+

- I s—T)P1
s 20 lc{ [ S50 tatrato)atrlards+
0 0
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1 s
s —7)P 1
+ ‘b’//(F(p)) lg(7,x(7),y(7))| drds +
€0
F7 (s — 7)1t
+ \A|{|a| | [ S (o). ytrplaras+
0

r s—71)a1 7 — 5Pl
o [ f (F(q))lf(ﬂ:v(f),y(T))ldeH / “F(;gw,x(s),y(smds} <
¢ 0

0

o
—
o

w
N—
5
—
=
—~
)

8
—~

V2]
:_/
<
—

»
N—
-

QU

@

——

+

to

FL/ (ta—8)T " — (t1 — )7 '] ds + Fléq) /(tz —5)7 tds+
0

t1

t2 £+1 Cp
tEo AT |{[<|| Flogy M gy + 8] s | B

(q-x-l A 77!1-1-1 Al 1_§q+1 I
+ e+ s+ — .
o 1Al s 1Al |
Analogously, we can obtain

| To(z(t2), y(t2)) — Ta(z(t1), y(t1))| <

t1 to
FLO/ (ta — )P~ — (t1 — s)P" ] ds + l“l(/p)t/(h — 5P lds+
to — 1 +1 prrl Cerl
+C2—A2|{[| |al ( )+‘AH | T(p +2)+<F(p+1)]L2+

[ =)
- +¢ + ] e
I(g+1) ( ) I'(q+2)
Therefore, the operator T'(x,y) is equicontinuous, and thus the operator 7T'(x, y) is completely
continuous.

Finally, it will be verified that theset £ = {(z,y) € X xY|(z,y) = A\T'(x,y),0 < A < 1}is
bounded. Let (z,y) € &, then (z,y) = A\T'(z,y). For any ¢ € [0, 1] we have

x(t) = ATi(z,y)(t), y(t) = ATa(z,y)(t).

Then

s

n
lz(t)| < AN AQ [ {|a|0/ 3—; g(1,2(7),y(7))|drds+
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1 ¢
(s =)~ (5!
b E/ 0/ C T oty lards + [ S8 (o) <>>rds}

p+1 p+1 A CP
Clal gy + Bl gy + 1Al

H)]
C+1
+{C2 +1)—|—|Aa

x (ko + kallz]l + k2llylD)

(Ao + izl + Aallyl)+

et 1 - gatl 1
fare PTG D) * T 1)}><

and

it <4 — A ’7#&1 +1Aubl_§p+l+ SR . x
vB)l < |<2—A21[ ) T2 Cr<p+1>] Mg+ 1)

1 ¢4 + 1§q+1]
=7 A T ey T M g

X (Ao 4 Al + Azlly[l) +

X (ko + kil|z[| + k2(lyl])-
Hence we have
|l < Mi(ko + Eallz[l + K2ly|) + Ma(Ao + Allz]l + A2l[yl)

and
[yl < Ms(ko + k||| + E2llyll) + Ma(Xo + Arllz]| + A2llyll),

which imply that

llz|| + [lyl] < (M1 + M3)ko + (Mo + My)Ao + [(My + M3)ky + (Mo + My)M]||z||+

+ [(My + M3)kg + (Ma + My)A2]|ly]|-
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Consequently,
(M + M3)ko 4 (Ms 4 Mg) Ao
()] < e ,

forany ¢ € [0, 1], where M, is defined by (2.11), which proves that £ is bounded. Thus, by Lem-
ma 2.2, the operator 7" has at least one fixed point. Hence the boundary-value problem (1.1),
(1.2) has at least one solution.

Theorem 2.2 is proved.
2.2. Examples. Example 2.1. Consider the following system of coupled fractional differential

equations with slit-strips integral boundary conditions:

2 3 t 3
== a(t) + o _y®1 +5, te[0,1],

cD5/4aj(t) = 55 (I+y@)) 2

1 t 2
CD3/2y(t) _ M + — smy(t) +3; le [07 1]a

27 (14 |cosx(t)]) 41
1
[ wtspas.
/3

2

(2.14)
1/3

2(0) =0, x(1/2) =

O\
<
—~
NG
U
»
-+

1/3

1
y(0) = 0, y(1/2) = / 2(s)ds + / 2(5)ds.
0 /3

2

Here ¢ = 5/4,p = 3/2,a = 1,b = 1,( = 1/2,n = 1/3,{ = 2/3. With the given values,
it is found that A = 1/3, m; = 2/55, my = 3/61, ny = 1/27, ny = 2/41, My ~ 2.731029,
My ~ 1.397944, My ~ 1.854888, M, ~ 2.216142, and

(M1 + Mg)(ml + mg) + (M2 + M4)(TL1 + 77,2) ~ 0.702454 < 1.

Thus all the conditions of Theorem 2.1 are satisfied. Therefore, by the conclusion of Theorem 2.1,

the problem (2.14) has a unique solution on [0, 1].
Example 2.2. 1 et us consider the problem (2.14) with the following values:

flt,x(t),y(t)) = % + 2 sinz(t) + 43% y(t) tan™1 z(t),

41
g(t,z(t),y(t)) = ; + % x(t) + % siny(t).

Clearly |f(t,z,y)| < ko + k1]z| + k2lyl, |9(t,z,y)| = Ao + M|z| + A2|y|, where ky = 1/2,
ky = 2/41, ky = 1/43, Ao = 2/3, \y = 1/11, Ay = 1/17. Furthermore,

(M1+M3)k1+(M2+M4))\1 ~ (0.552257 < 1, (M1+M3)k‘2+(M2+M4))\2 ~ (0.319243 < 1.

Thus all the conditions for Theorem 2.2 hold true and consequently the conclusion of Theo-
rem 2.2 applies to the problem (2.14) with the given values of f(t,z,y) and g(¢, x,y).
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3. Uncoupled slit-strips integral boundary conditions case. In relation to the problem (1.1) -
(1.3), we consider the following lemma.
Lemma 3.1 (Auxiliary lemma). For x € C([0, 1], R), the unique solution of the problem

Diz(t) = x(t), 1<q<2 telol]

y ; (3.1)
z(0) =0, z(() = a/x(s)ds—l—b/x(s)ds, D<n< (<&,
0 ¢
is given by
ﬂ@:/“_”H@@+t%/j“_ﬂH'mmm+
fg) 4 O
0 00
[ [ s—rr! F (¢
+b//f‘(q)X(T) des—/wx(s)dds}, (3.2)
€0 0
where
_.oap b(1-8%)
A=(- - 5 # 0. (3.3)

Proof. We just provide the outline of the proof. The general solution of the fractional di-
fferential equation in (3.1) can be written as

Lo ot
z(t) = eg +ert + / (tF@))y(S) ds, (3.4)
0

where ey, e; € R are arbitrary constants. Applying the given boundary conditions, we find that
ep = 0, and

7 (s—7)12 r s—7)a1 — )17t
er = jl{a//(r(q%y(T)des+b//(F(q))y(T)d7'd5—/<CF@))Z/(S)dds}-
00 ¢ 0 0

Substituting the values of e, e; in (3.4), we get (3.2).
Lemma 3.1 is proved.

3.1. Existence results for uncoupled case. In view of Lemma 3.1, we define an operator
T:X XY - X xY by

T1(u,v)(t)
T(u,v)(t) = ,
To(u,v)(t)
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where

/ —5)11 7 s—71)i1
Ti(u,v)(t) = /(tr(q))f(s,u(s),v(s))ds—i—i{a//(r(q))f(T,u(T),v(T)) drds+
0

00

1 s 5_7-)‘1 ¢ _ gy 1

+b// (9) 7 u(7), v(T)) drds 0/ f(s,u(s) U(S))ds}

and

: t—s)p 1 n s 5_7—

0/ () (s,u(s),v(s))ds + — {ao// ) h(r,u(t),v(r)) drds+
[ [y (= st

+b£// ) T, u(T), v( ))deS—O/ ) f(s,u(s),v(s))ds}

In the sequel, we set

1 1 — ga+l ¢
M= D |A|{"< ) ’b'r<q+2>+r<q+1>}’ 3-3)

1 +1 1_§p+1 ¢P
k2= F i) \A|{"< ey ’b’r<p+2>+r<p+1>}' G.6)

Now we present the existence and uniqueness result for the problem (1.1) — (1.3). We do not
provide the proof of this result as it is similar to the one for Theorem 2.1.

Theorem 3.1. Assume that f,g: [0,1] x R? — R are continuous functions and there exist
constants m;, n;, 1 = 1,2, such that for all t € [0,1] and u;,v; € R, i = 1,2,

’f(t, Ul,u2) - g(t,’vhvz)! < ?7_11|U1 - 111! +m2\u2 - v2\

and

lg(t, ur,u2) — h(t,v1,ve)| < fig|ur — vi| + Nzlug — vol.

In addition, assume that

p1(my +ma) + po(ng +ng) < 1,

where 111 and o are given by (3.5) and (3.6) respectively. Then the boundary-value problem
(1.1)—(1.3) has a unique solution.
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Example 3.1. Consider the following system of coupled fractional differential equations
with uncoupled slit-strips integral boundary conditions

CD5/4 — ‘x( 1 1 1
(1) TERET RS AR 0,1],

1 1
cD32y(t) = = si — 4 1
(3.7)

2(0) = 0, 2(1/2) = / 2(s)ds + / 2(s)ds,
0 /3

1/3 1
y(0) = 0, y(1/2) = / y(s)ds + / y(s)ds.
0 2/3

Here g = 5/4,p = 3/2,a = 1,b = 1,( = 1/2,n = 1/3, £ = 2/3. With the given values, it
is found that A = 1/6, m1 = 1/24, mga = 1/20,n1 = 1/35, ng = 1/25, 1 ~ 4.716276, pg ~
~ 3.614087. In consequence, p; (M1 +mga)+p2(fi1+n2) ~ 0.680148 < 1. Thus all the conditions
of Theorem 3.1 are satisfied. Therefore, there exists a unique solution for the problem (3.7)
on [0, 1].

The second result dealing with the existence of solutions for the problem (1.1)-(1.3) is
analogous to Theorem 2.2 and is given below.

Theorem 3.2. Assume that there exist real constants p;, v; > 0,1 = 1,2, and pg > 0,19 > 0
such that for any z; € R, ¢ = 1,2, we have

|f(t,x1,22)] < po+ pr|z1] + p2|zal,
l9(t, 21, 22)| < vo + v1]@r] + vo|zal.
In addition it is assumed that
pipr +perr < 1 and  pipe + pove < 1,
where 111 and pg are given by (3.5) and (3.6) respectively. Then the boundary-value problem

(1.1)—(1.3) has at least one solution.
Proof. Setting

po = min{l — (p1p1 + par1), 1 — (pp2 + pore)}, pi, vi > 0,0 = 1,2,

with p1 and pg given by (3.5) and (3.6) respectively, the proof is similar to that of Theorem 2.2.
So we omit it.
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