YIIK 5179

BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS
OF THE LAX INTEGRABLE SUPERSYMMETRIC
BOUSSINESQ HIERARCHY AND THEIR INTEGRABILITY

CKIHYEHHOBUMMIPHI PENYKIIIi TUITY BAPTMAHA
IHTETPOBHOI 3A JTAKCOM CYINEPCUMETPUYHOI IEPAPXII
BYCCIHECKA TA iX IHTETPOBHICTH

O. Ye. Hentosh

Pidstryhach Inst. Appl. Probl. Mech. and Math. Nat. Acad. Sci. Ukraine
Naukova Str., 3B, Lviv, 79060, Ukraine
e-mail: ohen@ua.fm

For the supersymmetric Boussinesq hierarchy, related with the Lax type flows on the space dual to the Lie
algebra of superintegro-differential operators of one anticommuting variable for some non-self-adjoint
superdifferential operator, the method of the Bargmann type finite-dimensional reductions is developed.
We prove existence of an even exact supersymplectic structure on the corresponding invariant finite-dimen-
sional supersubspace of the supersymmetric Boussinesq hierarchy as well as the Lax — Liouville integrabi-
lity of commuting vector fields, generated by the hierarchy and reduced to this supersubspace.

Haa cynepcumempuunoi iepapxii byccinecka, noe’a3anoi 3 nomoxamu muny Jlakca Ha cnpAaIceHOMY
npocmopi 00 anzebpu JIi cynepinmezpo-ougepeHyiarbHux onepamopie oOHiel AHMUKOMYMAamMueHol
3MIHHOI 047 HECAMOCHPANCEHO20 CynepOupeperHyiaibH020 Onepamopa, po3GUHEHO Meno0 CKIHYEeHHO-
sumiprux peoykuiti muny bapemana. Jlosedeno icHy8anHa napHoi MOYHOI CynepCUMNAeKIMUYHOL CIPYK-
mypu Ha 8i0NOBIOHOMY IHBAPIAHMHOMY CKIHYEHHOBUMIPDHOMY CYNEPRiOnpOCMopi cynepcumempu4or
iepapxii Byccinecka ma inmeeposricmo 3a Jlaxcom —JIiyginaem pedyko8anHux Ha yeil Cynepnionpocmip
KOMYMYIOUUX 8KMOPHUX NONAIB, NOPOONCEHUX IEPAPXIEIO.

1. Introduction. In the framework of the different Lie-algebraic approaches, a wide class of
supersymmetric nonlinear dynamical systems, possessing matrix Lax type representations [1 -
4] and infinite sequences of local conservation laws, has been constructed in [5-10] and many
others. For such nonlinear dynamical systems, defined on suitable functional manifolds, a me-
thod of reducing the system to the invariant subspaces, generated by critical points of the related
conservation laws has been developed in [4, 11 —14]. In particular, in [4, 12, 13] it has been shown
that the exact symplectic structure on the corresponding invariant space can be obtained by
means of the Gelfand - Dikii relationship [15, 16] for the differential of the Lagrangian functi-
onal on a suitably extended phase space [11], and the corresponding Hamiltonian functions of
the reduced vector fields generated by the systems have been constructed.

In [13, 17, 18] the reduction method has been further developed for superconformal nonli-
near dynamical systems as well as for supersymmetric ones defined on supermanifolds of one
commuting and one anticommuting independent variables. In particular, in the paper [18] this
method has been used for investigating Neumann type invariant reductions [19] of the Laberge —
Mathieu supersymmetric hierarchy, related to the Lax type flows on the space dual to the Lie
algebra of superintegro-differential operators of two anticommuting variables for some self-
adjoint superdifferential operator.
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BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS... 455

In this article, the reduction method is applied to the supersymmetric Boussinesq hierarchy
[6] associated with a non-self-adjoint superdifferential operator depending on one anticommu-
ting variable.

The second section contains a preliminary description of Lie-algebraic and differential-
geometric properties, being important for a better understanding of the used techniques and
the obtained results.

In the third section, we establish existence of an even exact supersymplectic structure on
the invariant supersubspace determined by the Bargmann type constraints [14] by means of the
superanalog of the Gelfand - Dikii relationship [18, 20] and the Hamiltonian functions for the
reduced commuting vector fields, generated by the hierarchy.

In the fourth section making use of the differential-geometric properties of the supertrace
gradient for the monodromy supermatrix of the related periodic matrix linear spectral problem,
we obtain the Lax representations for these reduced vector fields. The algorithm for redu-
cing of monodromy supermatrix upon the invariant supersubspace is described. A complete
set of functionally independent conservation laws, being involutive with respect to the Poisson
bracket related with the obtained even supersymplectic structure, is also found. It ensures the
complete Liouville integrability [21] of the reduced vector fields.

2. The Lax integrability of the supersymmetric Boussinesq hierarchy. The supersymmetric
Boussinesq hierarchy [6] can be represented in the form of the Lax type flows

dl ;
20— (B /3
dt] |:(l )+7l} )
1
dl ;
== 1 BI+2/3y,
il )oo1]

where | = 0% + ¢Dyd + ad — xDg — b € G, w = (a,b,0,x)T € M2 c C=(S'I';R2?),
(z,0) € SIS ~ S x A, S ~ R/2nZ, A, is a subalgebra of anticommuting elements of

0
the Grassmann algebra A := Ay @ A; over the field R € Ag, R¥? := A2 x A?, 9 := R
A
0 0 -
Dy = 20 + 98— is a superderivative and t;, t; € R, j € Z, are evolution parameters. Here
i

the lower index "+" denotes the pure differential part of a superintegro-differential operator
from the space G* ~ G being the dual space to the Lie algebra G of superintegro-differential
operators
A=0"+ > aDj€G, peZ qeN,
p<2q—1

with coefficients a), = ap,(z,0) = ag(;v) + Oay(z), ap € C>®(S'M; Ag) if p = 2r and a, =
= ap(z,0) = aj(x) + 0a)(x), ap € C®(S' Ay ifp = 2r — 1,7 < ¢, ¢ € N, subject to the
scalar product

2T
(A, B) = /dw/d@resAB, A Beqg,
0

where the symbol "res" designates the coefficient at the operator D, !, The evolution with
respect to the parameter £, is given by the supersymmetric nonlinear dynamical system [6] such
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as

da 1

T = 3 (ox+200 zz)

db 1

=3 (2(Dga)x + 2¢(Dgb) + 2aa; — 2(Dgay)d + 3byy + 20222),
1

do

— = -2 z — Pzx,

pra Xz — ¢

dx 1

X 2 (20(D0) = ADud)x + 2a)s + 20(Doe) + 3w+ 2rrs).

which entails the Boussinesq system [22] at a = b = 0, ¢ = Ou, x = Ov and (u,v)’ €
€ C™(S;R?).

The evolution equations (1) can be considered as a compatibility condition for the spectral
relationship

ly = Ay, 2

where A € Ag D Cis a spectral parameter, being invariant with respect to the evolution flows
(1), y € Ly(S'';C!9), and the evolution equations

d .
W _ )y,

J
and

4y _ et/

di; e

The corresponding adjoint spectral relationship and the adjoint evolutions take the form

"z = Az,
dz _ 1(3i+1)/3yx 3
& = O, 3)
e (il

J

where I* = —0% — Dyd¢ — da — Dyx — b is the operator adjoint to I and defined by means of
the integral relationship
2 2

/ da / d02(ly) = / dz / do(l*2)y,
0 0

for all y € Lo(S';C1%) and z € Ly(S'1; COM).
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The mentioned above spectral problems can be suitably rewritten in the equivalent matrix
forms [6],

DyY = AY, 4)
DyZ = —A'=27, 5)

where A € C®(SUg1(3]3)), A := A[w; N, Y = Y(2,6;)) € W := Ly(SU5C3B), 7 .=
= Z(2,0;)) € W, Y = (0, Y2, Y1, Y1, Y3, Y5) Yo = Y, Z = (20,20, 24, 21,23, 25)  , 25 = 2
and

0 0 0 1 00
0 0 0 0 10
0 0 0 0 01
A= 0 -1 0 0 0 O
0 0 -1 0 0 O

b+X a 0 x ¢ O

Here the upper index "T " denotes the supermatrix supertransposition acting by the rule

Ts
wTs — < Wi Wiz ) _ < Wi Wy >
War Wag ~Wh W,

for any supermatrix W € gl(m|n).
The associated evolutions are written as

dy ,
— = B;Y = (\MS),Y, (6)
dt;

Y - .
v _ BY = (¥S%).Y, (7)
dt;

and

dz -
— = _IB*IZ 8
az _ —IB/*12Z, 9)
dt; a

where I := diag(1,1,1,—1,—1,—1), B; := Bjw;\]Y = (MS).Y, B; := Bjlw;\]Y =
= (MS?),Y, S =~ ¥,y Sj-1A 77t is an asymptotical expansion of the monodromy super-
matrix S(z,0; \) := Y (z,z + 2, 0; \) for the periodic matrix spectral problem (4) as |\| — oo,
Y (Z,z,0;\) is a fundamental solution of the linear equation (4), that is, Y (z,z,0;\) = 1,
T € 8S,1 € gl(6) is the unit (6 x 6)-matrix (see [18]),

O O OO oo
OO OO oo
o O OO O
OO OO oo
OO OO oo
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458 0. YE. HENTOSH

the lower index "+" denotes the polynomial part of the corresponding Laurent series. The
hierarchy (1) possesses two sequences of the Casimir type conservation laws

2 2m
;= / dx / dby;[w] = % dz / dfres |BIH1/3,
0

21

o7 :z/dm/d@w

0

(10)

de | dfresi3i+2)/3

where some four of them are

2T 21
sz—/dx/de(b, %z/d:c/dex,

0 0

21

1
- 3/dx/d9(ax+b¢+¢(Dex)),

0
1 2m
1 = 77 /d:v / df(—18bx + 9b,¢ + 3a%¢ + Yaxs + 6ade.+

+ 3a¢(Dpd) + ¢(Dy)* + 96(Dyx) — Ix(Dox) + 36(Dyuz), et

These conservation laws are connected to each other by means of the Magri [23] relationships,

Mp(z,0;7) = AL p(x,0;)), (11)
M@(x,0;7) = ALG(,0;N), (12)
where ¢(z,0; \) = gradstr S(x,0; \), p(z,0; \) = gradstr S%(z, 6; \),
p(x,0;0) = > 9A 7, ¢ = grady;lw],
JELy
G(z,0:0) ~ > AT, @ = grad;[uw],
JEL+

and £ : T(M??) — T*(M??) and M : T(M??) — T*(M??), are a pair of compatible
linear Poisson operators [23], constructed before in [6]. Here the symbol "grad" denotes, as
usually, the left gradient of the corresponding functional. The operators £ and M generate a
bi-Hamiltonian representation for the hierarchy (1) in the form

d
& —Lgradyj41 = —M grad;,
dt;
(13)
dw - ~
— = —Lgrady;41 = —Mgrad7;,
dt;
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where
0 26 + 3Dy0 0 -39
= 204+ 3Dgd 2x + (Dga) + ¢ —30 ¢Dy
0 -30 0 0
—30 —(Dgp) + ¢Dy 0 0
d a . .
and M has a more cumbersome form (see [6]). The vector fields i, and E’ Ji,j2 € Zy,
1 2

commute with each other, i.e.,

[d,d] —0, [d,fl] — 0, [fl,fl} — 0. (14)
dtjl dtj2 dtjl dtj2 dtjl dtjg

The existence of conservation laws (10) and matrix Lax type linearizations (4), (6), (7) and (5),
(8), (9) allow us to reduce the hierarchy (1) to its invariant supersubspaces,

M2P = {w e M*? : grad Ly[w] = 0},

generated by the Lagrangian functionals

27 P Q N
Ly = /dm/dGLN[w] = Z Ak Ve, + Z bk2’$/k2 + Zci)\i,
0 k1=0 k2=0 i=1

where ay,, bi,, ¢; € A9 D C are some coefficients and \; € Ag D C, ¢ = 1, N, are different
eigenvalues of the periodic spectral problem (4) for arbitrarily chosen orders P, Q, N € Z.
3. The supersymplectic structure on some invariant supersubspace. Below we shall study the

. d . . :

reductions of the vector fields p7e and ot j € Z4,on the invariant supersubspace determined
J J

by the Bargmann type constraints [14]

MZQV‘2 = {w e M?2 : grad Ly[w] = 0},

2 N (15)
o i=1

where \; € Ay D C, are some different eigenvalues of the periodic spectral problem (2),
being considered as smooth by Frechet functionals on M?? ie., \; € D(M??), with the
corresponding eigenvectors Y; = (yos,Y2i, Yai, Y1i, Y3i ¥si) | € W and adjoint eigenvectors
Z; = (Z()Z',ZQi,Z4i,Zli,Z3i,Z5i)T S W, C; € AO D) (C,i = 1,N.

First, we shall analyze the differential-geometric structure of the invariant supersubspace

M12v|2 C M?R. To describe this supersubspace, evidently we shall construct the gradients of the
eigenvalues \; € D(M??),i = 1, N, making use the relationships

21 21

/da:/d@(DgYi,Z,-> _ /dm/d@(A[w,)\i]Yi,Zi), i = TN, (16)

0 0
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460 0. YE. HENTOSH

where the brackets (, ) denotes the standard scalar product on CONIN and Z; = (Zy;, Zos, Zai,
Z1i, Z3i, Z5i) | is complex conjugate to the vector Z;, which follows from the spectral problem
(4). These gradients are written as

r
grad \; = s (i 754, JoiZsi, Y3iZsi, Y1iZsi) | »
(a

where Y; = (Joi, U2i, Yai» Y14, U3i, Usi) | is complex conjugate to the vector Y,

2
i = //dHinZm‘, i=1,N,
0
- - o . . d d
are normalizing multipliers, being invariant with respect to the vector fields p7e and — for all
J J
Jj € Zy.
In case of u; = —¢;, i = 1, N, the condition (15) takes the form of the Bargmann type
constraints,
N N
2[2
MN| ﬂHc = {w e M q = —Zy0i24i,b = _Zy2iz4ia
i=1 i=1
N N
¢ =) YoiziX= y2i25i} ; (17)
i=1 i=1
where H,. := {(w,Y,2)" € M?? : y; = —¢;,¢; € Ag,i = 1, N} are common level surfaces of

the invariant functionals z1;, 4 = 1, N, in the phase space M22 := M2 x W2N of the hierarchies
of coupled dynamical systems (13), (6), (7) and (8), (9) with the parameters )\;, i = 1, N, and
Y= W,Y,....YN)", Z = (Z1,Z,...,ZN) .

From the relationships (17) it follows that the solutions to the supersymmetric Boussinesq
hierarchy on the invariant supersubspace (17) are expressed by means of the coordinates of the
eigenvectors Y; and Z;,i = 1, N.

The exact supersymplectic structure on the invariant supersubspace ]\412\,|2 C M??2 can be
obtained by means of the analog [18, 20] of the Gelfand — Dikii relationship on the functional
supermanifold M 22 similarly as it was done in the paper [16] for subspaces of critical points of
local conservation laws. To make use this relationship we need the evident forms of the Frechet
smooth functionals \;, i = 1, N, on H,... From the equalities (16) we have

27 5
Ai = /de / d9< - Z(Dﬂysi)zsi + Y1i20i + Y3iz2i + Ys5izai—
0 s=0

— Y2i215 — Y4iZ3i + bYoizsi + ay2izsi + XY1i25i + ¢y3iz5i> ) (18)
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BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS... 461

where X, := )‘i|]\7[2\2(]HC ,i = 1, N, on the level surfaces H,, ¢ := (c1,¢a,...,cn)" € A}, in
the phase space M?22,

Therefore, taking into account the evident dependence (18) of \; € D(M??),i = 1, N, on
the functions (w, Y, Z)" € M2 on the level surfaces H,., ¢ € A}Y, we can apply an analog of the

2m
Gelfand - Dikii relationship to the Lagrangian functional Ly := / dz / dOLn[w, Y, Z] €
. 0
e D(M??) such as

N N
LN = —3"}/1 + Z )\; + Z Si i,
i=1 i=1

where s; € Ag D C,7 = 1, N, are Lagrangian multipliers.
Owing to the well known Lax theorem [1, 4], the condition grad Ly[w, ), Z] = 0 determi-

nes an invariant supersubspace MJQV‘Q C M?22 of the hierarchy of the coupled dynamical systems
(13), (6), (7) and (8), (9) with the parameters \;, 7 = 1, N, such as

N N
My = {(wm, )T e Mo ==} yoizib == ysizai
=1 =1

N N
o= Zymzm,x = Zy2iz5ia
=1 =1
DyY; = Alw; 5i|Y;, DpZi = —A"s[w; ;] Z;,i = I,N}.

Thus, the supersubspace MIQ\,|2 N H. ¢ M?? is diffeomorphic to the supersubspace vap -
c M?Rifs; = \;,i = 1, N, for every ¢ € AY.

By means of the analog of Gelfand — Dikii differential relationship [18, 20] for the Lagrangi-
an functional Ly € D(M?P),

dinfw,¥, 2] = ((dw,dy,d2)", grad Ly[w, ¥, Z]) + DoaV, (19)

where (¢, x, Y, Z)" are coordinates on a suitably truncated functional supermanifold M12v|2 C
c M2 "d"isa symbol of the exterior differentiation in the Grassmann algebra of differential
forms on CON+2I(6N+2) and the brackets (,) denotes the standard scalar product on
CON+2)I(6N+2) we can construct the even exact two-form & = da(!),

5
@@ =" "y Azg +do Ady, (20)

i=1 s=0

where "A" is a symbol of the exterior product on the Grassmann algebra of differential forms on
CONFIENT2) The reduced two-form w(® := &@)| 22 defines a supersymplectic structure on
N

the supersubspace M]2\,‘2 N H. ~ MJQVD C MJQV‘Q, which is smoothly embedded in the superspace
MJZ\P owing to the relationships (17).
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462 0. YE. HENTOSH

The expression (19) ensures the invariance of the reduced two-form w(?) with respect to the
superdifferentiation Dy, that is,

Dyw® = 0.

. d d
Since D2 = e the two-form w(®) is also invariant with respect to the vector field 7. °on M 212
X X

Taking into account that the supersubspace M Nl NH. ¢ M?? is diffeomorphic to the

finite-dimensional supersubmanifold Mz ¢ RONI6N+2) determined by the constraints
N N
Fyi=¢— yoizsi =0, Fhi=x—Y yauzi (21)
i=1 i=1

in the superspace RONI6N+2) we can obtain a supersymplectic structure on MJQ\,|2 N H. as a
natural Dirac type reduction of the two-form &) on Mz.
The two-form & generates the Poisson bracket on the superspace R6VI(6N+2)

N
oF 0G oF 0G

{F,Glor =D > ( _ >_
i—1 5=0,2,4 0zsi Oysi  Oysi Ozsi

o.F 9,G 0o.F 9,G o.F 0,G 0.F 0,G
Z Z ( G ) >+ ) ) (22)

aysi 0zsi 0z 8ysi a¢ aX aX agb

=1 s5=1,3,5

where SC and 8C denote operators of the left and the right derivatives with respect to the

anticommuting variable ¢ € A, for arbitrary smooth functions F € C>(R6NI(6N+2), R10) or
loss (R6N|(6N+2); RO|1) and G € C® (R6N|(6N+2); R1|O) or O™ <R6N|(6N+2); R0|1).

Since the matrix of constraints {F;,, Fi., }. 2, k1, k2 = 1,2, is nondegenerate, the standard
Dirac type reduction procedure [4, 25] entails the following Poisson bracket:

(F.GY o = {F Glye — 1F, Filoo (B, Gloe) — {F Fafp {F1, Glom = {F,Gloe) —

. ﬁ:( OF O,F ,>+arp )
i1=1 62011 sy Yoin ax
N
alG > 8[G
X 7 " + — _
(gz:l <Z5 Dz U Dy, Do )
_ ZN:< OF O,F ,>+arp )
=1 8227,1 8y5i1 Y2ir 8¢
N
8ZG > 6[G
: o : Ty ) 23
(ZZZ:l<528OZ2 yUQ@ Y5i, ax> ( )
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BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS... 463
related with the supersymplectic structure w'>) := w® on Mz ~ M2
From the equalities
dLy dLy

N0, =X -0, jezy,
dt; di; J=a

it follows that there exist functions A(7), h(i) € D(M 212) obeying the relationships

dw dy dz\' . o
<<dtdd> grad Lyfw, Y, ZJ> = Dh(®,
J

dw dy dZ\" ) B
<<d;0’d?lj’d$> 7gradLN[w,y, Z]> = Deh(t]’)’
J

(24)

where the brackets (, ) denotes the standard scalar product on C(6N+2)I(6N+2) The functions
h(%) and h(%) on M?V‘Q satisfy the following equalities:

~

ia0® = —dh), i, 0® = —gh®), ez, (25)
dt ; rifj
d -
where i 4 , i o are inner differentiations with respect to the vector fields a7 MJZ\,|2 —
i di; J

- d - -
— T(M]2\,|2) and T MJQ\,‘2 — T(MJQV‘?), j € Z4, in the Grassmann algebra of differential

forms on C(6N+2)[(6N+2)

To state the first equality in (25) we need to calculate the expressions

i o ((dw,d,d2)", grad L[w, Y, Z]) = Doh®s).

d_
dt;

Then we have
di 4 <(dw,dy,dZ)T, grad Ly[w, Y, Z]> — —Dydht),
dt]-

From (19) we easily obtain that the identities
d <(dw, dy,dz)7, grad Ly[w, Y, Z]> — Dyda™
and
i d <(dw, dy,dz)" , grad Ly[w, Y, Z]> - %Dw?) (26)

hold owing to the relations

dDy = —Dyd, i 4 Dy = —Dpi a .
dtj dtj

ISSN 1562-3076. Heainitini koausanns, 2015, m. 18, N> 4



464 0. YE. HENTOSH

d - .
Since the Lie derivative with respect to the vector field prol M]%,‘g — T(M]2\,|2) can be repre-
J
sented as
d
— =dia4a +i1ad
dt; dt; dt;

the resulting relationship

<(dw dy,dz)T , grad Ly[w, Y, Z]> = Dy (dh® 1 i 4 0@
dt dt]‘
holds on M2, The latter proves the first equality in (25), which takes place on szv\g The second
equality in (25) can be proved analogously.
The obtained relationships (25) lead to important equalities,
2 —

d d

= 2@
d, w , d{j w 0,

on MJQ\JQ NH, ~ ]\NJJQ\JQ. Therefore, the functions k(%) := (L) P E, hEi) .= pE) e

d d
are Hamiltonians subject to the vector fields T and — 9y on My 212 (H.~ Mygforallj € Z, if
J J

S = A, 1 = 1,N, that is,

WP = —dh®), i g WP = —dh®, j e Z,.

7

d_ a4
dt ; dt;
d d
For example, the Hamiltonian function of the vector field — = on the supersubspace
T 0
MJZ\,|2 N H, ¢ M??2 equals, by definition, h(*) := h(*) a2 , Where
My? N He

N
hlo) = Z (Ai(inZM + Y1i25i) — Y2i20i — Yaiz2i — Y3iZ1i — YsiZsit

+ A(Yaizsi — Y2iz3i) — X (Y2izsi — Y0iz3i)+

N N
+ <Z y0k25k> Y3izai T Y2i23i) + (Z y2k25k> (Y1i24i + Yoizsi)+
k= k=1
N N
+ (Z ylk%k) Y3iZ5i — (Z y2k24k> yOzZ47,>

1 k=1

h) =3 (Az (Yoizai + Y1i25i) — Y2i%0i — Yai?2i — Y3i¥1i — Y5i¥3it+
i=1

N N
+ (Z y0k25k> (y3i24i + Yaizsi) + (Z y2k25k) Y1iZait
1

k=1

ISSN 1562-3076. Heninitini koausanns, 2015, m. 18, N> 4
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N N
+ (Z ?J1k25k> Y3iZ5i — (Z y2kz4k> inz4z’>-

k=1 k=1

Analogously we can find Hamiltonians of the other vector fields % and C;, j € Z4, on the
J J

supersubspace Mi,‘z (N H. C M??2, Therefore, the following theorem holds.

d d
Theorem 1. The vector fields I and e j € Z., generated by the Boussinesq hierarchy

J J
(1), allow invariant reductions on the finite-dimensional supersubspaces M12v|2 NH. c M?2 for
each N € N, which are diffeomorphic to the finite-dimensional supermanifold Mz, smoothly
embedded into the superspace RONIONY2) and endowed with the even, reduced via the Dirac

scheme, Poisson bracket (23). On these supersubspaces the vector fields % and dcé’ Jj € Zy,
J J

generated by the equations (6), (7) and (8), (9) under A\ = X\;, i = 1, N, are Hamiltonian with
respect to the Poisson bracket (23). The corresponding Hamiltonians h%i) | h(t) e Co°(RONI(6N+2).
RY9) are reductions on M]2\,|2 N H. ¢ M2 of suitably constructed functions h\t/) h(ti) € D(M22)
satisfying the equalities (24). The relationships (17) describe all periodic and quasiperiodic soluti-
ons to the Boussinesq hierarchy (1) on the supersubspace Mzz\,‘2 N He.

4. The Lax-Liouville integrability of the reduced commuting vector fields. To state the
Liouville integrability of the Hamiltonian vector fields di and 7 J € Zy,on M]2\,|2 forall N €

J J
€ N we need to construct for these flows the related matrix Lax type representations, depending

on the spectral parameter A € C, making use of the reduction procedure for the monodromy
supermatrix of the periodic spectral problem (4). We can formulate the following theorem.

Theorem 2. On the finite-dimensional supersymplectic superspace MZQ\,|2 N He, c € AY, there
exist matrix Lax representations

dSn

Wj = {Bj,NaSNL (27)
dSnN -

—— = [B;n,S 28
g, = [Bix Sl (28)

d d
for the Hamiltonian vector fields — and —, j € 7., where
dt; dt;

Bjn = Bjn(V, Z;A) = Blw;All 12y

and

BN = ijN(yvz;)‘) = B[wS)‘} M]QV\QOHC

are projections of the corresponding supermatrices on M]2V|2 () H. and the reduced monodromy
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supermatrix Sy = Sn (), Z;\) = S(x,0; \)|| equals

M2 N H.

Yoizoi Yo0iz2i Yoicdi —Y0icli —Y0iR3i —Y0iZ5i
N Y2i20i  Y2i22i Y2iR4i  —Y2iR1i Y2623 TY2iR54
_ Z 1 Y4i20i  Y4ic2i Y4iR4i —Y4iRli  —Y4iR3i  —Y4iR5i

+
— A= N | Yizoi Yiizei Yiiz4i  —Y1iz1i —Y1ik3i —Y1iZ5i
Y3iz0i  Y3ic2i Y3ik4i —Y3iR1li  —Y3iZ3i  —Y3il5i
Y0izoi Y5i22i Ys5ikdi  —Y5iR1i  —Y5iZ3i T Y5il54
0 3 0 0 0 0
a 0 3 é 0 0
N N
—b+ Y yorzar —2a 0 =X — D Yoezse —2¢ 0
/=1 (=1
+ 0 0 0 3 0|+
X + (Dga) o} 0 a+ (ngb) 0 3
—2(Dgb) — (Doaz)+ —x — (Dpa)+ —2¢ —b—(Dox)— —2a—2(Dsp) 0
N N N
+ Z Yaezse + Z Y1ezae - Z Y1e23¢
=1 =1 =1
0O 00 0 0O
0O 0 0 0 0O
-3 0 0 0 0O
1o oo o0 0o [N (29)
0O 00 0 0O
0O 0 0 -3 0 0

with the functions a, b, ¢, x given by the expressions (17) and the differential relationships

N N N N
Dga = — E Y1i4i — § Yoiz3i, Dgb = — E Y3iZae — E Y2i 234
i=1 i=1 i=1 i=1

N N
Do = > yrizsi —a, Dox =Y ysizsi — b,

i=1 i=1
N N N N

Dga, = E Y3iZ4e + g Y2i23; — Z Y1i22i — Z Yoiz1i + ag,
i=1 i=1 i=1 i=1

Proof. Making use of the spectral problem (4) we can express the gradient o(z, 0; \) of the
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supertrace of the corresponding monodromy supermatrix

S11 Sz S13 S Sis Sie
So1 Saa Saz Saa Sos Sz
S31 S32 533 S34 S3z S3e

S = 30
Sa1 Saz Siz Sua Sis Sae (30)
Ss1 Ss2 Ss3 Ssa Sss Sse
Se1 Se2 S63 Sea Ses  See
by means of its elements
str (Inga) 526
Y - Str (ISIAb) o 516
90(.7},07A) - str (SAd)) - 556 9
str (SA,) Si6

where S is a supermatrix with the elements being complex conjugate to the corresponding ones
of S.
Using the equality

o(x,0;\;) = (dd)\str S(x,0;\)

grad A;,
A=A

we can obtain, in particular, the Magri type relationship [23]
Magrad \; = \; Lgrad \;,

for all ¢ = 1, N as well as expansions of the elements Sig, Sa6, S46 and Sse of the reduced on
2[2 . .
My~ monodromy supermatrix Sy at their poles.
Another elements of the supermatrix Sy can be extracted from the supergeneralization of
Novikov - Lax [2, 3, 18] monodromy supermatrix equation

DyS = AS — (ISI)A. (31)

From this equation we directly obtain the elements S13, S23, S43, S15, S45 and Si2. To find
the other monodromy supermatrix elements we can use the relationship

str S := S11 + S22 + S33 — (Saa + S55 + Se6) = C(A), DyC(A) =0,

where C'()) is some Laurent series with constant even coefficients, which follows from the
equation (31). Since

Dy(S14 + Sas + S36) = (Saa + Ss5 + Se6 — S11 + S22 + S33) — X S16 — ¢S26,

this property of the monodromy supermatrix supertrace allows us to obtain S5 from the equ-
ality

Dy(3S25 + aS16 + ¢S + Dg(Sa5 — S12) + Do(Sa3 — S56)) = —xS16 — ¢S26 — C(N).
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It is evident that the function C'()\) can be chosen arbitrarily since the supermatrix YC(A\)Y !
with Y := Y'(z,0; )\) is some even fundamental supermatrix for the spectral problem (4) and
C()) is some even supermatrix with elements in the forms of Laurent series with constant
coeffecients and satisfies the equation (31). If

N =23 i/\

i=1 ¢

5
0 = E YsiZsi,
s=0

(32)

the elements So5, S14 and Ss3g look like

N
Y2230
= A =
Sos - -\ +Cl( ), S14

Yoiz1i
— )\ — )\
=1

+ C1(N),

N
125§
Sag = i“_ L+ G, DeCi(N) =0,

i=1

where C}()) is some Laurent series with odd coefficients.

Then the elements Sys, S53, Sia — S11, S55 — S92, See — 533, Saa — So9, S55 — S33, Soq and
S35 can be found successfully.

From the evident expressions for the differences Syq — S11, S55 — S22, Seg — 533, S44 — Soo
and Ss; — S33 we further obtain the diagonal elements of the reduced monodromy supermatrix
Sy in the forms

N
Yoiz0i Y2i22i
S11 = P, Sy = P,
11 2N\ + 22 2N\ +
i=1 i=1
S _ 44444 P S _ 1i<1% P,
=) o TP Su=-) g
i=1 i=1
S _ 31431 73, S _ 51451 P,
” ;)‘_)‘i+ v i:l)\_)\i—i_

where P = P(Y, Z; \) is some still undefined function on szv‘Q.

From the relationships for the superderivatives of the diagonal elements of Sy we look for
the elements Sy;, Ss2 and Sg3, depending on (Dy P). Moreover, from the similar relationships
for the elements in the first column of S we obtain expressions for the elements Sa1, S51, S31,
Se1 and the differential relationship

—DgPry = —aPy + X(DBP) - ¢(D9Px) (33)

Thereby, the elements S54, S32, Se5, S34, Se2 and Sgy can also be found.
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Having calculated now the elements Sgs, Sg2 and Sgs successfully in other way we obtain
the expressions

Po = 26010, (Ded)C1(N) = 0,

3Pue = — (2 + (Dga))CL(N) + ¢ C1(N) — $(Dy P).

From these equations it follows that

2
DyP, =0, —g aqul()\) + X(D@ 'P) =0,

—(2x + (Dga))C1(A) — ¢(Dy P) = 0.

allowing for the vanishing solution for P and C4 (). The latter entails the reduced monodromy
supermatrix Sy expression (29).

In addition, the relationships (27), (28) follow from the compatibility conditions of the
equations (4) and (6),

dA .
o (DgBj) = (IB;1)A— ABj, j € Ly,

as well as from those for the equations (5) and (7)

dA ~ ~ = .
E - (DQB]) = (IBJI)A - ABJ', Jj € Zy.

J
This finishes the proof.

1
Owing to the equations (27), (28) the functionals — str S%, a € N, are invariant with respect
«

d d
to the vector fields TR and —, j € Z.. Then the coefficients in the expansions of these
J J

functionals at their poles appear to be conservation laws of the reduced on MJQ\,|2 () H. vector
fields from the hierarchy (1). Among them the coefficients oy, 6;, 5; € C(RSNI(ON+2), R110),

1
¢ = 1, N, are given by the expansions of the invariant functionals str Sy, 3 str S% and 3 str Sy
as follows:

N
oy
str Sy = Zi,
i=1 A=A

N )
1 9 1 o 0;
erSN QZ(A—M)Q—FZA—/M’ (34)

=1 =1
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N
0; = Z M + \; str (S_lsz> + str (S()SZ) =

k=1 ki Ai = Ak
N (Zi:o ysizsk> (Zi:o yrkzri)

= Z SV — Aigii + fis,

k=1 ki i 2k
and
1 1Y Y o6 Yoo
§StrSN_§§:: 3+;(A—)\1)2+;)\—)\1’
(35)
al str (S;SkSe) N str (SiSk) (0% — oy)
5_1 — 7 + (3 7 _"_
Z (A = k) (A = M) k_;#i (A — Ap)?
k=1, =1,

k040, k4L

N
i Stl“ S Sk + SES; ))
+ > /\ " +

k=1, k#i

N
str So S; Sk + SiS; ))
+ > T +
k=1, k#1

+ Aistr ((S_180 + SoS_1)S;) + str (S25;) =

_ 3 <Z§ZO ySiZSé) (Zi:o y’*”"“’“) (Zfzo yrkzrl)
) k:,zZ1 ()\i B )‘k)o\z‘ =)

+
)

( s=0 yslzsk) (ZEZO yrkzri) Ei:()(ymzm' - ynkzznk)
(i — Ap)?

N
+ > -
1

k=1,

I

#i

AiGik (Zizo yskzsi> + Nigri (Zizo ysizsk)
Ai — Ak

+

N
> +
1

k=1,

G

#i

s 0 yskzsi> + sz (Zi:() ysizsk)
Ai — Ak

N i fik(

k=1, k#i

— Aibii + Giis

G
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where

gik = 3(Yoizar + Y1i25k),

N

fik = 3y2izor + ayoizor + 3yaizar + Py1izor + (—b +> yoz@z) Yoizak — 20Y2iZak—
=1

N
- (X + Z yoezse) Yrizak — 20Y3izak + PYoiz1ke + 3Yziziet
=1

+ (X + (Dga))yoizar + dy2izar + (a + (Dod))yrizsp+

N
+ 3ysizsk — (Q(Deb) + (Dgaz) = y4z255> Y5i 20k —
=1

N
- (X + (Dga) — Z yuzu) Y2iZ5k — 20YaiZ5k—

=1
N

- (b +(Dox) + Y yléz3€> Yrizsk — 2(a + (Dp9))ysizsk,
=1

Pik = Y(Yoizak + Yoizak + Y1iZ3k + Y3iZs5k) — 3OY0iZsk,

N
ik = 3ayoizoi + Yaizoi + 3QYrizoi + 3 (b +> yoﬂ%) YoiZ2k—
=1

N

— 3ayzizor — 3 (X +) yO€Z3€> Yrizok — 3PYsizont
=1

N
+ (—2a2 +¢ <—X —2(Dga) + Z y0z23£>> Yoizak+

(=1

N
+3 <—b + Z yoe»’c“zz) Y2izak — 6ays;zar, — 20(2a + (Dgd))y1i2an—
=1

N
-3 (X +y Z/0£Z3e> Ysizak — 60ysizar + 3(x + (Doa))yoiz1k+
=1

+ 60y2; 211 + 3(a + (Do) y1iz1k + ysiz1x+

N
+ <¢(2a + (Dgg)) — 6(Dgb) — 3(Dgay) +3 Z/413251z> Yoiz3k+
=1
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N
+3 (Z yww) Y2iZ3k — 3OYaiz3k—

(=1

N
-3 (b +(Dox) + ylEZM) y1izsk — 3(a + (Do) )ysizan+
=1

N

+ <—3G(X + (Dga)) + a Y yrezae — 2(Do) (x + (Dga)) +
=1

N
+¢ <b — (Dox) = > _(yrezse + 2yoe224))) Yoi 25kt

(=1

N
+ <2¢(a — (Dg9)) — 6(Dgb) — 3(Dpag) + 3 Zyzuzzw) Y2i25k—

(=1

N
-3 (X + (Dga) — Zywzu) Yaizsk+

(=1

N
+ (‘2(a +(Do9))* + ¢ <3X + ) (yoezse — 2y1€Z4€)>> Y1iZs5k—

(=1

N
-3 (b +(Dox) + Y yuzse) ysizsk — 6(a + (Dod))ysizsks
=1

and are functionally independent on M12v|2 () H. and involutive with respect to the Poisson

bracket {.,.} 2 on ]\JJQ\J2 () H.. Thus, owing to the superanalog [29] of Liouville integrabili-

ty theorem the vector fields d(;l] and ;é, j € Z., are superintegrable flows on the finite-
J

dimensional supersubspace Mf\,|2 NH. c M??2,

5. Conclusion. In the present paper the generalized invariant reduction technique, devi-
sed before in [18], for investigating Lax type integrable supersymmetric nonlinear dynamical
systems, has been used to study the Bargmann type reductions of the vector fields generated
by the supersymmetric Boussinesq hierarhy related with a non-self-adjoint superdifferential
operator of one anticommuting variable. It has been established that the corresponding invari-
ant finite-dimensional supersubspace is diffeomorphic to some supersymplectic supermani-
fold, smoothly embedded into superspace ROVI(6N+2) N ¢ N, with an even supersymplectic
structure.

The invariant reduction procedure can be applied to a wide class of other Lax integrable
supersymmetric nonlinear dynamical systems on the functional supermanifolds of one commu-
ting and one anticommuting independent variables, associated with the linear matrix spectral
relationships. The devised technique can also be effectively used for investigating reductions of
(2|1 + 1)- and (2|2 + 1)-dimensional supersymmetric nonlinear dynamical systems with triple
matrix Lax linearizations, described before in the papers [26, 27, 28], upon suitably determi-
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ned invariant finite-dimensional supersubspaces. The latter is planned to be a subject of future
studies.

It is worth to mention here that the reduction method contributes to solving Lax integrable
supersymmetric nonlinear dynamical systems on functional supermanifolds (of one commuting
and one anticommuting independent variables) by means of the integration of the Liouville
integrable systems on suitably determined finite-dimensional supermanifolds with even super-
symplectic structures. Thus, there is a need of developing the devised in [30] integration method,
based on specially constructed Picard — Fuchs type differential-functional equations generating
Hamiltonian —Jacobi transformations, and applying it to the Liouville — Lax integrable dynami-
cal systems on supersymplectic finite-dimensional supermanifods.
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