UDC 5179

EXPONENTIAL DICHOTOMY AND EXISTENCE OF ALMOST PERIODIC
SOLUTIONS OF IMPULSIVE DIFFERENTIAL EQUATIONS

EKCITOHEHIIAJ/IBHA INXOTOMIA TA ICHYBAHHA
MAVIDKE INEPIOJUYHUX PO3B’I3KIB
IMITIYJbCHUX TUPEPEHUIAJNBHUX PIBHAHD
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We obtain conditions for existence of piecewise continuous almost periodic solutions of a system of impulsi-
ve differential equations with exponentially dichotomous linear part. The robustness of exponential di-
chotomy and exponential contraction for linear systems with small perturbations of right-hand sides and
points of impulsive action are studied.

Ompumano ymosu icHy8aHHA KYCKOBO-Henepep8HUX Matixe NepioOudHUX po3e6 A3Kiae cucmem oughepeH-
YIAAbHUX PIBHAHD 3 IMNYAbCHONO 0I€H0 MA eKCNOHEHYIAAbHO OUXOMOMIUHON MHILIHOW YacmuHow. Bu-
84€HO 2pYOICMb eKCNOHEHUIAALHOT OUXOMOMIL Ma eKCROHEHUIAAbHOT CIIUKOCMIE ATHIUHUX cCUCmeM npU

1. Introduction. We investigate the problem of existence of a piecewise continuous almost peri-
odic solution for the semilinear impulsive differential equation

du
i A)u+ f(t,u), t# 75, (1)
Auli=r; = u(1; +0) —u(r;) = Bju(rj) + gj(u(ty)), Jj € Z, )

where u : R — R™. We use the concept of discontinuous almost periodic functions in the sense
of [1, 2]. There are many works (see, e.g., [3—6] and references given there) devoted to a study
of almost periodic solutions of impulsive systems.

We assume that the corresponding linear homogeneous equation (if f = 0,g; = 0) has
an exponential dichotomy. Matrices (I + B;) may degenerate, det(I + B;) = 0, for some (or
all) j € Z therefore, solutions of the system are not extendable to the negative semiaxis or
are ambiguously extendable. Defining exponential dichotomy we require that only solutions
of linear system from the unstable manifold can be unambiguously extended to the negative
semiaxis. This corresponds to the definition of exponential dichotomy for evolution equations
in an infinite dimensional Banach space [7-9].

Robustness is an impotent property of exponential dichotomy [8-10]. We mention arti-
cles [11-14] where the robustness of exponential dichotomy for impulsive systems by small
perturbations in the right-hand sides is proved. In this article we prove robustness of exponenti-
al dichotomy also by small perturbation of points of the impulsive action. We use change of time
in the system. Then approximation of the impulsive system by difference systems (see [7]) can
be used.
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2. Preliminaries and main results. Let X be an abstract Banach space and R and Z be the
sets of real and integer numbers, respectively.

We will consider the space PC(J, X), J C R, of all piecewise continuous functions x : J —
— X such that

i)thesetT = {7; € J : 7j41 > 7j,j € Z} is the set of discontinuities of x;

ii) z(t) is left-continuous, x(t; —0) = z(t;), and there exists lim; ¢, 0 z(t) = z(t;+0) < oc.

Definition 1. A strictly increasing sequence {1} of real numbers has uniformly almost peri-
odic sequences of differences if for any ¢ > 0 there exists a relatively dense set of e-almost periods
common for all the sequences {1} }, where 7], = Tj,1; — 13, j € Z.

Recall that an integer p is called an e-almost period of a sequence {x}} if ||xpp — zi]| < €
forany k € 7. A sequence {xy} is almost periodic if for any € > 0 there exists a relatively dense
set of its e-almost periods.

Definition 2. A function ¢(t) € PC(R, X) is said to be W -almost periodic if

i) the sequence {1} of discontinuities of p(t) has uniformly almost periodic sequences of
differences;

ii) for any € > 0 there exists a positive number § = §(e) such that if the points t' and t" belong
to the same interval of continuity and |t' — t"| < § then ||o(t') — p(t")]] < &;

iii) for any € > 0 there exists a relatively dense set I" of e-almost periods such that if 7 € T,
then ||p(t +7) — ¢(t)|| < € forallt € R which satisfy the condition |t — ;| > €, k € Z.

We consider the impulsive equation (1), (2) with the following assumptions:

(H;) the matrix-valued function A(t) is Bohr almost periodic,

(Hz2) the sequence of real numbers 75 has uniformly almost periodic sequences of differences,
and there exists 6 > 0 such that inf} T]i =0 >0,

(Hs) the sequence {B;} of (n x n)-matrices is almost periodic,

(H4) we shell use the notation U, = {z € R" : ||z|| < p}; the function f(¢,u) : R x R" —
— R™ is continuous in v and is W-almost periodic in ¢ uniformly with respect to u € U, with
some p > 0,

(Hs) the sequence {g;(u)} of continuous functions U, — R" is almost periodic uniformly
with respect tou € U,,.

By Lemma 22 [9, p. 192] for a sequence {;} with uniformly almost periodic sequences of

differences there exists the limit

lim i(t,t+1T) — )

T—o00 T
uniformly with respect to ¢ € R, where i(s,t) is the number of the points 7 lying in the
interval (s, t).

The next lemma is proved in [9].

Lemma 1. Assume that the sequence of real numbers {7;} has uniformly almost periodic
sequences of differences, the sequence {B;} is almost periodic and the function f(t) : R — R"
is W-almost periodic. Then for any € > 0 there exist a real number v, 0 < v < ¢, and relatively
dense sets of real numbers " and integers ) such that the following relations hold:

Ift+r)—f@O)ll <e, teR, |t—7]>e jEL,

1Bitq — Bl <&, |7 —rl <,
fork e Z,r e I',q € Q.
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Definition 3. A function z(t) : [to,t1] — R™ is said to be a solution of the initial problem
u(to) = uo € R" for the equation (1), (2) on [to, t1] if

(i) it is continuous in [ty, 7x], (T, Tk+1), - - -, (tkts, t1] With discontinuities of the first kind at
the moments t = 7;,
(ii) x(t) is continuously differentiable in each of the intervals (to, k), (Tk, Tk+1), - - - » (tkts, 1)

and satisfies the equations (1) and (2) ift € (to,t1),t # 7 and t = 7; respectively,
(iii) the initial value condition u(ty) = wy is fulfilled.

Together with equation (1), (2) we consider the linear homogeneous equation

du
o = Alu, t# T, (3)
Ault=r; = u(1; +0) — u(7j) = Bju(7), j € Z 4)

Denote by X (¢, s) the evolution operator of the linear equation without impulses (3). It satisfies
X(ry1)=1,X(t,8)X(s,7) = X(t, 7),t,s,7 € R.
We define an evolution operator for equation (3), (4) by

U(t,s) = X(t,s) if 7 <s<t< Ty,
and
U(ta S) = X(tv Tk)(I + Bk)X(Tk’v Tk—l) s (I + Bm)X(va S)a (5)

frp1 <s <7y < Tmt1 < ... < T <t < T

Definition 4. We say that system (3), (4) has an exponential dichotomy on R with exponent
B > 0and bound M > 1 if there exist projections P(t), t € R, such that

(i) U(t,s)P(s) = P(t)U(t,s),t > s;

(it) U(t, 5)|im (P(s)) for t > s is an isomorphism on Im (P(s)), then U(s,t) is defined as an
inverse map from Im (P(t)) to Im (P(s));

(iii) ||U(t, s)(1 — P(s))|| < Me Bt=%) ¢ > s

(iv) |U(t,s)P(s)|| < MePt=9) ¢ < s.

Now we formulate our main result.

Theorem 1. Suppose that system (1), (2) satisfies assumptions (H1) — (Hs), linear system (3),
(4) is exponentially dichotomous with constants  and M > 1.
Assume that the functions f(t,u) and gj(u) satisfy the Lipschitz condition

1f @ u1) = f(u)l] < Lflur —wall,  [lgj(ur) — gj(u2)ll < Liluy —wall, j € Z,
with a positive constant L and are uniformly bounded in the regiont ¢ R,u € U, :

sup || f(t,u)|| < H < oo, sup|lgj(u)|]| < H < oo, je€L.

(tu)

Then for a sufficiently small L the system (1), (2) has a unique piecewise continuous W -almost
periodic solution.
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3. Robustness of exponential dichotomy. If system (3), (4) has an exponential dichotomy on
R, then the nonhomogeneous equation

du

— = AWut S0, £, ©)
Auli=r; = u(7j +0) —u(r;) = Bju(rj) +9g;, Jj €L, (7)
has a unique solution bounded on R,
w(®) = [ Gt.s)f(s)a)ds + Y Gty ®)
% JEZ

where

is a Green function such that
IG(t, s)]| < Me_mt_s‘, t,s € R. )

Analogously to [7 p. 250] it can be proved that a function u(t) is a bounded solution on the
semiaxis [tg, +o0) if and only if

+oo
u(t) = Ult.0)(I = Plto))ulte) + [ Gt.s)f(s)ds+ 3 Gltrlgs ¢2 0. (10

to<7;

A function u(t) is a bounded solution on the semiaxis (—oo, to] if and only if

u(t) = U(t, to)Plto)ul(to) + / G(t,9)f(s)ds + > Gt 7))g;, t < to. (11)

to>T;

Lemma 2. Let the impulsive system (3), (4) be exponentially dichotomous with positive con-
stants 3 and M. Then there exists 6o > 0 such that the perturbed systems

du ~ .
o = A, t#£ 7, (12)

Au|t:;j = u(%j +0) — u(%j) = Bju(Tj), JjEZ, (13)

with sup; [7; — 7| < do, sup; || B;j — Bj|| < 6o, sup, | A(t) — A(t)|| < o, are also exponentially
dichotomous with some constants 51 <  and My > M.

Proof. In system (3), (4), we introduce the change of time ¢ = «(t’) such that 7; = «(7;),
Jj € Z,and the function « is continuously differentiable and monotone on each interval (7}, 711).
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The function « can be chosen in a piecewise linear form,

Tj+1 — T4
Jj+ J b, =

Ti+175 — TjTj+1
~ ~ 9 ] ~ ~
Tj+1 = Tj Tj+1 = Tj

t = ajt/—i—bj, a; = if ¢ (75, Tj+1)-

The function «(t’) satisfies the conditions

da(t")

o)~ < 6, |

—1’ < adg

with some positive constant a independent of j and dg.
System (3), (4) in the new coordinates v(¢') = u(«(t')) has the form

@ = Al(t’)v, t 75 7:3', (14)
dt’
A’U’t/:;j = U(’f‘j +0) - U(’f‘j) = ij(%j), ] € Z, (15)

t/
where A;(t') = dai/ ) A(a(t')). System (14), (15) has evolution the operator Ui (t,s') =
= U(a(t'),a(s”)). If system (3), (4) has exponential dichotomy with a projection P(t) at point
t, then system (14), (15) has exponential dichotomy with the projection P;(¢') = P(a(t')) at
point ¢'. Indeed,

IO (#, ) (1 = Pu(s)I = [[U(a(t), e(s")) (1 = Pla(s)]| <

< MeBlt)—als)) < ppe=Bl=s) ¢ > o
where M; = Me?%. The inequality for an unstable manifold is proved analogously.
The linear systems (14), (15) and (12), (13) have the same points of impulsive actions 7,

j € Z,and

da (t/) / /
2 Aa(t) - Ala(t))

|mwv—mwn<\

'+mmw»—mwm

Al
dt '

Let U(t, s') be an evolution operator for system (12), (13). To show that for a sufficiently
small §; system (12), (13) is exponentially dichotomous we use the following version of Theo-
rem 7.6.10 [7]:

Assume that the evolution operator U; (¢, s’) has an exponential dichotomy on R and satis-
fies

4wmw—AWWS%<mwmﬂ+wp
t t

sup [|UL(¢, )] < o (16)
0<t'—s'<d

for some positive d. Then there exists n > 0 such that

|U(#,s") = Uy(t',s")]| < n, whenever t—s<d
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and the evolution operator U (#', s') has an exponential dichotomy on R.
For proving this statement we set

tn =8 4+dn, T, = Ui(s' +d(n+1),s +dn), T, = U(s' +d(n+1),s +dn) for n € Z.

If the evolution operator U (¢, s) has an exponential dichotomy, then {7, } has a discrete dicho-
tomy in the sense of [7] (Definition 76.4).

By [7] (Theorem 76.7), there exists > 0 such that {T,} with sup,, || T, — T,,]| < 7 has a
discrete dichotomy.

Now we are in the conditions of [7 p. 229, 230], Excersise 10 (see also a more general
statement [8], Theorem 4.1), that finishes the proof.

The exponentially dichotomous system (12), (13) has the Green function

G(t,s) =

= { U(t,s)(I — P(s)), t>s
—U(t,s)P(s), t <s,

such that
|G(t,s)]| < Mye Plt=sl ¢t s e R.

Lemma 3. The difference of the Green functions of the exponentially dichotomous linear
systems (12), (13) and (14), (15) satisfies

G(t,7)—Gi(t,7) = / G1(t, s)(;l(s) — Al(s))é(s,T)ds+

+ ZGl(t,%j)(Bj — Bj)G(7j,7), t,7€R, (17)

where G1(t,7) = G(a(t), a(r)).

Proof. G(t, 7) satisfies the equation

du
dt

By (10), we have, for t > 7,

“+o0o
G(t,7) = Uy(t,7)(I — Pl(T))é(T,T) + / Gl(t,s)(fl(s) — Al(s))é(s,T)ds—l—

+ Y Gi(t,7)(B; — By)G(7,7). (18)

7T
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Analogously, by (11), we have, for t < 7,
G(t,7) = Uy(t,7)P(T)G(T — 0,7) + / G1(t,s)(A(s) — A1(s))G(s, T)ds+

+ ) Gi(t.7)(B; — B))G(7,7). (19)

T>Tj

Putting ¢ = 7 in (18), we get

+oo
Pi(7)G(r,7) = /Gl(T, s)(A(s) — Ay (s))G(s, T)ds + Z G1(7,7;)(B; — Bj)G(7;,7).

T<T;
Since G(7,7) — G(r — 0,7) = I, we have by (19), for t < 7,

+00
G(t,7) = Ul(t,7)< / G1(T, 8)(/1(8) - Al(s))é(s,T)ds—l—

+ Z Gl(T,%j)(Bj — Bj)é(f'j,T)) — Ul(t,T)Pl(T)+

7T

+ / G1(t,)(A(s) — A1(5)Cls,7)ds + 3 Gi(t, 5)(B; — By)G(7y,7) =

= Gl(t,T) + / Gl(t, S)(A(S) — A1(8)>G(S,7')d8 + ZGl(t, %j)(Bj — Bj)é(’f‘j,T).
0o J

The case t > 7 is considered analogously.
Lemma 3 is proved.
By (17), we obtain the estimate
|G(t,7) — Gi(t,T)|| < SoMae 171 1,7 € R, (20)

with some 8y < (51 and My > 1.

Lemma 4. Let systems (3), (4) and (12), (13) satisfy assumptions of Lemma 2 with sufficiently
small 69 > 0. Then the corresponding Green functions of these systems satisfy the inequality

IG(t,7) = Gt,7)|| < SoMpe 217, 1)
for all t and s such that |t — ;| > 6o, |s — 7| > do forall j € Z.
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Proof. We have
IG(t,m) = G(t, )| < |Gt 7) = Gla(t), a(n))|| + |G(alt), a(r)) = G(t,7)].-
Lett > s (the case t < s is considered analogously). Then

1G(,5) = G(a(t), a(s))|| = |U(# s)P(s) -
< Ut 5)P(s) = Ula(t), s)P(s)]+

+[U(a(t),s)P(s) = U(a(t), a(s)) Pla(s))]| <
< Ut 5)P(s) = Ula(t), YU (t, 5)P(s)[|+
+[U(a(t),s)P(s) = U(a(t), s)U (s, a(s)) P(afs))]| <
< 1 =U(a®), )lIlU(E, )P (s)]+
+[U(a(), s)P(s)|[[[1 = Uls, als))]| <
< ML= U(alt), )] + M7 O™\ = U(s, afs)]-

Here, for definiteness s > a(s),t < a(t). If t € (75 + do, 7j+1 — do), then o(t) € (75, Tj41).
Therefore, by continuity there exists a positive constant C; independent of ¢ such that ||[I —
—U(a(t),t)]] < C1dp. As a result, we obtain ||G(t,s) — G(a(t), a(s))|| < doMzePlt=3 with
some positive constant M3 independent of ¢,s € R and dp. Now, taking into account (20) we
obtain (21).

Lemma 4 is proved.

Corollary 1. Assume that system (3), (4) satisfies conditions (H)— (H3) and is exponentially
dichotomous with constants 3 and M. Then for any e > 0,t,s € R, [t — 7j| > €, |s — 7j| > ¢,
J € Z, there exists a relatively dense set of c-almost periods r such that

IG(t+7r,s+71)—G(ts)] < eCiexp (—gt—so , (22)
where C1 is a positive constant independent on ¢.

Proof. If u(t) = U(t, s)up, u(s) = wuy, is a solution of the impulsive equation (3), (4), then
ui(t) = U(t+r, s+ r)ug is a solution of the equation

du = Alt+1)u, t#7j, (23)
dt
Au|f:Tj+q = U(Tj+q +0) — U(Tj+q) = Bj+qu(7j+q)v J € Z. (24)

By Lemma 1, there exists a positive integer ¢ such that 7, , € (s +r,t +r)if 7; € (s,t). Now
we apply Lemma 4.

4. Almost periodic solutions of linear inhomogeneous system. We prove existence of almost
periodic solutions in a linear inhomogeneous system.
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Lemma 5. Let a linear homogeneous system satisfy assumptions (H,) — (Hs) and be exponenti-
ally dichotomous on the axis. If the function f(t) is W-almost periodic and the sequence {g;} is
almost periodic, then the linear inhomogeneous system (6), (7) has unique solution, which is
bounded on R and W -almost periodic.

Proof. The unique solution, bounded on R, of the system (6), (7) is defined by formula (8).
We show that it is W -almost periodic.
Take an e-almost period r for the right-hand side of the equation. Then

+oo
uo(t + 1) —uo(t /Gt+r s )ds—l—ZG(t—l—r,Tj)gj—/G(t,s)f(s)ds—
J S
+oo
- ZG(t,Tj)gj = /(G(t—l-T,S—i—T) —G(t,s))f(s+ h)ds+
/ G(t,s)(f(s+r) ds—l—z (t+ 7 Tjrq) — G(t,7j))gj+q+
+ > G, 75)(g54q — 95)-
J
We estimate the first integral,
/H(G(t—i—r,s—i—r) Gt ) (s +r)lds <
Tk+4+1—€
<> (Gt +7r,s+71) = G(t,5))f(s + )| ds+
kEZ ;7
Tk+€
Y / (Gt + 75 +1) — Gt 8)) (s +7)|lds <
keZ . .
00 TE+€
< /6016 S| f(s)llds + 3 / 1G4 75+ 7)f(s+ )| ds+
s keZ .’ .
Tk+e
+3 [ Gt 5)f(s+ 1) ds.
kez .’ .

By Lemma 1, |7j,4 — 7j — r| < ¢, therefore 7; + 7 + ¢ > 74, (We assume that » > 0 for
definiteness). The difference G(t,7;) — G(t + r,7j44) is estimated as follows. Let t — 7; > «¢.
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Then
|G (t,75) = Gt + 7,710l = Ut ) — P(75)) = Ut + 7, 7j4¢) (L — P(7j19)| <
< U, 7)) = P(r)) =U(t, 75 + ) — P(rj + )|+

+|U(t, 7 +e)I —P(rj+¢e)—U{t+r,m+e+r) I —P(rj+e+r))|+

HNUE+r 7 +e+r) =Py +e+7) = Ult+ 77549 = P(7jeg))[- - (25)

The first and the third differences are small because of continuity of the function U(¢, s) at
intervals between the points of impulses,

Ut ) — P(r5)) —U(t, 7 +e)(I — P(r; +¢))|| <
< U, 7 +e)I — P(rj +¢)(U(rj +e,75) = I)|| <

< 5026—5(t—7j —5)’

WUt +r1j+e+r)I—P(rj+e+7))—Ult+7rTi1q) I — P(Tjxg))ll =
=|Ut+r1j+e+r)I—P(rj+e+r) Uty +e+7rTire) — 1| <

< eCheVt=Ti—e),

The second difference in (25) is small because of (22).

5. Proof of Theorem 1. Denote by 2t the space of all W-almost periodic functions with
discontinuous at points of the same sequence {7;}. The norm in the space 9t is defined as
llello = super [l@(t)]], ¢ € M. We define an operator T on 9t as follows: if ¢(t) € M, then

o) = [ Gl f(s.0lo)ds + 3 Glt.)ale(r)

First, we prove that T'(Dy) C Dy, for some h > 0 where
Dy ={p € M, |¢lo < h}.

Indeed, if ||¢||o < h, then

ITell < /||G(ta5)||||f(5780(5))||d5+ZHG(taTj)H”g(SD(Tj))H <

J

o0
< /Me_ﬁt_‘s'Hds—i—ZMe_ﬁ't_Tf'H <
. j

1 1
<2MH |-+ ——7% ) < h.
<2MH 5+ o ) <
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By Lemma 37 [2, p. 214], if ¢(¢) is an W-almost periodic function and inf; 7} = 6 > 0, then
{¢(7;)} is an almost periodic sequence. Using the method of finding common almost periods, it
is possible to show that the sequence {g;(¢(7;))} is almost periodic.

Let r be an e-almost period of the function ¢(t). Analogously to the proof of Lemma 5 we
show that for ¢t € R, |t — 7j| > ¢, j € Z, the following inequality holds:

+oo
I(Te)(t +7) = (Te) (D)l = /G(H?ﬂ S)f(S)dsﬂLZG(HT, 7i)9j —

J

+o0
- [ G160 - 3 Gl | < Tlee

where I'(¢) is some bounded function of €. Hence, we proved that 7'(D;,) C Dy,
If ,9 € Dy, then

1(Te) () = (TY)(B)]| < /I!G(t,S)IIIf(S,sO(S))f(s,¢(8))|!ds+

+ Y G T lgr(e (7)) — g ($(m)]| <
k

1

SZMH(B

1
+ 1_659> llo = llo-

For sufficiently small N > 0, the operator 7 is a contraction in the domain Dp, and so there
exists a unique W-almost periodic solution of system (1), (2).
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