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The paper deals with a synchronization problem for genetic oscillator networks. The genetic oscillators
are modeled as nonlinear systems of Lur’e type. Simple and verifiable synchronization conditions are
presented for genetic oscillator networks by using the absolute stability theory and matrix theory. A network
composed of coupled Goodwin models is used as an example for numerical simulation to verify the effecti-
veness of the theoretical method.

Розглянуто задачу синхронiзацiї мереж генетичних осциляторiв. Генетичнi осцилятори моде-
люються нелiнiйними системами типу Лур’є. Умови синхронiзацiї, якi є простими та якi мож-
ливо перевiрити, отримано для мереж генетичних осциляторiв iз використанням теорiї аб-
солютної стiйкостi та теорiї матриць. Мережа, що складається зi зв’язаних моделей Гудвiна,
використовується як приклад для числових обчислень, якi пiдтверджують ефективнiсть тео-
ретичного методу.

1. Introduction. Genetic oscillator networks have recently received an increasing attention for
their wide applications in biological and biomedical science [1, 2]. In general, they can be vi-
ewed as a class of complex dynamical networks, in which the nodes denote the genetic osci-
llators while the inner or outer couplings denote the interactions. Circadian rhythms, cell cycle
and synthetic oscillators are typical phenomena or examples of the genetic oscillators [3]. It is of
great importance to investigate the collective dynamics of genetic oscillator networks with hope
to understand the intrinsic biological mechanisms for the rhythmic behavior of living organisms.
Synchronization is a universal phenomenon and occurs typically in genetic oscillator networks
[4 – 6]. In [7], a coupling scheme has been introduced to make synchronization of a populati-
on of cells. The synchronization problem of genetic oscillator networks has been thoroughly
investigated by experiment, numerical simulation and theoretical analysis until now [8 – 18].

Mathematically many genetic oscillators such as the repressilator [1], the Goodwin model
[19] and the circadian oscillator [20] can be represented in the form of multiple additive terms,
each of which particularly is of linear, Michaelis – Menten or Hill forms. Genetic oscillators
with above structure can be expressed in the form of Lur’e systems and can be further analyzed
by using the control theory pertinent to Lur’e systems [21]. The intention of this paper is to
systemically examine synchronization of genetic oscillator networks by general theory analysis
and numerical simulation. We first transform genetic oscillators into nonlinear systems of Lur’e
type and introduce genetic oscillator networks composed of genetic oscillators with this special
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structure. Then we present simple criteria for synchronization of genetic oscillator networks by
using absolute stability theory and matrix theory. A network consisting of Goodwin models is
used as an example to confirm the theoretical results. The obtained synchronization conditions
can be represented in the form of linear matrix inequalities (LMIs) [22], which can be easily
verified by using the LMI toolbox in MATLAB. Besides, the established theoretical results are
general and applicable to other biochemical and neuronal networks with each node being a
Lur’e system.

Notations: XT denotes the transpose for a matrix X; X > 0 (X ≥ 0) means that X is
a positive definite (semidefinite) matrix; X < 0 (X ≤ 0) denotes a negative definite (semi-
definite) matrixX; IN denotes an identity matrix of dimensionN ;R+ denotes the set of positive
real numbers; diag (X1, . . . , Xn) and U ⊗ V denote X1 · · · 0

...
. . .

...
0 · · · Xn

 , U ⊗ V =

 u11V · · · u1mV
...

. . .
...

un1V · · · unmV

 .

2. Problem formulation. Mathematically many genetic oscillators can be formulated in the
form of multiple additive terms, which are monotonic increasing or decreasing functions. We
consider a general genetic oscillator of the following form:

ẋ(t) = Ax(t) +

k∑
h=1

Bhfh(Chx(t)), (1)

where x(t) ∈ Rn denotes the concentrations of proteins, RNAs and chemical complexes; A ∈
∈ Rn×n, Bh ∈ Rn×m, Ch ∈ Rm×n are constant matrices;

fh(Chx(t)) =
[
fh1(c

T
h1x(t)), . . . , fhm(cThmx(t))

]T
is piecewise continuously differentiable on Rm; fhl(c

T
hlx(t)) is a monotonic increasing or decre-

asing regulatory function and usually is of the Michaelis – Menten [23] or Hill form [23]; k is
an integer greater than or equal to 1. Note that all entries of fh(Chx(t)) should not be incre-
asing or decreasing simultaneously, that is, some of entries can be increasing while others can
be decreasing.

Assumption 1. The nonlinear functions fhl(·), h = 1, 2, . . . , k, l = 1, 2, . . . ,m, satisfy the
following slope restrictions:

γhl ≤ f ′hl(σ) ≤ δhl ∀σ ∈ R, h = 1, 2, . . . , k, l = 1, 2, . . . ,m. (2)

Remark 1. For monotonic increasing functions, γhl = 0 and δhl > 0,whereas for monotonic

decreasing functions, γhl < 0 and δhl = 0. Setting ϕhl(σ) =
dfhl(σ)

dt
, the restrictions in (2) are

turned into

γhl ≤
ϕhl(σ)

σ̇
≤ δhl ∀σ ∈ R, h = 1, 2, . . . , k, l = 1, 2, . . . ,m. (3)
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System (1) contains many well-known genetic systems such as the repressilator [1], the
Goodwin model [19] and the circadian oscillator [20]. It can be written as follows:

ẋ(t) = Ax(t) +BF (Cx(t)), (4)

where

B = [B1, . . . , Bk], C =
[
CT
1 , . . . , C

T
k

]T
, F (Cx(t)) =

[
fT1 (C1x(t)), . . . , fTk (Ckx(t))

]T
,

and the components fhl
(
cThlx(t)

)
, h = 1, 2, . . . , k, l = 1, 2, . . . ,m, of F (Cx(t)) satisfy (2).

Equation (4) is of the form of Lur’e system and can be investigated by using the classical Lur’e
system method in control theory.

Remark 2. Note that the nonlinearities introduced in [8, 17] are of a specific form and the
number of them is two. However, the nonlinearities here can be more general and the number
of them can be greater than two as long as (3) is satisfied.

Notice that the description of the nonlinearities is different from that in [8, 17]. Equation (4)
includes more than two (k > 2) nonlinearity vectors with a simpler structure than that given
in [8, 17].

We consider a genetic oscillator network composed of N identical genetic oscillators

ẋi(t) = Axi(t) +BF (Cxi(t)) +
N∑
j=1

GijDxj(t), i = 1, 2, . . . , N, (5)

where xi(t) ∈ Rn is the state vector of the ith genetic oscillator, D ∈ Rn×n is a constant
matrix linking coupled variables, Gij is positive if oscillator j is linked to oscillator i directly,
otherwise Gij equals zero,

∑N
j=1,j 6=iGij = −Gii, i = 1, 2, . . . , N. The matrix G = (Gij) ∈

∈ RN×N indicates the connection topology, direction and coupling strength. It is supposed to
be irreducible.

Definition 1. The genetic oscillator network (5) is said to be synchronous [24] if

lim
t→∞
‖xi(t)− s(t)‖ = 0, i = 1, 2, . . . , N, (6)

where ‖ · ‖ is the Euclidean norm and s(t) ∈ Rn is a solution of an individual genetic oscillator

ṡ(t) = As(t) +BF (Cs(t)). (7)

The synchronization state s(t) satisfies

ṡ(t) = As(t) +BF (Cs(t)) +
N∑
j=1

GijDs(t) (8)

due to
∑N

j=1,j 6=iGij = −Gii. The main purpose is to deal with the synchronization problem of
the genetic oscillator network (5), and derive LMI-based sufficient conditions that guarantee
the network to be synchronous.
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3. Methods and results. Define the synchronous error as ei(t) = xi(t)−s(t). Subtracting (7)
from (5), the dynamics of the synchronous error are governed by

ėi(t) = Aei(t) +Bη(Cei(t); s(t)) +
N∑
j=1

GijDej(t), i = 1, 2, . . . , N, (9)

where

η(Cei(t); s(t)) = F (Cei(t) + Cs(t))− F (Cs(t)) =
[
η11
(
cT11ei(t); s(t)

)
, . . .

. . . , η1m
(
cT1mei(t); s(t)

)
, . . . , ηk1

(
cTk1ei(t); s(t)

)
, . . . , ηkm

(
cTkmei(t); s(t)

)]T
.

From (2), it is easy to get that the components of η(Cei(t); s(t)) satisfy the sector conditions

γhl ≤
ηhl
(
cThlei(t); s(t)

)
cThlei(t)

=
fhl
(
cThlei(t) + cThls(t)

)
− fhl

(
cThls(t)

)
cThlei(t)

≤ δhl (10)

for all cThlei(t) 6= 0, i = 1, 2, . . . , N, h = 1, 2, . . . , k, l = 1, 2, . . . ,m and t ∈ R+. The inequality
(10) is equivalent to[

ηhl
(
cThlei(t); s(t)

)
− γhlcThlei(t)

] [
ηhl
(
cThlei(t); s(t)

)
− δhlcThlei(t)

]
≤ 0. (11)

Denoting

e(t) =
[
eT1 (t), . . . , eTN (t)

]T
, S(t) =

[
sT (t), . . . , sT (t)

]T
,

η[(IN ⊗ C)e(t);S(t)] =
[
ηT (Ce1(t); s(t)), . . . , η

T (CeN (t); s(t))
]T
,

the error dynamical subsystems in (9) are reduced to

ė(t) = (IN ⊗A+G⊗D)e(t) + (IN ⊗B)η[(IN ⊗ C)e(t);S(t)]. (12)

The error dynamical system (12) can also be regarded as a Lur’e system. Thus, if (12) is absolutely
stable, then the genetic oscillator network (5) is synchronous. In what follows, absolute stability
criteria for (12) are derived by using absolute stability theory and matrix theory. These criteria
guarantee synchronization of the genetic oscillator network (5) simultaneously. Denote

Γ = diag (γ11, . . . , γ1m, . . . , γk1, . . . , γkm) ∈ Rkm×km

and

∆ = diag (δ11, . . . , δ1m, . . . , δk1, . . . , δkm) ∈ Rkm×km.

Theorem 1. Suppose that G is symmetrical, and µi, i = 1, . . . , N, are its eigenvalues. The
genetic oscillator network (5) is synchronous if there exist positive-definite matrices Pi ∈ Rn×n,
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i = 1, . . . , N, positive-definite diagonal matrices Λ1 ∈ Rkm×km and Λ2 ∈ Rkm×km such that the
following LMIs hold:

Σ1 Σ2
1

2
(A+ µiD)TCT (Γ + ∆)Λ2

ΣT
2 −Λ1 −BTCTΓΛ2∆CB

1

2
BTCT (Γ + ∆)Λ2

1

2
Λ2(Γ + ∆)C(A+ µiD)

1

2
Λ2(Γ + ∆)CB −Λ2

 < 0,

(13)
i = 1, . . . , N,

where

Σ1 = Pi(A+ µiD) + (A+ µiD)TPi − CTΓΛ1∆C − (A+ µiD)TCTΓΛ2∆C(A+ µiD),

Σ2 = PiB +
1

2
CT (Γ + ∆)Λ1 − (A+ µiD)TCTΓΛ2∆CB.

Proof. SinceG is symmetrical and irreducible, 0 is an eigenvalue of it with multiplicity 1 and
all other eigenvalues satisfy 0 = µ1 > µ2 ≥ . . . ≥ µN . An orthogonal matrix U can be found
such that UTGU = µ, where µ = diag (µ1, . . . , µN ). Combining multiple LMIs in (13) into one
large LMI, and applying convenient column and row permutations to the resulting inequality,
(13) is transformed into

Ξ1 Ξ2 Ξ3

ΞT
2 −IN ⊗ Λ1 − IN ⊗BTCTΓΛ2∆CB

1

2
[IN ⊗BTCT (Γ + ∆)Λ2]

ΞT
3

1

2
[IN ⊗ Λ2(Γ + ∆)CB] −IN ⊗ Λ2

 < 0, (14)

where

Ξ1 = P̃ (IN ⊗A+ µ⊗D) + (IN ⊗A+ µ⊗D)T P̃ − IN ⊗ CTΓΛ1∆C − (IN ⊗A+ µ⊗D)T×

×
(
IN ⊗ CTΓΛ2∆C

)
(IN ⊗A+ µ⊗D),

Ξ2 = P̃ (IN ⊗B) +
1

2

[
IN ⊗ CT (Γ + ∆)Λ1

]
− (IN ⊗A+ µ⊗D)T

(
IN ⊗ CTΓΛ2∆CB

)
,

Ξ3 =
1

2
(IN ⊗A+ µ⊗D)T

[
IN ⊗ CT (Γ + ∆)Λ2

]
, P̃ = diag (P1, . . . , PN ).

Take X = diag (U ⊗ In, U ⊗ Ikm, U ⊗ Ikm). Pre- and post-multiplying both sides of (14) by X
and XT , we have

Π1 Π2 Π3

ΠT
2 −IN ⊗ Λ1 − IN ⊗BTCTΓΛ2∆CB

1

2

[
IN ⊗BTCT (Γ + ∆)Λ2

]
ΠT

3

1

2
[IN ⊗ Λ2(Γ + ∆)CB] −IN ⊗ Λ2

 < 0, (15)
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where

Π1 = P (IN ⊗A+G⊗D) + (IN ⊗A+G⊗D)TP − IN ⊗ CTΓΛ1∆C−

− (IN ⊗A+G⊗D)T
(
IN ⊗ CTΓΛ2∆C

)
(IN ⊗A+G⊗D),

Π2 = P (IN ⊗B) +
1

2

[
IN ⊗ CT (Γ + ∆)Λ1

]
− (IN ⊗A+G⊗D)T (IN ⊗ CTΓΛ2∆CB),

Π3 =
1

2
(IN ⊗A+G⊗D)T

[
IN ⊗ CT (Γ + ∆)Λ2

]
, P = (U ⊗ In)P̃

(
UT ⊗ In

)
.

From (3) and (11), the derivative of V (e(t)) = eT (t)Pe(t) satisfies

V̇ (e(t)) ≤ ėT (t)Pe(t) + eT (t)P ė(t)−

−
N∑
i=1

k∑
h=1

m∑
l=1

λ1hl
[
ηhl(c

T
hlei(t); s(t))− γhlcThlei(t)

] [
ηhl(c

T
hlei(t); s(t))− δhlcThlei(t)

]
−

−
N∑
i=1

k∑
h=1

m∑
l=1

λ2hl
[
ϕhl(c

T
hlei(t); s(t))− γhlcThlėi(t)

] [
ϕhl(c

T
hlei(t); s(t))− δhlcThlėi(t)

]
,

(16)

where IN⊗Λ1 = diag (λ111, . . . , λ1km), IN⊗Λ2 = diag (λ211, . . . , λ2km). If (15) is fulfilled, then
V̇ (e(t)) < 0, which means that (12) is absolutely stable and accordingly the genetic oscillator
network (5) is synchronous.

Theorem 1 is proved.

Remark 3. The inequalities contained in (13) are LMIs. We can use the solver "feasp" in
the LMI toolbox in MATLAB to compute the solution to the given LMIs.

Remark 4. Both the sector conditions (10) and slope restrictions (3) are taken into account
through the derivation of Theorem 1.

If the considered network is globally coupled, and henceG has the form of globally coupled
matrix

G =


−N + 1 1 · · · 1

1 −N + 1 · · · 1
...

...
. . .

...
1 1 1 −N + 1

 ,

we have the following results.

Theorem 2. Suppose that G is a globally coupled matrix. The genetic oscillator network (5) is
synchronous if there exist matrices P1 = P T

1 > 0, P2 = P T
2 > 0, diagonal matrices Λ1 > 0 and
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Λ2 > 0 such that the following LMIs hold:



P1A + ATP1 − CT ΓΛ1∆C−
−ATCT ΓΛ2∆CA P1B +

1

2
CT (Γ + ∆)Λ1 −ATCT ΓΛ2∆CB

1

2
ATCT (Γ + ∆)Λ2

BTP1 +
1

2
Λ1(Γ + ∆)C−

−BTCT ∆Λ2ΓCA −Λ1 −BTCT ΓΛ2∆CB
1

2
BTCT (Γ + ∆)Λ2

1

2
Λ2(Γ + ∆)CA

1

2
Λ2(Γ + ∆)CB −Λ2


< 0,

(17)



Ω1 Ω2
1

2
(A−ND)TCT (Γ + ∆)Λ2

ΩT
2 −Λ1 −BTCTΓΛ2∆CB

1

2
BTCT (Γ + ∆)Λ2

1

2
Λ2(Γ + ∆)C(A−ND)

1

2
Λ2(Γ + ∆)CB −Λ2


< 0,

(18)

where

Ω1 = P2(A−ND) + (A−ND)TP2 − CTΓΛ1∆C − (A−ND)TCTΓΛ2∆C(A−ND),

Ω2 = P2B +
1

2
CT (Γ + ∆)Λ1 − (A−ND)TCTΓΛ2∆CB.

Proof. When G is a globally coupled matrix, it has two different eigenvalues, i.e., µ1 = 0
and µ2 = −N. The LMIs in (13) are reduced to those in (17) and (18).

Remark 5. If the genetic oscillator network (5) is a globally coupled network, only two LMIs
need to be verified.

4. Numerical example. We consider a genetic oscillator network globally coupled by the
classical Goodwin model [19], which describes the dynamical evolution of coupled suprachi-
asmatic nucleus

Ẋi = k1
1

1 + ZH
i

− k5Xi +KR,

Ẏi = k2Xi − k6Yi,
(19)

Żi = k3Yi − k7Zi,

V̇i = k4Xi − k8Vi, i = 1, . . . , N,
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Fig. 1. Time evolution of the mRNA concentrations of 20 uncoupled
oscillators.

where the variablesXi, Yi, Zi denote the concentrations of the clock gene mRNA, clock protein
and transcription inhibitor, the variable Vi denotes the evolution of the neurotransmitter, k1, k2,
k3 and k4 are positive synthesis rate constants, k5, k6, k7 and k8 are positive degradation rate
constants, H denotes the Hill coefficient and is a positive number, K > 0 denotes the coupling

strength, R =
1

N

∑N
j=1 Vj denotes the average neurotransmitter level and is viewed as the

coupling term. The genetic oscillator network (19) can be written in the form of (5) with

A =


−k5 0 0 K
k2 −k6 0 0
0 k3 −k7 0
k4 0 0 −k8

 , B =


k1
0
0
0

 , C =
(

0 0 1 0
)
,

G =


−N + 1 1 · · · 1

1 −N + 1 · · · 1
...

...
. . .

...
1 1 1 −N + 1

 , D =


0 0 0

K

N
0 0 0 0
0 0 0 0
0 0 0 0

 , F (Zi) =
1

1 + ZH
i

.

The parameters of (19) are chosen in such a way so that the single cell oscillator produces self-
sustained oscillations with a circadian period. The values of them are taken as follows:

H = 12, k1 = 1.2nM · h−1, k2 = k3 = 1h−1, k4 = 0.7h−1,

k5 = 0.25h−1, k6 = 0.3h−1, k7 = 0.1h−1, k8 = 1.8h−1.
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Fig. 2. Time evolution of the mRNA concentrations of 20 coupled
oscillators.

In what follows, we validate the effectiveness of the established theoretical method by using
a small size of network with 20 genetic oscillators. Set K = 0. This implies that the oscillators
in the network are uncoupled. Figure 1 shows the time evolution of the mRNA concentration
of 20 uncoupled oscillators with different initial conditions. We can observe that 20 uncoupled
oscillators are not synchronous although the period of each oscillator is approximately 24 h. Set
K = 0.3. Since G is a matrix of globally coupling, its eigenvalues satisfy

µ1 = 0, µ2 = . . . = µ20 = −20. (20)

We should only verify two LMIs (17) and (18) to determine whether the considered network
is synchronous. Substituting the above parameters to (17) and (18), feasible solutions could
be derived by using the LMI toolbox in MATLAB. This indicates the considered network
is synchronous according to Theorem 2. Figure 2 shows the time evolution of the mRNA
concentration of 20 oscillators in the network. Figure 3 shows the time evolution of the synchro-
nization error between 20 coupled gene oscillators. We can observe that the synchronization
error between 20 coupled gene oscillators indeed approaches to zero, and the considered net-
work is synchronous.

5. Conclusion. We have provided a theoretical method for analyzing synchronization of a
class of genetic oscillator networks in virtue of absolute stability theory and matrix theory.
The resulting synchronization criteria are of the forms of LMIs which can be verified by using
efficient software toolbox such as the LMI lab in MATLAB. Although the method is proposed
for genetic oscillator networks, it is also applicable to other biochemical and neuronal networks
composed of nonlinear systems of Lur’e type.
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Fig. 3 Time evolution of the synchronization error between 20 coupled gene oscillators.

References

1. Elowitz M.B., Leibler S. A synthetic oscillatory network of transcriptional regulators // Nature. — 2000. —
403. — P. 335 – 338.

2. Chesi G., Hung Y. S. Stability analysis of uncertain genetic sum regulatory networks // Automatica. —
2008. — 44. — P. 2298 – 2305.

3. O’Brien E. L., Itallie E. V., Bennett M. R. Modeling synthetic gene oscillators // Math. Biosci. — 2012. —
236. — P. 1 – 15.

4. Sharma P. R., Somani P., Shrimali M. D. Bio-inspired computation using synthetic genetic network // Phys.
Lett. A. — 2013. — 377. — P. 367 – 369.

5. Wang J., Zhou T. CAMP-regulated dynamics of the mammalian circadian clock // Biosystems. — 2010. —
101. — P. 136 – 143.

6. Ji L., Yan X., Li N. Common noise induced synchronous circadian oscillations in uncoupled non-identical
systems // Biophys. Chem. — 2013. — 173 – 174. — P. 15 – 20.

7. McMillen D., Kopell N., Hasty J., Collins J. J. Synchronizing genetic relaxation oscillators by intercell signa-
ling // Proc. Nat. Acad. Sci. — 2002. — 99. — P. 679 – 684.

8. Li F., Sun J. Asymptotic stability of a genetic network under impulsive control // Phys. Lett. A. — 2010. —
374. — P. 3177 – 3184.

ISSN 1562-3076. Нелiнiйнi коливання, 2017, т . 20, N◦ 4



SYNCHRONIZATION ANALYSIS FOR A CLASS . . . 487

9. Zhang W., Tang Y., Fang J., Zhu W. Exponential cluster synchronization of impulsive delayed genetic osci-
llators with external disturbances // Chaos. — 2011. — 21. — P. 6 – 12.

10. Li P., Lam J. Synchronization in networks of genetic oscillators with delayed coupling // Asian J. Control. —
2011. — 13. — P. 713 – 725.

11. Cai S., He Q., Hao J., Liu Z. Exponential synchronization of complex networks with nonidentical time-
delayed dynamical nodes // Phys. Lett. A. — 2010. — 374. — P. 2539 – 2550.

12. Schreiber T. Constrained randomization of time series data // Phys. Rev. Lett. — 1998. — 80. — P. 2105 – 2108.

13. Winfree A. T. The geometry of biological time. — Berlin: Springer-Verlag, 2000.

14. Deng Y., Ding M., Feng J. Synchronization in stochastic coupled systems: theoretical results // J. Phys. A. —
2004. — 37. — P. 2163 – 2173.

15. Yuan Z., Zhang J., Zhou T. Coherence, collective rhythm, and phase difference distribution in populations
of stochastic genetic oscillators with cellular communication // Phys. Rev. E. — 2008. — 78.

16. Osella M., Lagomarsino M. C. Growth-rate-dependent dynamics of a bacterial genetic oscillator // Phys.
Rev. E. — 2013. — 87.

17. Qiu J., Cao J. Global synchronization of delay-coupled genetic oscillators // Neurocomputing. — 2009. —
72. — P. 3845 – 3850.

18. Lu J., Cao J. Adaptive synchronization of uncertain dynamical networks with delayed coupling // Nonlinear
Dynamics. — 2008. — 53. — P. 107 – 115.

19. Ruoff P., Vinsjevik M., Monnerjahn C., Rensing L. The Goodwin model: simulating the effect of light pulses
on the circadian sporulation rhythm of Neurospora crassa // J. Theor. Biology. — 2001. — 209.

20. Goldbeter A. A model for circadian oscillations in the Drosophila period protein (PER) // Proc. Roy. Soc.
London B. — 1995. — 261.

21. Leonov G. A., Ponomarenko D. V., Smirnova V. B. Frequency-domain methods for nonlinear analysis-theory
and applications. — Singapore: World Sci., 1996.

22. Boyd S., Ghaoui L. E., Feron E., Balakrishnan V. Linear matrix inequalities in system and control theory. —
Philadelphia: Soc. Industrial and Appl. Math., 1994.

23. Li C., Chen L., Aihara K. Synchronization of coupled nonidentical genetic oscillators // Phys. Biology. —
2006. — 3. — P. 37 – 44.

24. Rangarajan G., Ding M. Z. Stability of synchronized chaos in coupled dynamical systems // Phys. Lett. A. —
2002. — 296. — P. 204 – 209.

Received 12.11.13,
after revision — 15.09.16

ISSN 1562-3076. Нелiнiйнi коливання, 2017, т . 20, N◦ 4


