
A D D I T I O N A L  I N V A R I A N C E  OF T H E  K E M M E R - D U F F I N  

AN D R A R I T A - S C H W I N G E R  E Q U A T I O N S  

A . G .  N i k i t i n ,  Y u . N .  S e g e d a  and V . I .  F u s h c h i c h  

Additional (implicit) symmet ry  of the Kemmer-Duff in ,  Rar i ta-Schwinger ,  and Dirac 
equations is established. It is shown that the invariance algebra of the Kemmer-Duff in  
equation is a 34-dimensional Lie algebra containing the algebra of SU(3) as a subalgebra, 
and that the Rar i ta -Schwinger  equation is invariant under a 64-dimensional Lie algebra 
including the subalgebra 0 ( 2 ,  4). The explicit form of the opera tor  that reduces the 
Rar i ta -Schwinger  equation to diagonal form is found and also that of the opera tor  that 
t r ans fo rms  the Kemmer-Duff in  equation into the Tamm-Saka ta -Take tan i  equation. The 
algebra of the additional invariance of the Dirac and Tamm-Saka ta -Take tan i  equations 
in the c lass  of differential opera tors  is found. 

I n t r o d u c t i o n  

It is well known that some equations of motion in quantum physics have an additional (implicit) s y m -  
metry .  For  example, the SchrSdinger equation for  the hydrogen atom has an implicit  invariance with respect  
to the group of four-dimensional  rotations [1], and the Maxwell equation and Dirac equation (for zero  mass) 
are  invariant under the conformal group [2]. 

In [3,4] it was established that the Maxwell, Klein-Gordon,  and Dirac equations (with zero  and non-  
zero  masses)  have an additional invariance beyond the Lorentz invariance. The basis  elements of this new 
invariance algebra do not belong, in contras t  to the case of Lorentz symmetry ,  for which the infinitesimal 
opera tors  are  l inear  f i r s t - o r d e r  differential opera tors ,  to the c lass  of differential opera tors .  In this case,  
the basis elements are  integrodifferential (nonlocal) opera tors  in the configuration space. Because of the 
nonlocality, these opera tors  are  not infinitesimal opera tors  of tangent t ransformat ions  in the sense of Lie, 
although they do form a finite-dimensional Lie algebra.  

In what follows, by an additional invariance of the equations of motion we shall understand any 
invariance that is not Lorentz invariance.  

In the present  paper,  we investigate the group p rope r t i e s  of the free relativistic equations of 
motion for par t ic les  with nonzero mass  and spins s -< ~/2. We establish theorems on the additional invariance 
of the Kemmer-Duff in  (KD), Tamm-Saka t a -Take t an i  (TST), and Rar i ta -Schwinger  (RS)equations. In addi-  
tion, we find the invariance algebra of the Dirac and TST equations in the c lass  of differential opera tors .  
The theorems are  proved by means of a device proposed in [3]. The gist of it is that f i rs t  the sys tem of 
f i r s t - o r d e r  differential equations, having been reduced in advance to Hamiltonian form, is reduced by means 
of a unitary t ransformat ion to a different equivalent equation with a diagonal Hamiltonian, and then the addi- 
tional invariance algebra is established for  the t ransformed equation. Finding basis elements of the additional 
invariance algebra for the t ransformed equation and having a unitary opera tor  that diagonalizes the Hamil-  
tonian, we determine the invariance a lgebra  of the original equation. 

In recent  years ,  there has been intense study of the group proper t ies  of part ial  differential equations 
on the basis  of the c lass ical  Lie methods [5, 6]. These methods differ strongly from ours.  

I__ Symmetry of the Kemmer-Duffin and 

T amm-Sakata--Taketani Equations 

A. The KD equation can be written in the form 
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(~,p~-ra) W (t, x) =0,  ~=0, t, 2, 3, (1.1) 

where  pp = ia/3x~, and the m a t r i c e s  ~p sa t i s fy  the a lgeb ra  

~,~,.[~x + [L.~, l~= ~,g~+ ~,,g~,,. (1.2) 

The KD equation d e s c r i b e s  the f ree  mot ion  of a pa r t i c l e  with spin 0 o r  1. In the f i r s t  c a se ,  the 
m a t r i c e s  fi# have five rows ,  and in the second ca se ,  10 rows .  

It is m o r e  convenient  to wri te  Eq. (1.1) in the Hamil tonian f o r m  [7] 

iOW /Ot=HW (t, x), H=[~o, ~.,~]p,,T~ora, (1.3) 

{m( i--i~o 2) + (t3" P) [502} W (t, x) ~-mPXF =0. (1.4) 

The phys ica l  meaning  of the addit ional  condit ion (1.4) is that  it e l imina te s  the "redundant." c o m p o -  
nents  of the wave function ~.  F o r  spin s = 0, the wave function has th ree  redundant  components ;  f o r  spin 
s = 1, four .  

The condit ion of i nva r i ance  of Eq. (1.1) with r e s p e c t  to a c e r t a i n  se t  of t r a n s f o r m a t i o n s  is e q u i v a -  
lent  by definit ion to fu l f i l lment  of the condi t ions  

[ i - ~ - H ,  Qalw(t,x)=O, [mP, Qa]W(t,x)=O, (1.5) 

a re  the o p e r a t o r s  of the t r a n s f o r m a t i o n s ,  @ sa t i s f ies  Eqs .  (1.3) and (1.4), and {A} is a se t  of where  Q,~ 
indic e s. 

The p r o b l e m  of finding the inva r i ance  a lgeb ra  of Eq. (1.1) c o n s i s t s  of desc r ib ing  all poss ib le  
o p e r a t o r s  Qn that sa t i s fy  condi t ions  (1.5). 

We p rove  

THEOREM 1. The KD equat ion is invar ian t  under  the Lie a lgeb ra  of the group SU(3) .  Lq the c a s e  
of spin s = i, the KD equation is invariant under a larger, 34-dimensional Lie algebra that contains the 
SU(3) algebra as a subalgebra. The basis elements of this invariance algebra satisfy the commutation 
relations (i. i0) and (i. 14). 

Proof. A transition to a representation in which H is diagonal can be made by means of an 
integral unitary operator of Foldy-Wouthuysen type [8]: 

U----exp~P~arctg---P~,  p=(pl2+p~-+p3Z) '~'~, a=1 ,2 ,3 .  (1.6) W-*O=UW, 
t m 

As a resu l t ,  we obtain the s y s t e m  of in tegrodi f fe ren t ia t  equat ions  

iO@/Ot=HCa9 (t, x), H~=UHU-~=~oE, (1-702) �9 (t, x) =0, E= (p2+rn 2) v~, (1.7) 

and the invar iance  condi t ion (1.5) r e duc e s  to the f o r m  

t z 

The condi t ion (1.5 ')  is  sa t i s f ied  by a r b i t r a r y  m a t r i c e s  that c o m m u t e  with }0. 

Using the r e l a t ions  (1.2), we can r ead i ly  see that the eondtt ion (1.5 ')  is sa t i s f ied  by the m a t r i c e s  

S~b=i(}~b--~b}~), 8.b=e.br a, b, c = l ,  2, 3. (1.8) 

This  p r o p e r t y  is obvious ly  c o m m o n  to all funct ions of Sab , among which one can choose  only eight indepen-  
dent: 

Q,r Qz| Q,| Q,*=-(s~s,+s~sz), Qs*~-S~, Q~*'~-(S2S,+S~S2), 

q,*=s,, Q .*=-  t_ (S,S,S,+S,S,S,-2S~S,S,). ~i. 9) 
~3 

The o p e r a t o r s  QA ~, A = 1, 2 . . . . .  S, sa t i s fy  the commuta t ion  re la t ions  

[Q.,,| Q~]=i/M~Q;: r M, L, K = I ,  2 . . . . .  8, (1.10) 

w h e r e  fMLK a r e  the  s t r u c t u r e  cons tan t s  of the g roup  SU(3) .  
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In the c a s e  of spin s = 0, the o p e r a t o r s  (1.10) exhaust  all poss ib le  (to within equivalence)  indepen-  
dent m a t r i c e s  that c o m m u t e  with rio" F o r  s = 1, the re  a r e  m o r e  of these  m a t r i c e s .  We c o n s t r u c t  the c o m -  
plete  s y s t e m  of m a t r i c e s  that  c o m m u t e  with fi0 a s  fol lows.  Without loss  of genera l i ty ,  we can choose  the 
m a t r i x  fl0 in the f o r m  

{18 ) 
13o= {\ --P0 4 , (1.11) 

where  I ~ and 0 4 a re  the t h r e e - r o w  unit  ma t r i x  and f o u r - r o w  null ma t r ix  and there  a re  z e r o s  in the r e m a i -  
ning pos i t ions .  

The gene ra l  f o r m  of a m a t r i x  that  c o m m u t e s  with flo is given by 

B = b , (t .  12) 
0 

where  a, b, c a r e  a r b i t r a r y  square  3 • 3, 3 • 3, and 4 • 4 m a t r i c e s ,  r e spec t i ve ly .  Thus ,  the re  a r e  
a l t oge the r  34 l i n e a r l y  independent  m a t r i c e s  that  c o m m u t e  with /3 o . These  34 m a t r i c e s  include the o p e r a t o r s  
Q i ,  A = 1, 2, . . . ,  8, f r o m  (1.9), and the o the r s  can be r e p r e s e n t e d  in the f o r m  

r r , . *  Qs+.c=~oQA , A = i , 2 ,  ,8, Q.| ( i -~o ' ) i  

| + q,,+o--ro=(S~o S,o) (S~,-S.)  (i-~o~), S,o---iOo~,-~,~a), 

l 
. . . .  r.rx ; ror,r r.}, (1.13) 

p , v , ~  . . . .  =0, i, 2,3,  a = t ,  2 ,3;  (a, b, c ) =  cyc l i c  p e r m .  of (t, 2,3).  

These  o p e r a t o r s  sa t i s fy  the commuta t i on  re la t ions  

[Q~+a, Qs+~] =i]+~cQc r [Qs+a, QB ]=tlaBcQs+c; (1.14') 

fr~,Q: ] = [ r , , 0 , + A - - 0 ,  ( r ~ r . + r x , )  ( i -~0 ~) =2g,~(i-[3o~). (1.14") 

The commuta t ion  re la t ions  (1.10) and (1.14) follow d i r e c t l y  f r o m  (1.2). The t h e o r e m  is p roved .  

To conclude this sect ion,  we note that  the expl ic i t  f o r m  of the o p e r a t o r s  (1.9) and (1.13) in the 
or ig ina l  + r e p r e s e n t a t i o n  is obtained by means  of the i nve r se  of the t r a n s f o r m a t i o n  (1.6). In o ther  words ,  
the o p e r a t o r s  QA a r e  obtained f r o m  Q~,  A =~1, 2, . . . ,  34, by the subst i tut ion 

m ~Xp p(S.p) 
s - + s f u - , s u = s  ~ - -  ~--U.~ (1. s,) 

E (E+m) 

R e m a r k  1. It is well known [9] that  Eq.  (1.1) in the l imit ing c a s e  m ~ 0 cannot  be used to de sc r ibe  
the mot ion of m a s s l e s s  p a r t i c l e s .  It can  be shown howeve r  that  such a pas sage  to the l imi t  is poss ib le  in 
the Hamil tonian  f o r m  (1 .3)-(1 .4)  of the KD equat ion.  T h e o r e m  1 r e m a i n s  t rue .  

If we impose  on the wave function �9 the P o i n c a r ~ - i n v a r i a n t  condit ion of t r a n s v e r s a l i t y  

theft T h e o r e m  1 no longe r  holds .  

The s y s t e m  of equat ions  (1.3), 
equat ions .  

(s .p) ~ =0, (1.15) 

(1.4) (with m = 0),  and ( 1 . 1 5 ) i s  equivalent  to the Maxwell 

R e m a r k  2. F o r  the KD equation,  as  f o r  the Dirac  equation [3], one can find four  types  of o p e r a t o r s  
that  sa t i s fy  the commuta t i on  r e l a t ions  of the Lie a lgeb ra  of the Po inca r~  group  fo r  which the condit ion (1.5) 
iS sa t i s f ied .  These operators also have an explicit representation: 

{QI}: ie~=iO/ax~ ' ']~,.=x,p,.-xvp,+&,., & v = i ( ~ v - ~ ) ;  

{ Q 2 } :  2po=H ' 2pa=__iO/Oxa ' 2]ab=Xapb--xop~-~-S~b, 2]oa~Xopa--l/2 (x,H+Hx,) ; 

{Q3} : 3Po=iO/Ot, 3Po=-iO/ Oxa, U~b=Eop~--.%po, ~]o~=xop~--~,p~; 

(1.16) 

(1.17) 

(1.18) 

(1.19) 
where  
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. ~o ( ~ . p ~ ) p o  (pxs)o 
x~ + ~ m(E+m)- ~ E(E+-------~) 

The ope ra to r s  (1.16) a r e  non-Hermi t i an  in the Hi lber t  space in which the ope ra to r s  (1.17) a re  Her~nitian. 
The ope ra to r s  (1.18) and (1.19) a re  Hermi t i an  and inequivalent to the ope ra to r s  (1.16) and (1.17). This ca~] 
be readi ly  es tabl i shed by calculat ing the C a s i m i r  o p e r a t o r s  for  the r ep resen ta t ions  (1.16), (1.18), and 
(1.17), (1.19). 

We note fu r the r  that the ope ra to r s  (1.16)-(1.19) genera te  comple te ly  different  laws of t r a n s f o r m a -  
tion of the Coordinate and t ime.  Namely,  f r o m  the explicit  f o r m  of the ope ra to r s  J0a we obtain d i rec t ly  
that in the case  (1.17) and (1.19), in con t r a s t  to (1.16) and (1.18), the t ime does not change: 

B .  

z0'=exp {J0o0a}X0 exp {--~/0~0~}=x0. 

The TST equation has  the f o r m  

iowTST/Ot=HTST~TsT(t, x), HTST=a~m--io, (S'P)~ 
m 

(1,20) 

p2 
- -  + (~z~+z~) -~m' (1: 21) 

where ~TST is a s ix-component  wave function, S a a re  the gene ra to r s  of a represen ta t ion  that is the d i rec t  
sum of two i r reduc ib le  r ep resen ta t ions  D(1)  of 0 (3),  and 0. and o- 2 a re  s ix - row Pauli m a t r i c e s  that 
commute  with S a. 

The TST equation desc r ibe s  the motion of a f ree  re la t iv is t ic  pa r t i c le  with spin s = 0 and, in con-  
t r a s t  to (1.1), does not contain redundant components .  

THEOREM 2. The TST equation is invar iant  under  a 16-dimensional  Lie a lgebra  that contains the 
SU(3) a lgebra  as a subalgebra .  The bas i s  e l ements  of this a lgebra  sa t is fy  the commutat ion .relations 
(1.10) and (1.14). 

Proof .  We f i r s t  of all  es tabl i sh  the connection between the solutions of the KD and TST equations.  
Usually,  the TST equation is obtained f r o m  the KD equations by indirect  el imination of the redundant 
components .  This  p rocedure  is  unsuitable fo r  our purposes .  We show that the TST equation can be 
obtained f r o m  the KD equations by means  of an i somet r ic  t ransformat ion:  

I. m ) rn 

It is easy  to see that ~TST sa t i s f ies  the equations 

iowTST/ot_VHV-~WTST=~o(m+~_) wTST V(,nP)V-~p'TST=m( 1-~0 ~) ~TST=0. (1.23) 

It is well known [7] that the s y s t e m  of equations (1.23) is equivalent to (1.21) since the wave function ~ s l  
has only six nonzero components ,  and one can always set  

[ (s v 

Since Eqs.  (1.3) and (1.4) a re  invar iant  with r e spec t  to the a lgebra  genera ted  by the ope ra to r s  Q,~, Eq. (1.2!) 
is invar iant  with r e s pec t  to the a lgebra  {Q~Sl} ,  Q~ST = VQAV-1. We obtain the explici t  fo rm of the 
ope ra to r s  Q~ST f rom (1.9), (1.13), (1.8 ') ,  and (1.22): 

QTsT_~ _ ( ~  + ~ ) ,  Q~sT = ~ ,  Q~sT = _ i (g~ ~,~, -- 

~ , ) ,  Q~sT= _ (,~,$~ + ~$~), Q~S+= _ ~ ,  Q~S~= 

TS T  /-/TS T--TS T 
Q,+~ = . - - k - ~ , ,  , ~ = s ~ - +  

p ( S . p )  ~_ ~ ~ : 
E(E+m) mE {(~s(S• ( S . p ) + ~ -  ~l+c~) [p(S.p)-Sp~]}, 

{1.25) 

Q~ST=HTST/E, Q~ST=t. ,'1.26) 

The ope ra to r s  (1.25) sa t is fy  the same commutat ion  re la t ions  (1.9) and (1,14Q as the ope ra to r s  Q~,  QA~+8 . 
The ope ra to r s  (1.26) commute  with (1.25). 
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The invariance algebra (1.25)-(1.26) of the TST equation is of course  smal ler  than the algebra 
(1.9), (1.14) of the KD equation. This is because the TST wave function has fewer components than the 
KD's,  and therefore the opera tors  VQ,7, Q,8 . . . . .  O~V-' are not defined on solutions of the TST equation. 
The theorem is proved. 

Remark 3. The relativist ic equations without redundant components for par t ic les  with spin s = 1 
obtained in [111 are  also invariant with respect  to the t ransformat ions  that satisfy the algebra (t. 10), (1. 14). 
This is proved in the same way as above, because these equations can be reduced to diagonal form.  

2.  S y m m e t r y  o f  t h e  R a r i t a - S c h w i n g e r  E q u a t i o n  

The RS equation for a part icle  with spin s = ~ can be written in the form 

(%p~-m) ~V"(t, x) =0, ~,,Wv(t, x)=0, Ix, v=0, l, 2, 3, (2.1) 

where y/~ are  4 • 4 Dirac mat r ices .  The RS wave function has 16 components ~I~ a = 1, 2, 3, 4. 
0/'  

We write the sys tem of equations (2.1) in the Hamiltonian form 

iO~'/8t=HVL(t, x), ~:~W'(t, x)=0, H = H 0 R~ 0 f t  , "F = ~F2 ' I t=~o%p~+~om.  (2.2) 

0 0 T 

The following manifestly covariant  representat ion of the Lie algebra of the Poincar~ group is realized on 
the solutions of Eqs. (2.2): 

Po=H, Po=p~=-iO/Oxo, l,~=x~pv--x~p,+S,~, (2.3) 

where the spin mat r ices  St~ u are  genera tors  of the representat ion D(~/2, ~/~)X[D('/2, 0)eD(0, 'A)] of the 
group O (1, 3), and therefore  can be represented in the form 

i 
S,~=/,,+t,,, [/ , , , t , ,r  t , , = - ~ f , ' f , ,  ]ob=]o'+], ~, ]o,=i(j,~-],z), [L',/bz]=0, (2.4) 

�9 l j~ are  the genera tors  of the representat ion D(}) of O(3) .  We now show that the following where ]a ,  
theorem holds 

THEOREM 3. The RS equation is invariant under a 64-dimensional Lie algebra that contains the 
Lie algebra of the group O(2,  4) as a subalgebra. The basis elements of this algebra are all possible 
independent products of the opera tors  (2.12). 

Proof.  As in the preceding section, to prove the theorem we go over to a representat ion in which 
the Hamiltonian H is diagonal and the wave function has only 2(2s + 1) nonzero components.  The t rans i -  
tion to such a representat ion for  the RS equation is discussed in [12], but there the explicit fo rm of the 
t ransformat ion opera tor  is not found. 

We have obtained such an opera tor  in the form 

P %P. P W----exp{i,o]~ . (2.5) 

This opera tor  not only diagonalizes the Hamiltonian H (2.2) but also reduces the remaining genera tors  
(2.3) to the canonical Foldy-Shirokov form. 

Equations (2.2) after the transformation W take the form 

iOOlOt=H|162 Hr S~162 

the 16-row matr ix Fo06) can always be chosen in the form where 

/~" 0 0 0 \  :) 0 0 - - f  
o o o - i  

(I)=WT'; E=(p~+m2) v', (2.6) 

(2.7) 

and I and 0 are  four - row unit and null mat r ices .  
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It is c l e a r  f r o m  (2.6) that the additional invar iance of the RS equations is genera ted  by the same 
m a t r i c e s  B N that sa t is fy  the conditions 

[B~-, F0 "~j ] =0, [B~, S~]  =0. (2.8) 
Z Without loss  of genera l i ty ,  the ma t r ix  Sab can be taken in the diagonal f o r m  

/5[ 0 0 0,  (0,0:t S~ = , ~2.9) 
0 0 5 ~  
0 0 0 i'~ 

It can be seen f rom (2.7) and (2.9) that the mos t  general  
is  given by 

/ 0  0 
A ~  0 g  0 ' 

0 0 h 

form of a matrix that commutes with ~) and S~b 

(2.10) 

where  l, ], g, h a re  a r b i t r a r y  square  fou r - row m a t r i c e s .  Therefore ,  the ma t r ix  A can be r ep resen ted  as 
a l inear ly  independent 2 l inear  combination of 64 ma t r i c e s  B N that commute  with Fn(~6) and Sab: 

6~ 

A = ~a~,.B~, (2. t l )  
N = I  

with a r b i t r a r y  coeff icients  aar. 

A sy s t em  of bas i s  m a t r i c e s  B~v can be cons t ruc ted  explici t ly.  Namely,  we choose six 16 • 16 
ma t r i ce s :  

Fo= t_(S23Ssi+S~,S2s_ieobjo~Tb~), p,=2it2~(i__2].,2)(j~b~__i), . . . . . .  ) 
~3 <2. !2) 

r~=2i[T.(l--],~)+2j~+.](jo~--t), L,=r~ "), L - - ~ / S  ~ ~I . - 3 - -  1 3  a b  - -  [ 2 + ,  

which sat is fy  the condition (2.8). 

Using the re la t ion (2.4) and making fa i r ly  lengthy calculat ions,  we can es tabl ish  that the ope ra to r s  
(2.12) sa t is fy  

F~F,,+F,F,=2g~,~, [L,, L2]=[F,, L~]=[I'~,, L~]=0, L,~=:L~=I. (2.13) 

If we now take all poss ib le  independent products  of the opera to r s  (2.13), we obtain exact!y 64 e l e '  
ments ,  which f o r m  the bas i s  s y s t em  of m a t r i c e s  sat isfying (2.8). In pa r t i cu la r ,  the set of atl  poss ib le  
independent products  of the m a t r i c e s  Fp fo rms ,  as follows f r o m  (2.13), the Clifford a lgebra  Whose 
e lements  a re  bas i s  e l ements  of the Lie a lgebra  of O (2, 4) .  

To complete  the exposit ion, we give the explicit  f o r m  of the ma t r i c e s  Fp, L1, L 2 ia the ~P r e p r e -  
sentation, where �9 = W'14~. By means  of the inverse  t r ans fo rmat ion  W "~, we obtain 

f,~= w-'r.w, (2.14) 

I~0 l . . . . .  ^ =--=(s.~s,,+s.,s~-~:+4oo++o), ~=2~L+(t-2/~+b (/o+~-t), 
1/3 (2. !5) 

where 

"rob=~b---E m E (E+ra) ' )~ ~(]~176 Jr E (E+m) ' 
(2.16) 

}o,=]o~'+ P=(Pb'Jb)--J"Pb~ J"~PbH, So0=7 .~+~ob, (a, b, c )=cyc l i c  p e r m .  of(i ,  2, 3). 
E ( E + m )  Em 

In conclusion we note that the a s s e r t i o n s  made above about additional invar iance al~o hold for  the 
Ba rgmann-Wigne r ,  D i r a c - F i e r z - P a u l i ,  and Bhabha equations, which desc r ibe  pa r t i c l e s  with spin 1 and 
3/2. The additional s y m m e t r y  of re la t iv is t ic  equations for  pa r t i c les  with spin s > 3/2 can also be inves t i -  
gated by means  of the methods used in the p resen t  paper .  
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3.  I n v a r i a n c e  A l g e b r a  o f  t h e  D i r a c  a n d  T S T  E q u a t i o n s  

in t h e  C l a s s  o f  D i f f e r e n t i a l  O p e r a t o r s  

In the Introduction it was noted that the Dirac equation is implic i t ly  invariant  under  the a lgebra  
0 ( 4 )  as  well as Poincar6  invariant .  The a lgebra  0 ( 4 )  is defined by integrodifferential  ope ra to r s  and is in 
a cer ta in  sense  the maximal  a lgebra  of additional invar iance of the Dirac equation [3]. In connection with 
this resul t ,  it is natural  to c la r i fy  the following question: does there exis t  an a lgebra  of implici t  invariance 
of the Dirac and TST equations in the c l a s s  of differential  o p e r a t o r s ?  

In what follows, we shall prove  t heo rems  that provide a posi t ive answer  to this question. 

THEOREM 4. The Dirac  equation is invar iant  with respec t  to the a lgebra  of 0 (4) with bas is  e l e -  
ments  given by differential  ope ra to r s .  

Proof.  We subject  the Dirac equation 

(%p~--m) W=O (3.1) 
to the t r ans fo rmat ion  

W --,- q) = VW, ( m - % p  ~) --,- V ( m - % p  ~) V-~=m - (P~P~)'~"~; 

(3.2) 
) i ( 2Ss,P, ~ s i V=exp(  S~"p~ . u  = ~ -  t + ~ ,=- -?~%,  ?~=i~07~7~. 

�9 \~p,p~L 4 ( p , p " ) ' / '  2 

The invar iance condition takes  the f o r m  

[ m--  (p,p,) 'I'~5, Q' ] ~ ( t, x) =0. (3.3) 

Equation (3.3) is sat isf ied by a r b i t r a r y  m a t r i c e s  that commute  with Ys" Any such mat r ix  can be 
r ep resen ted  as  a l inear  combination of the quanti t ies 

i i 
so~ = ~ -  ~o~, s,o = T ~o~o. (3.4) 

The m a t r i c e s  (3.4) rea l ize ,  as  is well known, the d i rec t  sum D(t/~., 0)eD(0, V2) of two i r reducib le  
r ep resen ta t ions  of the 0 ( 4 )  a lgebra .  By the t r ans fo rmat ion  that is the inverse  of (3.2), we obtain the bas i s  
e l ements  of the a lgebra  of the additional invar iance of Eq. (3.1): 

S~=V-'So~V=S~b - ~ (1+%) ('f~Pb--TbP~), S,~=S,~ -- t----(t+75) ('foP~--7~Po). (3.5) 
m m 

It should be noted that this a lgebra  is not equivalent to the Lie a lgebra  of the group of th ree-d imens iona l  
rotat ions defined by the gene ra to r s  ]ob=x~pb---Xbp~+Sob of the Poincar5  group. The theorem is proved.  

^ 

R e m a r k  4. The ope ra to r s  Sub a re  non-Hermi t i an  with respec t  to the o rd inary  sca l a r  product  

(~ , ,  ~ , )  = ~ d~z'.I', + (x) ti,~ (x), (3.6) 

but they a re  Hermi t ian  in the indefinite s ca l a r  product  

(W,, t i ts)= ~ d~xW, + [70+(t--~,) 2(S.P)m ] ~F2. (3.7) 

In the s ca l a r  product  (3.7), the Dirac  Hamiltonian (3.1) is a lso  Hermit ian .  

THEOREM 5. The TST equation is invar iant  with respec t  to the a lgebra  of SU(3) with bas i s  e l e -  
ments  given by differential  ope ra to r s .  

Proof .  We subject  the TST equation (1.21) to the t rans format ion  

P~ H,TS T tlcTST--*-tI(tTST=wt[ yTST //TST-~w//TSTw-'---- a2ra-b ((h+iff~) ~ ----- 

(3.8) 
w = i + o ~  (s .p)  (S.p) ~ 

The ope ra to r s  H 'TsT (3.8) commute  with the spin m a t r i c e s  S .  F r o m  this we conclude that the ope ra to r  
i3/Dt - W TsT commutes  with the set  
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where 

/rs'r S ' S ' +  " ' O, - - - ( ,  ~ s~s,), o~ST=s,', 
Q f f S T  S ' ~ I T S T  "~ ' S  ' + ~  ' S  " 

5 ~ - -  2 ,  , e e  = - - 1 , ~ 2  s ,5'~ z ) ,  

qJs~---t(s,,s/s,,-s/s;s/), O~s~=-(s/s/+s/s/), 

o~ST=s/, o'~s%-~(s/s/s:+s/s:s/-as:s/s;), 
~3 

(3.9) 

, .{ e~,Sbpo [e,boSbp,,(S'p)]+}{i_Gp____. _r(l_~3) 2m~ J So =S.+,  ~, +( i+a , )  (S.p) . . . .  (S'P)~ 1, 
m a m  2 * 

This means that the opera to rs  (3.9) sat isfy the invariance condition of the TST equation. By direct  ~er i f i -  
cation one can show that the opera tors  (3.9) sat isfy the commutation relat ions (1.10) of the algebra SU (3).  
These basis  e lements  of the invariance a lgebra  of the TST equation are  Hermitian with respec t  to the 
indefinite sca la r  product  

The theorem is proved.  

The above results can be used to find integrals of the motion of particles interacting with an 

external field. For example, for a particle with spin s = 1 in a uniform magnetic field H an integral of the 

motion is the operator Q~e,bcS~0(~)H~, where S,b(~) is obtained from (3.5) by the substitution p~-~.~=p~-eAo. 
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