ADDITIONAL INVARIANCE OF THE KEMMER-DUFFIN
AND RARITA-SCHWINGER EQUATIONS

A.G, Nikitin, Yu.N. Segeda and V.I. Fushchich

Additional (implicit) symmetry of the Kemmer~Duffin, Rarita—Schwinger, and Dirac
equations is established. It is shown that the invariance algebra of the Kemmer—Duffin
equation is a 34~dimensional Lie algebra containing the algebra of SU(3) as a subalgebra,
and that the Rarita—Schwinger equation is invariant under a 64-dimensional Lie algebra
including the subalgebra O(2, 4). The explicit form of the operator that reduces the
Rarita—Schwinger equation to diagonal form is found and also that of the operator that
transforms the Kemmer~Duffin equation into the Tamm-~Sakata—Taketani equation. The
algebra of the additional invariance of the Dirac and Tamm-Sakata—Taketani equations

in the clags of differential operators is found.

Introduction

It is well known that some equations of motion in quantum physics have an additional (implicit) sym-
metry. For example, the Schrodinger equation for the hydrogen atom has an implicit invariance with respect
to the group of four-dimensional rotations [1], and the Maxwell equation and Dirac equation (for zero mass)
are invariant under the conformal group [2].

In [3,4] it was established that the Maxwell, Klein—Gordon, and Dirac equations (with zero and non-
zero masses) have an additional invariance beyond the Lorentz invariance. The basis elements of this new
invariance algebra do not belong, in contrast to the case of Lorentz symmetry, for which the infinitesimal
operators are linear first-order differential operators, to the class of differential operators. In this case,
the basis elements are integrodifferential (nonlocal) operators in the configuration space. Because of the
nonlocality, these operators are not infinitesimal operators of tangent transformations in the sense of Lie,
although they do form a finite~-dimensional Lie algebra.

In what follows, by an additional invariance of the equations of motion we shall understand any
invariance that is not Lorentz invariance,

In the present paper, we investigate the group properties of the free relativistic equations of
motion for particles with nonzero mass and spins s = 3/2. We establish theorems on the additional invariance
of the Kemmer-Duffin (KD), Tamm-Sakata—Taketani (TST), and Rarita—Schwinger (RS) equations. In addi-
tion, we find the invariance algebra of the Dirac and TST equations in the class of differential operators.
The theorems are proved by means of a device proposed in [3]. The gist of it ig that first the system of
first-order differential equations, having been reduced in advance to Hamiltonian form, is reduced by means
of a unitary transformation to a different equivalent equation with a diagonal Hamiltonian, and then the addi-
tional invariance algebra is established for the transformed equation. Finding basis elements of the additional
invariance algebra for the transformed equation and having a unitary operator that diagonalizes the Hamil~
tonian, we determine the invariance algebra of the original equation.

In recent years, there has been intense study of the group properties of partial differential equations
on the basis of the classical Lie methods [5, 6]. These methods differ strongly from ours.

1. Symmetry of the Kemmer—-Duffin and

Tamm-—Sakata—Taketani Equations

A. The KD equation can be written in the form
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(Bupr—m) W (2, x)=0, u=0,1,2,3, {1.1)
where p, = i8/6x# and the matrices By satisfy the algebra
§p5\~ﬁA+Blﬁ\'ﬁp=ﬁpgvk+BAguv- {1 . 2>

The KD equation describes the free motion of a particle with spin 0 or 1. In the first case, the
matrices B# have five rows, and in the second case, 10 rows.

It is more convenient to write Eq. (1.1) in the Hamiltonian form [7]
0¥ /0t=HY (¢, z), H=[ps Bc]patPom, 1.3
{m(1—5*)+(B-p) o} ¥ (¢, x) =mP ¥ =0. (1.4

The physical meaning of the additional condition (1.4) is that it eliminates the "redundant® compo-
nents of the wave function ¥. For spin s = 0, the wave function has three redundant components: for spin
s = 1, four.

The condition of invariance of Eq. (1.1) with respect to a certain set of transformations is equiva~-
lent by definition to fulfillment of the conditions

a : .
[15;- 8.0 ]¥t=0,  [mP,Q.1¥ (:)=0, 1.5)
where Q, are the operators of the transformations, ¥ satisfies Eqs.(1.3) and (1.4), and {A} is a set of

indices.

The problem of finding the invariance algebra of Eq. (1.1) consists of describing all possible
operators Q, that satisfy conditions (1.5).

We prove

THEOREM 1. The KD equation is invariant under the Lie algebra of the group SU(3). In the case
of spin s = 1, the KD equation is invariant under a larger, 34-dimensional Lie algebra that contains the
SU(2) algebra as a subalgebra. The basis elements of this invariance algebra satisfy the commutation
relations (1.10) and (1.14).

Proof. A transition to a representation in which H is diagonal can be made by means of an
integral unitary operator of Foldy—~Wouthuysen type [8]:

Y0O=UY¥, U=exp { Bepe arctg—%}, p={(p tp+pH)", a=l1, 2,3 (1.6)
P
As a result, we obtain the system of integrodifferential equations
i0Q/0t=H"® (¢, x), H*=UHU'=B,E, (I-35)0(t, x)=0, E=(p*+m?)", (1.7)
and the invariance condition (1.5) reduces to the form
[i—z; ~ BoE, Q;"] 0=0, Q.°=UQ.U~, [1-37 0.°1®=0. (1.5

The condition (1.5’) is satisfied by arbitrary matrices that commute with 5 o
Using the relations (1.2), we can readily see that the condition {1.5) is satisfied by the matrices
Sop=i(Pobr—Pss), Sw=ew.S:, a, b, c=1,2 3. (1.8)

This property is obviously common to all functions of S,,, among which one can choose only eight indepen-
dent:

Qiq’:"'(SaSz"'SzSa)y Qz°=Ss, 03°=_i(SsSiS2_S!SZS3)y QL®=_(SSS1+SIS2)5, Qﬁ¢=—327 Qs®='(SzSa+SsSz>,

0.°=S,, Q=— -}7‘_5 (S48.8,+5.8,8:~25:5.5,). (1.9)
The operators Qg’, A =1,2,...,8, satisfy the commutation relations
[QMLP, QLQ] =ifMLKQK¢7 M, L, K=1, 2, csog 8, (1 - 10)

where fy; g are the structure constants of the group SU(3).
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In the case of spin s = 0, the operators (1.10) exhaust all possible (to within equivalence) indepen-
dent matrices that commute with BO. For s = 1, there are more of these matrices. We construct the com-
plete system of matrices that commute with BO as follows. Without loss of generality, we can choose the

matrix ﬁo in the form
I3
By = ( —I3 , (1.11)
04

4 . . . . .
where I and 0 are the three-row unit matrix and four~row null matrix and there are zeros in the remai-
ning positions.

The general form of a matrix that commutes with BO is given by

a 0 O
B:(O b 0), (1.12)
00 ¢

where a, b, ¢ are arbitrary square 3 X 3, 3 X 3, and 4 X 4 matrices, respectively. Thus, there are
altogether 34 linearly independent matrices that commute with BO. These 34 matrices include the operators
Qf, A=1,2 ...,8, from (1.9), and the others can be represented in the form

Qs+°A=ﬁOQA°’ A=1, 2: seey 87 11°=Fo= (Szz"‘Su) (1_502),
01:+a—’=r‘a= (Sbc+S4a) (531‘“‘5‘42) (1—502) s Su=i(ﬂaﬁ«—l3‘ﬁ;,) ,

1
ﬁ‘ = ‘Esuvoﬂpuﬁ"ﬁpﬁv: {ino, szo, caey Qsz°}={l‘pl“v; F,.erx; F0F1F2Fa}, Qaa°=1, Qaao—“—ﬁo, (1. 13)

v, h...=0,1,2,3 =123 (ab c)=cyclic perm.of (4,2,3).
These operators satisfy the commutation relations
[Qcias Quts]=ifascQc®  [Qegar Os®1=if ascQsvcs (1.14)
[T, Q] =I[T\ Qetal=0, (DILHTT) (1=Bo’) =28 (1—Bs"). (1.147)
The commutation relations (1.10) and (1, 14) follow directly from (1.2). The theorem is proved.

To conclude this section, we note that the explicit form of the operators (1.9) and (1.13) in the
original ¥ representation is obtained by means of the inverse of the transformation (1.6). In other words,

the operators Q, are obtained from Qg’, A ='1,2, ..., 34, by the substitution
m  pXp p(Sp)
S—>8=U"1SU=8 ~— — j e F e | 1.8")
-S=U E TE  EE+m) (

Remark 1. It is well known [9] that Eq. (1.1) in the limiting case m — 0 cannot be used to describe
the motion of massless particles. It can be shown however that such a passage to the limit is possible in
the Hamiltonian form (1.3)-(1.4) of the KD equation. Theorem 1 remains true.

If we impose on the wave function ¥ the Poincaré-invariant condition of transversality
(8-p)¥=0, (1.15)
then Theorem 1 no longer holds.

The system of equations (1.3), (1.4) (with m = 0), and (1.15) is equivalent to the Maxwell
equations,

Remark 2, For the KD equation, as for the Dirac equation [3], one can find four types of operators
that satisfy the commutation relations of the Lie algebra of the Poincaré group for which the condition (1.5)
is satisfied. These operators also have an explicit representation:

{0 : ‘Pu=idjoz*, Up—ap—upytSpes  Suv=i(BuB—BB) ; (1.16)

{Q%}: *Py=H, *Py=—i0/8x:, *p=zpo—xopstSa,  Tp=xipe—"/: (T H+Hz,); 1.17)
{Q%}: *Py=10/0t, Pe=—i0/08a,  Jiy=FsPo—FoPay  Joa=oPu—FoPs; (1.18)
(0%): ‘Po=H, ‘Pum—itl0ts,  TumFubsohay  “Toemzopa—/s(ZH+HE):; (1.19

where
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@a

- +l (Baps) pe + (pX8).

E*(E+m)  E(E-+m)

The operators (1.16) are non-Hermitian in the Hilbert space in which the operators (1.17) are Hermitian,
The operators (1.18) and (1.19) are Hermitian and inequivalent to the operators (1.16) and (1.17). This can
be readily established by calculating the Casimir operators for the representations (1,16}, {1.18}, and
(1.17), (1.19).

We note further that the operators (1.16)-(1.19) generate completely different laws of transforma-
tion of the coordinate and time. Namely, from the explicit form of the operators J oz WE obtain directly
that in the case (1.17) and (1.19), in contrast to (1.16) and (1.18), the time does not change:

zy"=exp {i/0.0.} 20 exp {—il0:0,} =2, {1,20)
B. The TST equation has the form
S_ 2 2
0TS Yor=H"Ty o1, x), B =0,m—io, Gp) + (i, +02) —g— (1.21)
m m

where ¥pgp is a six-component wave function, S, are the generators of a representation that is the direct
sum of two irreducible representations D(1) of O(3), and o, and o, are six-row Pauli matrices that
commute with S .

The TST equation describes the motion of a free relativistic particle with spin s = 0 and, in con~
trast to (1,1), does not contain redundant components.

THEOREM 2. The TST equation is invariant under a 16-dimensional Lie algebra that contains the
SU(3) algebra as a subalgebra. The basis elements of this algebra satisfy the commutation relations
(1.10) and (1,14).

Proof. We first of all establish the connection between the solutions of the KD and TST eguations.
Usually, the TST equation is obtained from the KD equations by indirect elimination of the redundant
components. This procedure is unsuitable for cur purposes. We show that the TST equation can be
obtained from the KD equations by means of an isometric transformation:

vy Ty, V~exp{ﬂ°”“g~s }* 1+§—:—n&502, a=1,2,3. (1.22)
It is easy to see that ¥TST gatisfies the equations
i0 ‘I’TST/‘at=VHV‘“PTST=Bo( m 40P ) WTST ¥ (;P) V-ryTST— (13,7 WTST=0. (1.23)

It is well known (7] that the system of equations (1.23) is equivalent to (1.21) since the wave function ¢ 157
has only six nonzero components, and one can always set

afa S / \
Bonz‘{fTST=0277z‘{’TST: ﬁoﬁ—mp— pIST— [—io, ( :L) “+ (0,11 Zm] yIsT {1.24)

Since Eqgs. (1.3) and (1.4) are invariant with respect to the algebra generated by the operators Q,, Eqg.({1.21)
is invariant with respect to the algebra {Q151}, QI5T = vQ, v-!. We obtain the explicit form of the

operators QIST from (1.9), (1.13), (1.8"), and (1. 22)
TST_ _ (8,8, + 88y, 05T= 3§, 5T = — i(§, 5,5, —
TSTZ_SV% QE‘ST:‘

5:85:80), 0F5T= — (8,8, + 8.8, 0;

—(§2§3+Ssg2)s ;[‘ST=__51, ESTz - ‘;23_(‘§3'§1‘§2+ S1'§2‘§3—2g2§3§1)’
(1.25)
oTSI_ HTSTQTST -5 ™ + L(§£)_+_i_{c (sxp)(s-p)+i(1+os){p(S~p)—Sp2]},
4= 40 E E(Etm) mE 2
oIST_g™s8Tg STy, {1.28)

The operators (1.25) satisfy the same commutation relations (1.9) and (1.14) as the operators Q.% Q3. -
The operators (1.26) commute with (1, 25).
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The invariance algebra (1.25)-(1.26) of the TST equation is of course smaller than the algebra
(1.9), (1.14) of the KD equation. This is because the TST wave function has fewer components than the

KD’'s, and therefore the operators VQ.:,, Qu,...,(0:»V™' are not defined on solutions of the TST equation.
The theorem is proved.

Remark 3. The relativistic equations without redundant components for particles with spin s = 1
obtained in [11} are also invariant with respect to the transformations that satisfy the algebra (1.10), (1.14).
This is proved in the same way as above, because these equations can be reduced to diagonal form.

2. Symmetry of the Rarita—Schwinger Equation

The RS equation for a particle with spin s = 3/2 can be written in the form
(A{pp“_m) va(ti X) :07 Y"‘Fv(t7 X) 207 K, ’V=O, 17 2’ 37 (2. 1)
where Yy are 4 X 4 Dirac matrices. The RS wave function has 16 components \I’;, o =1,2,3, 4.

We write the system of equations (2.1) in the Hamiltonian form

o b
. 0 B ¥, -
01{1/{3t=H‘F t, ’ vII’rV t, =u, = - = y == a, a+ m. .
t (& x), w¥(t,x)=0, H o 0o @ ol ¥\ H=YoYaPaYo 2.2)
0 0 0 & ¥s
The following manifestly covariant representation of the Lie algebra of the Poincaré group is realized on

the solutions of Eqgs. (2. 2):

P=H, P,=p,=—id/02, Jw=x,py—2PutSp, 2.3)
where the spin matrices S, are generators of the representation D('/,, /,)X[D(!/,, 0)®D(0, */,)] of the
group O{1, 3), and therefore can be represented in the form

i
Lguv=juv+Tuv, []'uvy Tu'v'] =07 Tuy = ? Yu'Yvy jab=jn‘+jczy Joo==i (].u‘_]'uz) 1 [ja’v jbzl =O, (2.4)
where ji, j2b are the generators of the representation D(3) of O(3). We now show that the following
theorem holds

THEOREM 3. The RS equation is invariant under a 64~dimensional Lie algebra that contains the
Lie algebra of the group O(2, 4) as a subalgebra. The basis elements of this algebra are all possible
independent products of the operators (2.12).

Proof, As in the preceding section, to prove the theorem we go over to a representation in which
the Hamiltonian H is diagonal and the wave function has only 2(2s + 1) nonzero components. The transi-
tion to such a representation for the RS equation is discussed in [12], but there the explicit form of the
transformation operator is not found.

We have obtained such an operator in the form

W = exp {iyr,]—a;& arth —Eﬂ}.exp{%&'arctg ;p} . (2.5)

This operator not only diagonalizes the Hamiltonian H (2.2) but also reduces the remaining generators
{2.3) to the canonical Foldy-Shirokov form.

Equations (2.2) after the transformation W take the form
i00/0t=H°D(t,x), HP=WHW-'=[3"E, S,'0="(/+1)0; O=WY¥; E=(p*+m*)" (2.6)
where the 16~row matrix 1“0(16) can always be chosen in the form

T o0 0o o0

!

g (0T 00 (2.7
00 —F o0
00 0 —1

and f and 0 are four-row unit and null matrices.
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It is clear from (2. 6) that the additional invariance of the RS equations is generated by the same
matrices By that satisfy the conditions

[By,[0'"1=0, [By,S4*1=0. 2.8)

Without loss of generality, the matrix S-ab can be taken in the diagonal form

51 0 0 0,
3
Sh=> 0L 00, 2.9)
005 0
00 o T/

It can be seen from (2.7) and (2. 9) that the most general form of a matrix that commutes with 3.“0“6) and Sz;b

is given by

4= (2.10)

S O~ D
ol O o

Pl e B B

l
0
0
0

where I, f, g, h are arbitrary square four-row matrices. Therefore, the matrix A can be represented as
a linear combination of 64 linearly independent matrices By that commute with 1“0(15) and Sza B

84
A=ZaNBN7 <2’11>

with arbitrary coefficients a,.

A system of basis matrices B, can be constructed explicitly. Namely, we choose six 18 X 16
matrices:

1
Fo == 73; (Szgsu+Ssgszs—ieubcjoa'fbc) 3 F1=25723 (1_‘2j232) (].aba’_i) 3 F2=2i131 (i"‘zjiﬂz) (jab:'—i)y

/,
o
ot
o
2

F3=2i[ng(1'—szz) +2j12T12] (fab2-/1), L1=F(§w)1 Lz"‘_‘z/ssabz"“s/z,
which satisfy the condition (2.8),

Using the relation (2.4) and making fairly lengthy calculations, we can establish that the operators
(2.12) satisfy
Purv+rvrp=2guv, [Lh L2]=[Fu7 L1]={I‘M7 L2}=01 L12=.L22=}“ <2' 13)

If we now take all possible independent products of the operators (2.13), we obtain exactly 64 ele~
ments, which form the basis system of matrices satisfying (2.8). In particular, the set of ail possible
independent products of the matrices I, forms, as follows from (2.13), the Clifford algebra C,, whose
elements are basis elements of the Lie algebra of O(2, 4).

To complete the exposmon we give the explicit form of the matrmes i, L " L
sentation, where ¥ = W~ 'y, By means of the inverse transformation w~! we obtain

) in the ¥ repre-

I",L= w-'T, W, 2.14)
~ 1 ~ 2 2 3 S A A L~ > .
To= __:(SzaSu'*'Sa‘Sza“iﬁubcjoarba)7 [, =20t (1—2j25%) (1),
3 L i (2.15)
Fz=2i%31(1-—2f312) (}'abz——i), P3=2i€1z(i"i122+2}.:2€:2) (jabz—'l), Li=H/E, L;=%"84"—"/,,
where
YaPo " YvPa PolpaTa) I _’_n___i A + Pe(Pejov)
Rt HIE R s e g g el (2.16)

(pois) —fops* fabeH
E(E+m) Em

In conclusion we note that the assertions made above about additional invariance also hold for the
Bargmann—Wigner, Dirac—~Fierz—Pauli, and Bhabha equations, which describe parncles with spin 1 and
3. The additional symmetry of relativistic equations for particles with spin s > /2 can algo be investi-
gated by means of the methods used in the present paper.

Foam=ioa -+ 22 . Su=jutTas {(a b, c)y=cyclic perm. of(4, 2, 3).
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3. Invariance Algebra of the Dirac and TST Equations

in the Class of Differential Operators

In the Introduction it was noted that the Dirac equation is implicitly invariant under the algebra
0O(4) as well ag Poincaré invariant. The algebra O(4) is defined by integrodifferential operators and is in
a certain sense the maximal algebra of additional invariance of the Dirac equation [3]. In connection with
this result, it is natural to clarify the following question: does there exist an algebra of implicit invariance
of the Dirac and TST equations in the class of differential operators?

In what follows, we shall prove theorems that provide a positive answer to this question,

THEOREM 4. The Dirac equation is invariant with respect to the algebra of O(4) with basis ele-
ments given by differential operators.

Proof. We subject the Dirac equation

(Yp*—m) ¥=0 8.1
to the transformation
V> Q=V¥, (m—y,p*)~>V(m—y,p*) V"'=m—(P,P,)"s;

S ‘ 28, . (3.2)
7 i
V=exp(—5:‘&— . ——) = ‘r( 1+ —llp—“) y  Sp=— Y5V Ys=iYoY1Y2Ys-
Nippe 47 V2 (p.p*)" 2
The invariance condition takes the form
[m— (pupy) I/I'Y5, Q'lo (t, z) =0. (3.3)

Equation (3.3) is satisfied by arbitrary matrices that commute with Y, - Any such matrix can be
represented as a linear combination of the quantities

i 1
Sab = '5" YaYo, Sia = '2— YoYa. (3 . 4)

The matrices (3.4) realize, as is well known, the direct sum D (Y., 0)®D(0, '/.) of two irreducible
representations of the O(4) algebra. By the transformation that is the inverse of (3.2), we obtain the basis
elements of the algebra of the additional invariance of Eq. (3.1):

- i 1
Sab=V—‘SabV’=Sab - _H:L— (1+Q95) ('Yapb_’pra) 5 Su":S;a - ;(1""75) (Yopu_Yapo) . (3 . 5)

It should be noted that this algebra is not equivalent to the Lie algebra of the group of three~dimensional
rotations defined by the generators J,=z.p,—z.p.+S8« of the Poincaré group. The theorem is proved.

~

Remark 4. The operators S,; are non-Hermitian with respect to the ordinary scalar product
(¥, W)= [ #2¥,* (2) ¥ (a), (3.6)

but they are Hermitian in the indefinite scalar product

2(S-p)
m

(¥, )= [ e 1 () |w. 3.7)

In the scalar product (3,7), the Dirac Hamiltonian (3.1) is also Hermitian.

THEOREM 5. The TST equation is invariant with respect to the algebra of SU(3) with basis ele-
ments given by differential operators.

Proof. We subject the TST equation (1.21) to the transformation

2
GIST, @/ IST_pyyTST  pIST, ppypTSTy—1— g,m+ (0, +ic,) EI%Z — g'TST

(3.8

(S-p) (S-p)*

W=1+0, +(1+0s) Z
. 2m

m

The operators H/TST (3.8) commute with the spin matrices S,. From this we conclude that the operator
i8/8t — H'TST commutes with the set
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ST oL ara s 14 ’ AN (O IQIQ ! o ra s Fds IR R AR
O (88 +8:8), oS Lsy, QT i(8/8/8/—88.8)), QI (8,8, +8/8)),
. 3.9)
/ TST ; TST PR fera s Yo ra
oMl sy, QL (sysi+sssy), @ =S/, 0 ““J‘g(sg S/SS+S/8) Sy ~28, 88,
where
cS ¢ acS (2] S ,S' S )2
S.,’=Su+i{ 02M+(1+03) w} {1._02\__?)_+(1~03) (_L} .
m 2m? m 2m?

This means that the operators (3.9) satisfy the invariance condition of the TST equation. By direct verifi-
cation one can show that the operators (3.9) satisfy the commutation relations (1.10) of the algebra SU(3}.
These basis elements of the invariance algebra of the TST equation are Hermitian with respect to the
indefinite scalar product

¥, q”)=j FaW * (¢, %) WHo, W, (1, x) = ,f daxqri+{oz+2§—"l+ 26, (S'pz)
. m m

+{1—a;) (S;) }%. (3.10)

The theorem is proved.

The above results can be used to find integrals of the motion of particles interacting with an
external field, For example, for a particle with spin s = % in a wniform magnetic field H an integral of the
motion is the operator Q=c¢,S(n)H, where S (n) is obtained from (3.5) by the substitution p,>x.~p.—ed..
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