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THE COMPLETE SET OF SYMMETRY OPERATORS OF THE SCHRODINGER EQUATION 

A. G. Nikitin UDC 517.9:519.46 

The complete set of symmetry operators of an arbitrary order associated with 

the Schrodinger equation is found. It is shown that this equation is in- 
variant with respect to a 28-dimensional Lie algebra, realized in the class 
of differential operators of the second order. Higher-order symmetries of the 
Levi-Leblond equation are investigated. 

io Introduction 

A description of symmetry operators of higher orders, associated with basic equations 
of mathematical physics, has become an increasingly important problem, since it is a 
necessary step in the investigation of coordinate systems, where equations admit solutions 
in separated variables [i]. As was shown quite recently [2, 3], the order of symmetry oper- 
ators, generating such coordinate systems, can be arbitrarily large, and it can exceed the 
order of an equation. Therefore, the problem of a description of symmetry operators of an 
arbitrary order is of great importance. Note that in the 1970s integral differential sym- 
metry operators of the Dirac equation were obtained, which can be interpreted as symmetries 
of an infinite order [4]. 

In papers [5-7] complete sets of symmetry operators, associated with the scalar wave 
equation and Diract equation are obtained, and their algebraic properties are studied. The 
present article continues the investigation of symmetries of higher orders of basic equa- 
tions of mathematical physics and is devoted to a study of the Schrodinger equation and 
other equations of nonrelativistic quantum mechanics. Below a complete description of sym- 
metry operators of an arbitrary order n, associated with this equation is given. 
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It is our pleasure to advise that our interest in symmetry problems related to equations 
of mathematical physics stems from discussions with O. S. Parayuk, who was a supervisor 
of our dissertation at Kiev University. 

2. Generalized Killing's Tensors and Symmetry Operators 
of the Schrodinger Equation 

Schrodinger equations for a complex scalar function ~(x), x = (x0, xl, x2, x3), P m L2(R~) 
can be written in the form 

p', 
L V = O ,  L-----po--..--~--~m, (i) 

where p2 = p12 + p22 + p32, P0 = i8~ = i(3/8x0), Pa = -iDa = -i(3/8x~). 

It is known that Eq. (i) is invariant with respect to a 12-parametric Schrodinger group, 
whose generators have the form 

Po= Po, P~= Pa, 

J~ = e,~xbp~, G~ = Xopo - -  rex., ( 2 )  

3 .  
D = 2xop o -- x~p,~ + -~ ~, 

1 
A = X2oPo -- xoD -- -~ rex'! 

The only invariant symmetry with respect to algebra (2) is the maximal (in the sense of Lie) 
symmetry of the Schrodinger equation [8]. 

Definition. A linear differential operator of order n 

a la2""c t ]  
Q~ ~ [[... [F , pall +, p%l+ . . . .  1+, P~j]+, z J  

1=0 
( 3 )  

where [A, B]+ = AB + BA, F =''" are arbitrary functions of x, and a v = i, 2, 3, \~ = i, 2 ..... 
j, is called a symmetry operator of the Schrodinger equation of order n, if 

[Q; L] ~ = 0 (4)  

for every $, satisfying (i). 

Operator (3) does not include the differentiation with respect to x0, which can be re- 
placed by differentiation with respect to the spacial coordinates on the solution set of 
Eq. (i). 

Substituting (3) and (i) into (4), and comparing coefficients of linearly independent 
differentiation operators, we derive the following equations for coefficients of symmetry 
operators: 

0 (~i+~/~%'"~P = - - 2 m F  %%'''=s+1, i = 0, 1, . . . ,  n -  1, ( 5 )  

0~+~/~%'''~ = 0; F = 0, ] = 0, ( 6 )  

where the dot denotes the differentiation with respect to x0, and the symmetrization with 
respect to indices is marked by putting the indices in parentheses. 

The system of equations (5), (6) can be integrated immediately for an arbitrary n, using 
results from [5, 6]. For this purpose, we first consider differential consequences of these 
equations. Differentiating (5) for j = n - i, with respect to Xn+1, and using (6) we obtain 

~(an+10anF%%'"an-1)= O. (7)  

Then, d i f f e r e n t i a t i n g  (5)  f o r  j = n - 2, w i t h  r e s p e c t  t o  x n and Xn+l,  and u s i n g  ( 7 ) ,  we ob-  
t a i n  t h e  e q u a t i o n  

1414 



O~an+laanOan--IFa~%'"an--2)= O. 

Repeating this procedure, we obtain an equation for an arbitrary j = n - s + i: 

ac~i+'a~ o, s = n - - ]  + 1. ( 8 )  

From (5) and (6) it also follows that 

(OXo)i+l F %a~'''~: = O. ( 9 ) 

Formula  (8 )  g i v e s  a sy s t em of  o v e r l a p p i n g  e q u a t i o n s  whose g e n e r a l  s o l u t i o n  was o b t a i n e d  
in  [5 ,  6 ] .  A symmet r i c  t e n s o r  F a .... , s a t i s f y i n g  Eqs.  ( 8 ) ,  has  been  c a l l e d  a g e n e r a l i z e d  K i I -  
L i n g ' s  t e n s o r  o f  r a n g e  j and o r d e r  s .  Th i s  t e n s o r  i s  a p o l y n o m i a l  o f  t h e  o r d e r  j + s - i = 
n (its explicit form was given in [5]), and involves NJ s arbitrary parameters, where [6] 

s 
Ni' = -]-2-(]+ I ) ( i + 2 ) ( i +  1 + s ) ( l + 2 + s ) .  (10 )  

A g e n e r a l  s o l u t i o n  o f  Eqs,  (8 )  and (9)  can be r e p r e s e n t e d  in  t h e  form 

] 
Fal%'"ai __ ~ I;'~ = -- ~s~ 0, s----n+l ], (ii) z~ 

where Fs~ are arbitrary Killing's tensors of order s. Substituting (ii) into the initial 
equations (5) and (6), we derive relations 

~Fs~ %. ..a] = - -  o~(a/~a~%...a]_l) ..... z ~ + 1 = - 1  , m v ~ O .  (12) 

Thus, the problem of description of symmetry operators of higher orders, allowed by the 
Schrodinger equation, reduces to a derivation of explicit forms of generalized Killing's 
tensors of range j and order n + i - j, satisfying complementary conditions (12). Using 
results from [5, 6], Eqs. (12) can be reduced to algebraic equations for coefficients 
of tensors F~'", which are easily solvable. Here we will confine ourselves to the enumera- 
tion of the number of independent solutions and their presentation in an explicit form. 

v ~ a 2  . . . a  i -  ! According to (12), tensors F~ff ~ .... i with ~ ~ 0 are uniquely expressed by ~~+l=-t , while 

Fs~ % ..... f is an arbitrary generalized Killing's tensor, subject to no restriction pertained 
to Eq. (12) (cf.~ e.g., [5, p. 38], Lemma 4). This means that the number of linearly inde- 
pendent solutions N n of system (5), (6) is equal to the number of independent parameters, 

determining ==~% ..... i for all j < n According to (i0), 
~S0 - " 

N ~ =  ,N j ~ = ~ ( n +  1 ) ( n + 2 )  2 ( n + 3 )  ~  
i=o 

Thus, the Schrodinger equation allows N n linearly independent symmetry operators of 
order j ~ n. Excluding symmetry operators of order j' ~ n - i, we obtain the number N n of 
symmetry operators of order n 

~ ! 
N n = N ~ - - N n - ~ : - ~ .  ( n +  1 ) ( n +  2) 2 ( n + 3 ) .  (13 )  

Explicit expressions for the corresponding symmetry operators can be chosen in the form 

n n--C 

c=0 k=0 

(14) 

where Pa, G~, and Jb are generators (2), % at"'" are arbitrary tensors that are symmetric with 

respect to transpositions of indices a i +-+ aj and b k +-+ bm, and satisfy conditions 

%a~%"'ac~o2""~n-c6%, = 0. Indeed, all parts in (14) are linearly independent, and the number of 

independent components of all arbitrary tensors % av' coincides with Nn (13). We see that all 
symmetry operators of a finite order, associated with the Schrodinger equation, belong to 

an algebra spanned by generators (2). 
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We will formulate the obtained result. 

THEOREM. The Schrodinger equation allows~N n symmetry operators of order n. Their ex- 
plicit form is given in (14), and the form of N n in (13). 

Generalized Killing's tensors have played the key role in the solution of the considered 
problem. 

3. Algebraic Properties of Symmetry Operators 

We will invesnigate the algebraic structure of symmetry operators of the Schrodinger 
equation. We will confine ourselves to symmetry operators of the second order which, accord- 
ing to (14), are exhausted by the following members: 

I 
P~b = P.Pb, G~b = G~Gb, Qab =-'~(P~G~ + PbG~), (15)  

(16)  
L~b = P~Jb § P~a, Nab = Gila + Gila 

( t e n s o r s  L~b and Nab have  t h e  n u l l  t r a c e ) .  

O p e r a t o r s  (15)  and ( 1 6 ) ,  as opposed  t o  ( 2 ) ,  a r e  n o t  l i e  a l g e b r a s ,  b u t  i n c l u d e  s u b s e t s  
t h a t  a r e  such a l g e b r a s .  Namely: o p e r a t o r s  (15)  form a 2 8 - d i m e n s i o n a l  L i e  a l g e b r a ,  t o g e t h e r  
w i t h  o p e r a t o r s  Pa, Jo ,  and G a (2 )  and t h e  u n i t  o p e r a t o r  I [P0,  A, and D r e d u c e  t o  t r a c e s  o f  
t e n s o r s  (15)  on t h e  s o l u t i o n  s e t  o f  Eq. ( 1 ) ] .  I n d e e d ,  by a d i r e c t  c o m p u t a t i o n  we o b t a i n  
t h e  f o l l o w i n g  commuta t i ve  r e l a t i o n s :  

[P~, P~,i = [P.,, P0l = [P0, Ja] = [6~, Gb] = 0, 

[P~, Jb] = ie~cP~, [G,,, J~] = ie~b~6 ~, 

[P0, Go] = iP~, [Pa, Oh] = i6a~.rnl, [J~, Jbl ---- i s ~ J o  

[P~b, Gcd]= im (8~Qba T 6~aQ~ q- 6aeQor -~- 6bcQ~a), 

[P=., Q~d] =im (6acP~r z q- 5bdPac -~ 6adPt, c -~ 6beP~d)' 

[Q.~, Q~d] ---- im (6~ Qbd + 6bdQa~ - -  6.dQb~ - -  6b~Qad), 

[P~, P~a] = 0, [P~, O~] = i m  (6a~Pe + 6~ePa), 

[Pa, Gbd] ----- im (6abG d ~ 6adGb), 

[J~. Rbe] = i(eobhRke q- %ehRhb), Rba = (O.bd, Oba, Pbd), 

defining a 28-dimensional Lie algebra A28. This algebra includes the subalgebra ASchr(l, 3) 
(the Lie algebra of the Schrodinger group), which contains operators Pnn, I, P=, Ga, Ja, 
Gnn 2, and Qnn, and also the subalgebra AO(I, 2) c Pnn, Gnn, Qnn; AIGL(3) c p~, Ja, Qab, and 
AP(2, i) c Pa, Jl, Q12, Q1a. 

We see that symmetry operators of the second order have quite nontrivial algebraic struc- 
ture, which can be used in a construction of groups of implicit symmetries of Eq. (I), in 
generating nonequivalent sets of symmetry operators, corresponding to coordinate systems, 
where there exist solutions in separated variables, etc. 

4. Symmetry Operators of the Levi-Leblond Equation 

The Levi-Leblond equation, describing a nonrelativistic particle with the spin 1/2, 
has the form [9] 

L~ ------- [i (I + , o )  p o + ( 1 - - % ) m - - , a p a ] ~ = O ,  (17) 

where Y0 and y= are Dirac matrices, and ~ is a four-component wave function. Equation (17) 
is invariant with respect to the Schrodinger group, whose generators have the form 
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P0=p0, Pa=p~, J:=J~+S~, O:=O~+~:, 

where Ja and Ga are operators (2), 

i I 
S~=-~-~%?~ ~=7(i_~,o)?~" 

In order to describe symmetry operators of higher orders, associated with Eq. (17), 
we will transform it to the following equivalent form: 

(18) 

where 

L ' V ' =  O, (19) 

L' = U LU -1, W' = UV3, (20) 

U = 1 i U_~ i --'-~--~Pa, = l + - ~ - ~ P a ,  
(21) 

L ' = '  ( ;~) ~ ( l + y o )  po---~-m- m + ( 1 - y  o) m. 

Equation (19), as opposed to (17), includes only one y-matrix, which simplifies the 
investigation of its symmetries. Choosing a diagonal ~0, we infer that 4' has only two non- 
null components, satisfying the SchrSdinger equation. 

We can decompose symmetry operators of Eqo (19) with respect to complete set of matrices 
{So, I}: 

Q=S~Q~+IQo ,  [Q.,%t=o. ~ ,~=o ,  1,2,3. 

Then the operators Q~ should be symmetry operators of the Schrodinger equation and, hence, 
have form (14). This means that all symmetry operators of Eq. (19) belong to an algebra 
spanned by the subalgebra ASchr(l, 3). Indeed, generators (18) under transformation (20) 
take the form 

= = U J a U -  = J ~ + S ~ ,  G~=UG~U - l = o ~ ,  p ~ = U P ~ U - i  p . ,  ~ ^ I ^ 

where P~, Ja, and G ~ are generators (2), and matrices S = on the solution set of Eq. (19) 
are expressible by generators (2) 

Se W, = __1 (mg~ - -  ~b~P ) ~g'. 
m 

Since Eqs. (17) and (18) are related by the inverse relation, it follows that all 
symmetry operators of an arbitrary finite order are polynomials of generators (18). 

An analogous assertion can be proved for equations proposed in [i0, ii], which describe 
a Galilean particle with an arbitrary spin s. The methods developed here and in [5-7] allow 
one to find complete sets of symmetry operators also for the Schrodinger equation with a non- 
null potential, for example for the harmonic oscillator potential and other potentials, found 
in [12]. 

Integral symmetry operators of the Schrodinger equation are considered in [13]. 
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GEOMETRY IN NONLINEAR QUANTUMLIKE MODELS ON STIEFEL MANIFOLDS 

AND BIFURCATIONS OF ASSOCIATED AUTONOMOUS SYSTEMS 

A. M. Gavrilik UDC 530.145;530.182 

Based on the geometric characteristics of Stiefel manifolds VN, k = SO(N)/SO(N - 
k) that have been previously found, two-loop B functions (a matrix $ function, 
and a pair of scalar functions) of the renormalized group and a dynamic system 
that together describe the renormalization group evolution of effective interac- 
tion in nonlinear o-models on such manifolds are obtained. It is shown that 
for definite values of the parameter bifurcations of saddle-node type equilib- 
rium positions are observed in this dynamic system. 

i__ u. Analysis of dynamic equations (systems) associated with motion equations in classi- 
cal non-Abelian gauge fields has demonstrated their nontrivial behavior in phase space. It 
is known that if static sources of sufficient strength are present, this will lead to a solu- 
tion that undergoes bifurcation [I]. The motion of non-Abelian fields is stochastic [2, 3]; 
however, the stochastic feature may be eliminated if a Higgs field is added, i.e., under 
the condition that the parameter that characterizes the "Yang-Mills-Higgs" system attains its 
critical value and that there is a transition [4] from random to regular behavior. Whether 
Yang-Mills-Higgs quantum fields possess corresponding properties remains an open question. 
(Specific features that are found in a quantum-mechanical analog of the Matinyan-Savvidi 
system have been considered in [5].) 

Two-dimensional (d = 2) nonlinear o-models have been interpreted as, in some sense, 
analogs of non-Abelian gauge (d = 4) gauge theories, basically due to the existence of, in 
certain cases, localized (instanton) classical solutions [6-8] and, in the quantum treatment, 
due to the presence of the property of asymptotic freedom (a tendency for the effective coup- 
ling constant to vanish at short distances) [9-11]. Because of this analogy, we are justi- 
fied in asking whether any of the nonlinear o-models exhibit properties that are to some 
extent analogous to the results found in [1-4]. In the present article it will be shown 
that the phenomenon of bifurcation of stationary solutions in nonlinear o-models in fact oc- 
curs if we consider, instead of the classical field motion equations, the autonomous dynamic 
system associated with the renormalization group behavior of effective interaction, more pre- 
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