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Abstract

It is shown that the Dirac equation for a charged particle interacting with an
external electric field admits extended supersymmetry provided the related potential
has well definite parities. In particular, N = 4 and N = 6 SUSY for the relativistic
Hydrogen atom is indicated.

1. Introduction. First introduced in particle physics [1], SUSY plays more and more
essential role in quantum mechanics, refer e.g. to survey [2]. Moreover, some of important
quantum mechanical problems (such as an interaction of an electron with constant and
homogeneous magnetic or Coulomb fields) admit exact SUSY [3, 4].

It was pointed out long time ago [5], that the Dirac and Schrödinger–Pauli equations
for an electron interacting with a time-independent magnetic field are supersymmetric,
provided the related vector-potential has a definite parity w.r.t simultaneous reflection of
all spatial coordinates.

Recently, generalizing this idea of paper [5], the extended N = 3, N = 4 and N = 6
SUSY for an electron in three-dimensional magnetic field was found [6]–[9]. A sufficient
condition of existence of such a symmetry is that the vector-potential has definite parities
w.r.t. reflection of any spatial variable. These results establish deep connections between
supersymmetries and discrete involutive symmetries and stimulate systematic search for
discrete symmetries of the Dirac and Schrödinger–Pauli equations [7, 9, 11].

In the present paper we prove existence of N = 3, N = 4 and N = 6 SUSY for
the Dirac equation for an electron interacting with the electric field. We also indicate
symmetries of this equation w.r.t. algebras of discrete transformations which appear to
be rather extended. In particular we prove the symmetry of the related Columb problem
w.r.t. the algebra gl(8, R).

2. Two forms of the Dirac equation. Consider the stationary Dirac equation for a
particle interacting with a time independent electric field

LΨ ≡ (ε− γ0γapa − γ0m− eA0) Ψ = 0, (1)

∗e-mail: nikitin@imath.kiev.ua

1



where pa = −i ∂
∂xa

, a = 1, 2, 3, ε is the Hamiltonian eigenvalue, A0 = A0(x) is a potential
of electric field, γµ (µ = 0, 1, 2, 3) are Dirac matrices (we choose γ4 = γ0γ1γ2γ3 diagonal).

To search for SUSY of (1) it is convenient to transform this equation to the following
equivalent form (

ε2 − 2eA0ε+ e2A2
0 − papa −m2 − 2ieSaEa

)
Φ̂ = 0, (2)

(1 + iγ4) Φ̂ = 0, (3)

where Sa = i
4
εabcγbγc, Ea = −i∂A0

∂xa
. The corresponding transformation can be represented

as [12]

Φ̂ =→ V +Ψ, Ψ = V −Φ̂, L→ V +γ0LV
−,

V ± = 1± 1

m
(1 + iγ4) (γ0L−m) .

(4)

In accordance with (3) function Φ̂ has only two non-zero components which we denote
by Φ. Moreover, equation (2) reduce to the form(

ε2 −m2
)
Φ =

(
p2 + ieσaEa − e2A2

0 + 2eεA0

)
Φ, (5)

where σa are the Pauli matrices.
The system of two second-order equations (5) is mathematically equivalent to the

system of four first order equations given by relations (1). Thus there exist one-to-one
correspondence between symmetries of equations (1) and (5). Nevertheless, equation (5) is
much more convenient for symmetry analysis then (1) because of reduction of the number
and dimension of the involved matrices.

Let us suppose that A0 depends on some parameters a = (a1, a2, . . .), and is a homo-
geneous function of x and a:

A0(kx, ka) =
1

k
A0(x, a). (6)

A familiar example of such a potential is the potential generated by a system of point
charges, i.e., A0 = Σ gie

‖x−ai‖
, where ai are charges coordinates.

Choosing new variables r = xε and b = aε we reduce (5) to the form

λΦ = HΦ, H = −p′ap′a + ieσaE
′
a + (1− eA0(r, b))

2 , (7)

where p′a = −i ∂
∂ra
, E ′

a = −∂A0

∂ra
, λ = m2

ε2 , r = (r1, r2, r3).
We say equation (7) admits N = n SUSY, if there exist n constants of motion QA

which commute with “Hamiltonian” H and satisfy the following relations:

QAQB +QBQA = 2gABH, [QA, H] = 0, A,B = 1, 2, . . . , n. (8)

If gAB = δAB (δAB is the Kronecker symbol), then relations (8) define superalgebra
characterizing SUSY quantum mechanics with n supercharges [2]. We will consider also
a more general case when the diagonal elements of the tensor gAB are equal either to +1
or to −1 (and gAB = 0 for A 6= B).
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Discrete symmetries and supercharges. In addition to (6), we suppose that A0(r)
is an even function w.r.t. reflections of space variables. Let us consider consequently all
possible combinations of such parities.

Let
A0(−r) = A0(r), (9)

then equation (7) is invariant w.r.t. the space reflection transformation Φ(r) → RΦ(r) =
Φ(−r). In addition, we can construct a symmetry operator (supercharge) Q:

Q = Rq, q = σap
′
a − 1 + eA0 (10)

which satisfies the condition Q2 = H and generates N = 1 SUSY for equation (7).
Analogously, equation (7) admits N=1 SUSY provided A0 is an even function w.r.t.

reflection of one of co-ordinate axis, say

A0(r̂1r) = A0(r), r̂1r = (−r1, r2, r3). (11)

The corresponding supercharge is Q = R1q, where operator R1 is defined as follows:
R1Φ(r) = σ1Φ(r̂1r).

If A0 is an even function w.r.t. reflections of two given coordinate axes, say

A0(r̂1r) = A0(r), A0(r̂2r) = A0(r), r̂2r = (r1,−r2, r3) (12)

then there exist two supercharges for equation (7), namely

Q1 = R1q, Q2 = iR2q. (13)

Operators (13) satisfy relations (8) for g11 = −g22 = 1.
Finally, if A0 is an even function w.r.t. reflection of any co-ordinate axis, i.e.,

A0(rar) = A0(r), a = 1, 2, 3, (14)

then equation (7) admits N = 3 SUSY generated by following supercharges

Q1 = R1q, Q2 = R2q, Q3 = R3q. (15)

We notice that all supercharges introduced in the above are Hermitian w.r.t. the
following indefinite metrics

(Φ1,Φ2) =

∫
d3xΦ1R̂Φ2, (16)

where R̂ = R for the case when A0 satisfies (9) and R̂ = R1 for the case when parity
properties of A0 are defined by relations (11), (12) and (14).

In all considered cases equation (7) is invariant w.r.t. the following “antiunitary” [13]
transformation

Φ(r) → CΦ(r) = iσ2Φ
∗(r) (17)

where the asterisk denotes the complex conjugation. Using this symmetry and taking into
account the relations

{Ra, σap
′
a} = 0, [C, σap

′
a] = 0, {Ra, C} = 0, R2

1 = −C2 = 1,
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it is possible to construct additional supercharges and obtain the following bases of su-
peralgebra (8)

Q1 = iRq, Q2 = CQ1 (g11 = g22 = −1), (18)

Q1 = R1q, Q2 = CQ1 (g11 = −g22 = 1), (19)

Q1 = R1q, Q2 = iR2q, Q3 = CR1q

(g11 = −g22 = −g33 = 1)
(20)

and
Q1 = CR1q, Q2 = iR2q, Q3 = CR3q, Q4 = CRq

(g11 = −g22 = g33 = −g44 = 1)
(21)

for the cases (9), (11), (12) and (14) correspondingly.
We see that extended SUSY is admitted by a number of problems describing interaction

of spin 1/2 particle with an electric field, provided the corresponding potentials have
definite parities. Let us present simple examples of such potentials:

A0 =
ge

‖x‖
, (22)

A0 =
ge

‖x + a‖
− ge

‖x− a‖
, (23)

A0 =
ge

‖x + a‖
− ge

‖x− a‖
+

ge

‖x + b‖
− ge

‖x− b‖
, (24)

A0 =
ge

‖x + a‖
− ge

‖x− a‖
+

ge

‖x + b‖
−

− ge

‖x + b‖
+

ge

‖x + c‖
− ge

‖x + c‖
.

(25)

Here a = (a, 0, 0), b = (a, b, 0), c = (a, b, c), a 6= b, b 6= c, c 6= a.
Relations (22), (23), (24) and (25) define potentials of a point charge, of electric dipole,

of two and three parallel dipoles correspondingly (the three last examples correspond
to elementary units of the crystal of NaCL). These potentials have parities defined by
relations (14), (12), (11) and (9) respectively.

Extended SUSY for the hydrogen atom. Here we show that for the case of the
Coulomb potential (22) equation (7) admits more extended, N = 6 SUSY. This extension
is caused by existence of the Johnson–Lippman [14] constant of motion for the Dirac
equation and additional symmetry operators

J2 = JaJa, D = σaJa − 1/2, (26)

(where Ja = εabcrbp
′
c + σa/2) for the corresponding equation (7).
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Let us suppose that Φ is an eigenfunction of symmetry operators J2 and D with
eigenvalues j(j+ 1) and ±κ = ±(j+ 1/2) correspondingly, and rewrite equation (7), (22)
in the form

µΦ = ĤΦ, (27)

where

Ĥ = p′
2
+ iα

σara

r3
−

(α
r
− 1

)2

+
1

b2

(
σaJa −

1

2

)2

,

µ =

(
κ2

b2
− m2

ε2

)
, α = ge2, b2 = κ2 − α2.

(28)

Using the relations

{D, σap
′
a} = {D, σara} = 0,

[
σap

′
a,
σbrb

r

]
= −2i

r
D, (29)

it is not difficult to verify that the operator

Q =
i

κ
D

(
σap

′
a +

α

ρ
+
α2

b2

)
+
ακ

b2
σara

r
(30)

is a supercharge for “Hamiltonian” Ĥ, satisfying the relation Q2 = Ĥ.
To find additional supercharges we use (29) and the following relations

[Rab, Q] = [Rab,Σ] = [C,Σ] = {C,Q} = {Σ, Q} = 0,

Σ2 = R2
ab = 1,

(31)

where Σ = 1
b

(
D − iαρaσa

ρ

)
, Rab = iRaRb.

Products of Q with Σ or Rab are supercharges too, moreover, there exist exactly four
of them:

Q1 = R23Q, Q2 = R31Q, Q3 = R12Q, Q4 = iΣQ. (32)

Operators (32) commute with Ĥ and satisfy relations (8) where g11 = g22 = g33 =
−g44 = 1. They are Hermitian w.r.t. the following scalar product

(Φ1,Φ2) =

∫
d3xΦ+

1 MΨ2, (33)

where M = JaJa + 1
4

+ iασ·r
r
D is a positive defined metric operator (we suppose α� 1).

A more extended set of supercharges can be obtained using antiunitary symmetry (17).
It includes six operators

Q1 = Q, Q2 = iΣQ, Q3 = CQ,

Q4 = CR12Q, Q5 = CR31Q, Q6 = CR12Q
(34)

which satisfy relations (8) with H = Ĥ, g11 = g22 = g33 = −g44 = −q55 = −g66 = 1.
Using explicit solutions for the Dirac equation with the Coulomb potential (refer e.g.

to ref. [12]), it is possible to show that the found SUSY is exact in as much as the ground
state of the system (27) is not degenerated.
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With a help of transformations (4) it is possible to find symmetry operators (which
correspond to supercharges (34)) for the initial Dirac equation. In this way we obtain
the following operators which satisfy superalgebra (8) and are defined on solutions of the
Dirac equation:

Q1 = Q̂, Q2 = iR̂1R̂2R̂3Q̂, Q3 = ĈQ̂,

Q4 = iĈR̂1R̂2Q̂, Q5 = iĈR̂2R̂3Q̂, Q6 = iĈR̂3R̂1Q̂,
(35)

where Q̂ is the Johnson-Lippman [14] constant of motion

Q̂ = mα
σ̂axa

x
+ γ0D

(
σ̂apa + iγ4

α

x

)
,

σ̂a = i
2
εabcγbγc and Ĉ, R̂a are analogues of operators C and Ra defined on the solutions

of the initial Dirac equation (1)

Ĉψ(x) = iγ2ψ
∗(x), R̂aψ(x) = γ4γaψ(r̂ax).

It can be verified by direct calculation that operators (35) commute with L of (1) and
satisfy relations (8) where H = (L− ε)2, g11 = g22 = g33 = −g44 = −q55 = −g66 = 1.

Discussion. Thus, in addition to known SUSY systems including interactions with a
magnetic field [6]–[12] we describe an origin of extended SUSY for interaction of an elec-
tron with an electric field. By this we present additional arguments for physical relevance
of extended SUSY, and describe a class of quantum mechanical systems which admit it.

It is interesting to search for such quantum mechanical systems which admit extended
SUSY and describe an interaction of spinning particles with a superposition of electric
and magnetic fields. An example of such a system with time-dependent potentials was
proposed in paper [15].

A natural question arises what kind of SUSY degeneracy appears for such well studied
system as a relativistic Hydrogen atom (described by equation (27)). Acting by operators
(34) on known solutions of this equation (which are present e.g. in book [12]) we rec-
ognize, that they change either the signs of the quantum numbers κ and m (eigenvalues
of operators D and J3) or the relative phases of wave functions with different m. In
other words, such a degeneracy does exists. Being more or less obvious for the considered
system, it can play a non-trivial role if we add a small perturbing interaction. Moreover,
the found extended SUSY is preserved for more complicated systems such as a charged
particle interacting with superposed Columb and Aharonov–Bohm potentials [17].

In addition to the SUSY context, the above results can be used to construct internal
symmetries for the equations under consideration. Thus, starting with supercharges (34)
and fixing in (27) ε 6= 0, we can define the operators Γ0 = Σ, Γk = Qk

µ
, k = 1, 2, . . . , 6,

which form the seven- dimensional Clifford algebra, i.e., satisfy the following relations

ΓµΓν + ΓνΓµ = 2gµν , (36)

where µ, ν = 0, 1, . . . , 6, g00 = g11 = g22 = g33 = −g44 = −g55 = −g66 = 1. All linearly
independent products of operators Γµ include 64 operators which form a basis of algebra
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gl(8, R). In accordance with the above, this algebra generates an external symmetry
for the Hydrogen atom. This algebra is more extended then known so(2, 4) symmetry
(refer, e.g., to [16]) and is isomorphic to the involutive symmetry algebra of the free Dirac
equation found in papers [7, 10].

In analogous way it is possible to find internal symmetry algebras for the problems char-
acterized by parities (9), (11), and (12). These algebras are equivalent to the orthogonal
Lie algebras so(1, 2), so(1, 3)⊕ so(1, 3) and so(1, 4) correspondingly.
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sstems / Photon and Poincaré group, Ed. V. Dvoeglazov. — N.Y.: Nova Science, 1999. — P. 74–80.

7


