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1. Introduction

Many of prosperous approaches to investigation of partial differential equations include
search for their symmetries. In addition to many other important applications, symmetries
often make it possible to reduce a given problem to a more simple one or even to construct
its exact solution [1].

Such a reduction can be carried out using discrete symmetries like parity, charge con-
jugation, or rotations on angle π. The algebraic structures generated by these symmetries
for the Dirac equation where studied in papers [2, 3].

Discrete symmetries present effective tools in searching for models which admit su-
persymmetry (SUSY) and generalized SUSY [4]. The idea to use the parity operator to
construct supercharges was proposed long time ago [5], recently this approach was gen-
eralized and applied to search for extended SUSY in quantum mechanical problems, refer
to ref. [2,6,7]. A specific feature of such generalization is using combined parities and
rotations as structure elements of supercharges.

In the present paper we investigate discrete symmetries of the basic equations of
the nonrelativistic quantum mechanics, i.e., the Schrödinger and Schrödinger-Pauli (SP)
equations. The algebraic structures of these symmetries are analyzed, the complete list
of the related reductions of the SP equation is presented. A new class of problems for the
SP equation is found which generate extended SUSY.

2. Discrete symmetries

Let us investigate symmetry properties of the SP equation

Lψ = 0, L = i ∂
∂x0

− 1
2m

(
π2 − eg
σ · 
H

)
− eA0 (1)

(where π2 = π2
1 + π

2
2 + π

2
3, πa = −i ∂

∂xa
− eAa, a = 1, 2, 3, e 
H = −i
π × 
π, 
σ =

(σ1, σ2, σ3), σa are Pauli matrices) w.r.t. the following discrete transformations of inde-
pendent variables

xµ → rνxµ = xµ(1− 2δµν), µ, ν = 0, 1, 2, 3. (2)

We will use the notation x→ rνx for transformations of four-vector x = (x0, x1, x2, x3)
provided its components are transformed in accordance with (2).

Equation (1) is invariant w.r.t. a transformation x → r0x or x → rax for a fixed
a = 1, 2, 3 provided the parity of the vector-potential A = (A0, A2, A2, A3) is given by one
of the following relations

A(r0x) = −r0A(x) (3a)

or
A(rax) = raA(x) (3b)

respectively. The action of matrices r0 and ra on the four-vector A is defined in the same
way as in the case of the four-vector x.
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The corresponding transformation for the wave function ψ(x) has the form

ψ(x)→ Γµψ(x) (4)

where Γ0 = iσ2cθ0, Γa = σaθa, a = 1, 2, 3 (no sum over a), θµ and c are operators of
reflection and complex conjugation:

θµψ(x) = ψ(rµx), cψ(x) = ψ∗(x). (5)

Indeed, operators Γµ satisfy the condition [L,Γµ] = 0 and so transform solutions of
(1) into other solutions of this equation.

Consider the 16-dimensional finite group G generated by reflections (2) and their
products. The related symmetries of equation (1) are expressed via products of operators
Γµ (4) and form a projective unitary and antiunitary [8] representation of group G with
the following basis elements

S5µ =
1
2
Γµ, S54 =

1
2
Γ4 =

1
2
Γ0Γ1Γ2Γ3, S4µ =

1
2
Γ4Γµ, Sµν =

1
2
ΓµΓν , I (6)

where I is the unit operator.
Equation (1) admits all symmetries (6) provided the related vector-potential satisfies

all relations (3) simultaneously.
Taking into account that operators (4) satisfy the Clifford algebra ΓkΓl + ΓlΓk = 2gkl

where g00 = g11 = g22 = g33 = −g44 = 1, gkl = 0, k �= l, we conclude that symmetries
(6) satisfy the following commutation relations

[Skl, Smn] = gknSlm + glmSkn − gkmSln − glnSkm (7)

with k, l,m, n,= 0, 1, ..., 5 and g55 = −1.
In accordance with (7) operators Skl realize a representation of the Lie algebra

so(3, 3) ∼ sl(4, R). This algebra can be extended by adding products of symmetries
(6) and the imaginary unit i, i2 = −1. Taking into account that i = Γ1Γ2Γ3P and
[P,L] = 0 where P = θ1θ2θ3, we obtain the additional set of symmetries

Ŝµν = PSµν , P (8)

whose commutation relations have the form[
Ŝkl, Ŝmn

]
= gknSlm + glmSkn − gkmSln − glnSkm,[

Ŝkl, Smn

]
= gknŜlm + glmŜkn − gkmŜln − glnŜkm,

[Skl, I] =
[
Ŝkl, I

]
= [Skl, P ] =

[
Ŝkl, P

]
= 0.

(9)

Relations (7), (9) define a 32-dimensional Lie algebra which is equivalent to gl(4, C).
Thus, if parities of the vector-potential satisfy all relations (3a) and (3b), the corre-

sponding SP equation admits the symmetry algebra gl(4, C). An example of the external
field with such properties is the superposition of retarded and advanced plane waves with
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A1 = A2 = 0, A3 = φ (x0 − x3)− φ (x0 + x3) , A0 = φ (x0 − x3) + φ (x0 + x3), where φ
is an arbitrary even function, φ(−y) = φ(y).

It follows from (3) that
A(r0rax) = −r0raA(x), (10a)

A(rarbx) = rarbA(x), (10b)

A(rx) = −rA(x), (10c)

A(rr0x) = rr0A(x), (10d)

A(rrax) = −rraA(x) (10e)

where r = r0r1r2r3. Supposing that the vector-potential satisfies only a part of rela-
tions (3), (10), we reduce the related symmetry of the SP equation. The corresponding
symmetry algebra is a subalgebra of gl(4, C).

In Sections 4 and 5 we use the symmetries described in the above in order to reduce
the SP equation.

3. Stationary SP equation

Consider now the stationary SP equation

1
2

(
π2 − eg
σ · 
H + eA0

)
ψ = Eψ (11)

where E is an eigenvalue of the Hamiltonian, and external field is supposed to be time
independent: A = A(
x), 
x = (x1, x2, x3).

The number of independent variables for equation (11) is reduced to 3. The corre-
sponding finite group of reflections of spatial variables is 8–dimensional and includes the
following representativities


x→ ra
x, 
x→ rab
x = rarb
x, 
x→ r̂
x = −
x, 
x→ I
x = 
x, (12)

where a = 1, 2, 3, ra generates the reflection of the component of 
x with number a, etc.
In order to equation (11) be invariant w.r.t. one of transformations (12), A0(
x) has to

be invariant under this transformation, and 
A(
x) has to have a definite parity. All these
parities and the related symmetries of equation (11) are given by the following equations


A(ra
x) = ra 
A(
x), Pa = Γa, (13a)


A(rab
x) = rab

A(
x), Pab = ΓaΓb, (13b)


A(−
x) = − 
A(
x), P = θ1θ2θ3, (13c)


A(ra
x) = −ra 
A(
x), P̂a = CΓa, (14a)


A(rab
x) = −rab

A(
x), P̂ab = CΓaΓb, (14b)


A(−
x) = 
A(
x), P̂ = Cθ1θ2θ3. (14c)
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Here C = iσ2c, Γa, θa and c are defined in (4), (5).

If 
A(
x) has definite parities w.r.t. two of transformations (12), it also has the fixed
parity w.r.t. the product of these transformations. The related equation (11) is invariant
under the three-dimensional Lie algebra of discrete transformations. If, for example, two
of relations (13a) are satisfied (we will refer to this case as ”(13a)+(13a)”), i.e.,


A(ra
x) = ra 
A(
x), 
A(rb
x) = rb 
A(
x), a �= b, (15)

then equation (11) admits the symmetry algebra so(3) generated by i
2
Γa,

i
2
Γb and

−1
2
ΓaΓb. In analogous way we find that the symmetry algebra so(3) corresponds also

to the case of parities (13b)+(13b) which are defined in analogy with (15). For the par-
ities (13a)+(14a), (13a)+(14c), (13c)+(14a), (14a)+(14a) and (13b)+(14b) the related
symmetry algebras are isomorphic to so(1, 2), and for the case (13b)+(13b) we have the
Abelian algebra of discrete symmetries.

The most extended symmetry algebras correspond to the cases when 
A(
x) admits
three independent conditions from the set (13), (14). If conditions (13a) are satisfied for
all a = 1, 2, 3 (the case ”(13a)+(13a)+13a)”, i.e.,

A(r1x) = r1A(x), A(r2x) = r2A(x), A(r3x) = r3A(x), (16)

then the related equation (11) admits the symmetry algebra so(4) ⊕ u(1) whose basis
elements are

S4a =
i
2
Γa, Sab =

1
2
ΓaΓb, I = iP. (17)

For the cases when parities of 
A(
x) are of the types (13a)+(13a)+(14a),
(13a)+(14b)+(14b) or (14b)+ (14b)+(14b), the corresponding symmetry algebra for
equation (11) reduces to so(1, 3) ⊕ d(1), so(2, 2) ⊕ u(1) or so(1, 3) ⊕ u(1) respectively.
Let us present the related sets of symmetries explicitly:


A(ra
x) = ra 
A(
x), 
A(rb
x) = rb 
A(
x), 
A(rc
x) = −rc 
A(
x),
S01 =

i
2
CΓc, S02 =

1
2
CΓbΓc, S03 =

1
2
CΓaΓc,

S12 = − i
2
Γb, S13

i
2
Γa, S23 =

1
2
ΓbΓa, I = CP ;

(18)


A(ra
x) = ra 
A(
x), 
A(rb
x) = −rb 
A(
x), 
A(rc
x) = −rc 
A(
x),
S12 =

i
2
Γa, S34 =

1
2
ΓbΓc, S13 =

1
2
CΓb,

S14 =
1
2
CΓc, S23 =

i
2
CΓaΓb, S24 = − i

2
CΓaΓc, I = iCP ;

(19)


A(ra
x) = −ra 
A(
x), a = 1, 2, 3
S0a =

1
2
CΓa, Sab =

1
2
ΓaΓb, I = iCP.

(20)

We see that if the vector-potential of an external electromagnetic field has combined
parities w.r.t. transformations (12), the corresponding stationary SP equation is char-
acterized by internal symmetry algebras which cause degenerations of energy values. It
is possible to show that the most extended (four times) degeneration corresponds to the
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cases described by relations (16), (18), (19) and (20). The examples of external fields
satisfying these relations are given by the followimg formulae:

A1 =
a2m

4π

x1 (x
2 − x2

2)

x7
, A2 = −a

2m

4π

x2 (x
2 − x2

1)

x7
, A3 = 0; (21)

A1 = A2 = 0, A3 = − I

4π
ln

(
x2

1 + x
2
2

)
; (22)

A1 = A2 = 0, A3 = − I

4π
ln
(x1 − b)2 + x2

2

(x1 + b)
2 + x2

2

; (23)

and

A1 = A2 = 0, A3 = − I

4π
ln

[
(x1 + b)

2 + (x2 + b)
2
] [
(x1 − b)2 + (x2 − b)2

]
[
(x1 + b)

2 + (x2 − b)2
] [
(x1 − b)2 + (x2 + b)

2
] (24)

Vector-potentials (21), (22), (23) and (24) correspond to the fields of magnetic octopole
[7], infinite stright condactor with a constant current I, directed along the third co-
ordinate axis, two stright conductors with opposite constant currents directed along the
third co-ordinate axis and shifted to the distance b w.r.t. x1x3 plane, and four stright
condactors (two neihbouring ones have opposit currents) directed along the third co-
ordinate axis and shifted to the distance b w.r.t. the coordinate axis x1 and x2, see figers
a, b, c and d respectively.

✲

✻
x2

a

✲

✻

�

x2

b

✍✌
✎�

✍✌
✎�

✍✌
✎�

✍✌
✎�

a/2 ✲ ✲

✻ ✻
x2 x2

c d

❦
�❦

❦

�❦

❦�❦

❦
bx1 x1 x1 x1

4. Reduction of the SP equation

The symmetries found above can be applied to reduce the SP equation to uncoupled
subsystems. Here we consider an example of such reductions.

Let the vector-potential A(x) satisfies relations (3b) for a = 1. In this case equation
(1) admits the symmetry 2S51 = σ1r1.

Using the operator

U = 1√
2
(1 + σ3S51) , U−1 = U † = 1√

2
(1− σ3S51) (25)

we reduce 2S51 to the diagonal matrix form

U2S51U
† = σ3. (26)
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The corresponding transformed equation (1) looks as

L′ψ′ = 0, L′ = ULU †, ψ′ = Lψ. (27)

It follows from the above that [L′, σ3] = 0 and so in accordance with Schur’s lemma
L′ is diagonal too. Indeed, by direct calculation we obtain

L′ = i ∂
∂x0

− π2

2m
− egσ3 (H1θ1 +H3) + iθ1H2 − eA0, (28)

i.e., equation (27) decouples to two independent equations for ψ+ = 1
2
(1 + σ3)ψ

′ and
ψ− = 1

2
(1− σ3)ψ

′.
Let the vector-potential satisfies one more parity condition, say (10a) for a = 2. The

corresponding symmetry 2S42 = −icθ0θ2 commutes with S51 and so we can diagonalize
S51 and S42 simultaneously. Using for this purpose the operator

W = U2U1, U2 =
1√
2
(1 + iθ0θ2) (29)

we obtain

W2S51W
† = σ3, W2S42W

† = c,
L′′ = WLW † = i ∂

∂t
+∆− θ0θ2

(

∇ · 
A+ 
A · 
∇

)
− e2 
A2 + eA0

+egσ3 (H1θ1 +H3) + θ0θ1θ2H2

(30)

where ∆ and 
∇ are the Laplace and gradient operators.
In accordance with (30) the transformed equation (1) L′′ψ′′ = 0, ψ′′ = Wψ, reduces

to four uncoupled equations for Re1
2
(1± σ3)ψ and Im

1
2
(1± σ3)ψ.

If, in addition, the vector-potential satisfies relations (10b) for a = 2, b = 3 then
equation (1) admits three commuting symmetries S51, S42 and P . Using again trans-
formation (30), we reduce (1) to eight uncoupled equations for Reψν

ε and Imψ
ν
ε , where

ψν
ε =

1
4
(1 + νσ3) (1 + εP )ψ

′′, ν, ε = ±1.

5. Complete list of reductions and subalgebras of algebra gl(4, C)

Thus, to reduce equation (1) to uncoupled subsystems it is sufficient to diagonalize
the related set of commuting symmetries (6), (8) which are admitted by this equation.

It is necessary to note that only a part of discrete symmetries discussed in Section 2
can be used to reduce equation (1). Some of them, say S50, cannot be transformed to a
diagonal matrix form. In addition, without loss of generality it is possible to reduce the
number of symmetries which generate reductions, using the equivalence relations

Ŝ4k = US0kU
†, S4k = UŜ0kU

† (31)

where U = 1√
2
(1 + Γ4Γ0P ) is the operator commuting with L of (1) for any vector-

potential A(x).
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To describe effectively all reductions generated by discrete symmetries (6), (8) we use
the isomorphism of algebra (7), (9) to the matrix algebra gl(4, C). This isomorphism can
be established by the following relations

2Skl ↔ γ̃kγ̃l, 2S5k ↔ γ̃k, 2Ŝkl ↔ γ̃kγ̃lP̃ , 2Ŝ5k ↔ γ̃kP̃ , I ↔ Ĩ , P ↔ P̃ (32)

where k, l = 0, 1, 2, 3, 4,

γ̃k =

(
γk 0
0 γk

)
, P̃ =

(
I 0
0 −I

)
, Ĩ =

(
I 0
0 I

)

γk are the real Dirac matrices

γ0 =

(
0 σ1

−σ1 0

)
, γ1 =

(
0 I
I 0

)
, γ2 =

(
0 −iσ2

iσ2 0

)
,

γ3 =

(
I 0
0 −I

)
, γ4 =

(
0 σ3

−σ3 0

)
,

0 and I are zero and unit matrices of appropriate dimension.
Algebra gl(4, C) includes 32 real matrices

{
γ̃k, γ̃kγ̃l, P̃ γ̃k, P̃ γ̃kγ̃l, P̃ , Ĩ

}
, moreover, 20 of

them are symmetric and 12 antisymmetric.
Antisymmetric matrices are no diagonalizable over the field of real numbers, thus it is

sufficient to consider only symmetric ones, i.e.,{
γ̃a, γ̃4γ̃a, γ̃0γ̃a, Ĩ , P̃ γ̃a, P̃ γ̃4γ̃a, P̃ γ̃0γ̃a, P̃

}
. (33)

The related set of symmetries of equation (1) is

Ŝ =
{
S5a, S4a, S0a, Î , Ŝ5a, Ŝ4a, Ŝ0a, P

}
. (34)

The trivial unit symmetry operator cannot be used to reduce equation (1), thus without
loss of generality we can exclude from (33) the unit matrix. We exclude also all terms
which include γ4 inasmuch as

γ̃4γ̃a = Uγ̃0γ̃aU
†, P̃ γ̃4γ̃a = UP̃ γ̃0γ̃aU

† (35)

where U = 1√
2
(1 + γ̃4γ̃0). The corresponding symmetries of equation (1) are connected

by the equivalence transformation (31).
Thus, starting with the algebra gl(4, C) we select the diagonal matrix P̃ and 12 sym-

metric matrices
γ̃a, γ̃0γ̃a, P̃ γ̃a, P̃ γ̃0γ̃a, (36)

whose number cannot be reduced using transformation (35). In accordance with (34), the
corresponding symmetries of the SP equation are P and

S5a, S0a, Ŝ5a, Ŝ0a. (37)
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Any of these 13 symmetries are diagonalizable and generate reductions of the SP
equation to two uncoupled subsystems. An example of such a reduction is given in
Section 4.

We note that the sets (34), (37) can be obtained by the following reductions of algebra
gl(4, C):

gl(4, C)→ sp(2, C)→ so(1, 3)⊕ so(1, 3) (38)

A basis of the subalgebra sp(2, C) is generated by the set S =
{
γ̃µγ̃ν , γ̃4γ̃µ, P̃ γ̃µγ̃ν , P̃ γ̃4γ̃µ,

}
which satisfy the condition (Qγ̃0γ̃4)

† = Qγ̃0γ̃4, Q ∈ S. In other words, multiply-
ing any element of S by γ̃0γ̃4 we obtain the set of symmetric matrices (33). Matrices
1
4

(
1± P̃

)
γ̃µγ̃ν and γ̃0γ̃4 form commuting subalgebras so(1, 3) and one-dimensional alge-

bra which we denote by d(1). Products of matrices belonging to S with γ̃0γ̃4 generate the
set of 12 symmetric matrices (36).

Let us present the explicit form of operators which reduce the SP equation:

N Symmetry Parities of Aµ Reducing operator
1. S5α = σ2θ2 A2(θαx) = −A2(x), α �= 2

Ak(θαx) = Ak(x), k �= α U = 1√
2
(1 + σ3S5a)

2. S53 = σ3θ3 A3(θ3x) = −A3(x)
Ak(θ3x) = Ak(x), k �= 3 U = 1

2
(1 + σ2) (1 + σ1S53)

3. S0α = iσ2iσαcθ0θα, Aσ (θ0θαx) = Aσ(x), σ = 0, α, U = 1√
2
(1 + σ3S0a)

α �= 2 Aν (θ0θαx) = −Aν(x), ν �= 0, α
4. S02 = icθ0θ2, Aσ (θ0θαx) = Aσ(x), σ = 0, 2, U = 1√

2
(1 + iθ0θ2)

Aν (θ0θαx) = −Aν(x), ν �= 0, 2
5. Ŝ5a = σaθbc Ak (θbcx) = Ak(x), k �= b, c, U = 1√

2

(
1 + Ŝ5a

)
a �= 3, b, c Ak (θbcx) = −Ak(x), k = b, c

6. Ŝ53 = σ3θ12 Ak (θ12x) = Ak(x), k �= 1, 2, U = 1
2
(1 + iσ2)

(
1 + σ1Ŝ53

)
Ak (θ12x) = −Ak(x), k = 1, 2

7. Ŝ0a = iσ2θθa Ab (θθa) = −Ab(x), b �= a, U = 1√
2

(
1 + σ3Ŝ0a

)
a �= 2 Aa (θθa) = Aa(x)

8. Ŝ02 = iσ2θθ2 Ab (θθ2) = −Ab(x), b �= 2 U = 1√
2
(1 + iθ1θ3)

A2 (θθ2) = A2(x)

9. P̂ = θ1θ2θ3 A0 (θθ0x) = A0(x), U = I
Aa (θθ0x) = −Aa(x), a �= 0

The operators U presented in the table diagonalize the corresponding symmetries and
reduce equation (1) to two uncoupled subsystems. Such a reduction can be made in
analogy with (25)-(27).

6. Multiple reductions

If equation (1) admits two or more commuting symmetries from set (34), we can
diagonalize them simultaneously. Such a diagonalization generates a product of reductions
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of equation (1), i.e., multiple reductions. An example of a multiple reduction is given by
relations (29), (30).

To enumerate all multiple reductions generated by discrete symmetries it is sufficient to
find all nonequivalent subsets of commuting operators from set (34). Taking into account
that operators (34) with non-coinciding indices commute we find the following doublets
and triplets of commuting symmetries

{S5a, S0b} ,
{
Ŝ5a, Ŝ0b

}
,

{
Ŝ5a, S0b

}
, (39a)

{
S5a, P̂

}
,

{
S0a, P̂

}
, (39b)

{S5a, S0b, P} (39c)

where a and b are fixed, a �= b. Using the equivalence relations {QA, QB} ∼
{QA, QAQB} ∼ {QB, QAQB} , Qa, QB ∈ Ŝ and relations (38), it is easily to prove
that all other doublets and triplets of commuting symmetries (34) are equivalent to ones
enumerated in (39).

Equation (1) admits a doublet of symmetries from set (39) provided the vector-
potential Aµ(x) satisfies two (or three) the corresponding parity conditions present in
the table. If so, the related equation (1) can be decoupled to four (or eight) uncoupled
subsystems. The corresponding transformation operators is a product of operators U
given in the table. In accordance with (39) there exist 24 different reductions to four
subsystems and 6 different reductions to eight subsystems.

We notice that the sets (39a) can be obtained by the following continuation of algebraic
reductions (36):

so(1, 3)⊕ so(1, 3)→ so(3) (40)

where subalgebras so(3) have to contain at least one antiunitary (i.e., including complex
conjugation) operator. These subalgebras are generated by products of operators (39a)
with S40P .

The sets (39b,c) include the parity operator which does not appear in reductions (40).

7. Symmetries and reductions of the Schrödinger equation

Here we consider the usual Schrödinger equation for a spinless particle

L̂ψ ≡
[
p0 −

(
1

2m
π2 + eA0

)]
ψ = 0 (41)

and describe its possible reductions with using discrete symmetries.
Let the vector-potential A(x) satisfies one of relations (3a), (10a), (10c), (10e). The

corresponding equation (41) admits one of the following symmetry operators

Q0 = cθ0, Q0a = cθ0θa, Q40 = cθ0θ1θ2θ3, Q4a = cθ0θbθc (42)

respectively. Here c and θµ are operators defined in (5), b, c �= a.
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Using the transformation QA → UAQAU
†
A = c where UA = 1

2
(1 − i) (1 + icQA) (the

multiindex A takes the values A = 0, 0a, 40, 4a), we can reduce any of symmetries (42)
to the operator of complex conjugation. It means that the related transformed equation
(41) L̂′

Aψ
′
A = 0 (where L̂′

a = UALU
†
A, ψ′

A = UAψ) decouples to two independent
subsystems for real and imaginary parts of ψ′

A.
If A(x) satisfies one of relations (3b), (10b), (10c) then equation (41) admits one of

the symmetries
QA = θa, Qab = θaθb, Q123 = θ1θ2θ3 (43)

respectively and can be reduced to uncoupled subsystems for ψ± = 1
2
(1±QA) where

multiindex A takes the values a, ab, 123.
All operators (42), (43) commute, so we can make multiple reductions provided A(x)

satisfies two or more of relations (3), (10) simultaneously.

8. Extended and generalized SUSY

All discrete symmetries analyzed in Sections 3 are evidently valid for the particular
case A0 = 0, g = 2. The related SP equation

i ∂
∂t
ψ = Ĥψ, Ĥ = 1

2m
(π2 − e
σ ·H) (44)

admits additional symmetry operators which are called supercharges.
For any Aa(
x), there exists the following supercharge for equation (44) (whose square

is equal to Ĥ): Q1 =
1√
2m
(
σ · 
π).

If vector-potential 
A(
x) has definite parities, i.e., satisfies relations (13c) or (14c),
than there exist the second supercharge Q2 = iPQ1 or Q2 = iP̂Q1 respectively [5]. These
supercharges satisfy the superalgebra [9]

{
Q, Q̄

}
= 2Ĥ, Q2 =

(
Q̄

)2
= 0,[

Q, Ĥ
]
= 0,

[
Q̄, Ĥ

]
= 0

(45)

where Q = 1√
2
(Q1 + iQ2) , Q̄ = 1√

2
(Q1 − iQ2).

It was demonstrated in [2, 6, 7] that superalgebra (45) can be extended provided 
A(
x)
satisfies two or more relations (13), (14) simultaneously. Using algebras of discrete sym-
metries discussed in Section 3, it is easy to construct classes of models with extended (i.e.,
including more than two supercharges) SUSY, which are wider than classes considered in
papers [2,7], where only parities of type (13) (but no of type (14)) where analyzed. Here
we present some examples.

Let 
A(
x) satisfies relations (19). Then equation (44) admits four supercharges

Q1 = 1
2
√

m
(1 + CΓb)
σ · 
π, Q̄1 = 1

2
√

m
(1− CΓb)
σ · 
π,

Q̄2 = 1
2
√

m
(iRa + CΓc)
σ · 
π, Q̄2 = 1

2
√

m
(iRa − CΓc)
σ · 
π (46)

Supercharges (46) with non-coinciding indices anticommute, the other commutation and
anticommutation relations for them are analogous to (45).
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Thus, relations (19) define a class of vector-potentials for which equation (44) admits
extended N = 4 SUSY. In addition to (22), this class includes such important particular
cases as the constant magnetic, solenoidal, and magnetic dipole field. The related vector-
potentials have the forms

Aa = 0, Ab = eHxc/2, Ac = −eHxb/2,
Aa = 0, Ab = −λ2

xc

x2
b
+x2

c
, Ac = λ2

xb

x2
b
+x2

c

and
Aa = 0, Ab = −λ3

xc

(
√
x2

b + x
2
c)

3
, Ac = λ3

xb

(
√
x2

b + x
2
c)

3

respectively (we do not specify coupling constants λa). These potentials obviously satisfy
relations (19).

The other example of the vector-potential which corresponds to magnetic octopole
field (21) and generate extended SUSY for equation (44) was presented in paper [7]. The

related parities of 
A(
x) are defined by relations (18).

9. Discussion

We investigate algebraic structures generated by discrete symmetries of the SP equa-
tion and prove that they form a basis of algebra gl(4, C).

These internal symmetries can be used to predict the related degeneration of Hamil-
tonian spectra and to reduce the SP equation to uncoupled subsystems. To enumerate
all possibilities arising in this way make reductions of algebra gl(4, C) on its subalgebras,
refer to Sections 5,6.

The other interesting application of discrete symmetries is connected with searching
for extended or generalized [4] supersymmetry of the SP equation. The possibility of
using of different kinds of parity operators to construct supercharges was discovered long
time ago [5]. Recently this idea was applied in searching for extended SUSY of the Dirac
[2,6] and SP [7] equations.

The symmetry algebra gl(4, C) opens additional possibilities in searching for extended
SUSY. Indeed, basis elements of this algebra are involutions which either commute or
anticommute with the ”standard” supercharge σ · 
π, so their products with σ · 
π can
generate new supercharges. The above mentioned involutions can be applied also to
construct models admitting generalized SUSY [4].

We notice once more, that the symmetry algebra gl(4, C) includes reflections and
pure rotations as well. It is possible to generate models with extended SUSY asking for
definite properties of 
A(
x) w.r.t. these rotations. Such models cannot be obtained either
in approach [5] or [7].

For example, let the vector-potential satisfies relations (13b) for all possible values
of indices a, b, but does not satisfy either relations (12a), (12c) or (13). Then equation
(44) admits three (hermitian) supercharges Q1 = iP23Q,Q2 = iP31Q,Q3 = iP12Q, where
Q = 1√

2

σ ·
π and Pab are operators defined by relations (13b). An example of the external

field with such symmetries is given by the superposition of potentials (21) and (24).
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The symmetry algebra gl(4, C) is admitted by the SP equation for a wide class of
external fields, whose potentials satisfy relations (3). This class includes the Coulomb po-
tential and different kinds of vector-potentials whose space components are odd functions
of t and xa. An example of such a potential is given in Section 2.

Algebra of discrete symmetries of the Dirac equation (which is equivalent to gl(8, R))
was analyzed in papers [2,3].

I am indebted to the anonimous referee for critical comments and helpful suggestions.
This paper is supported by the Ukrainian DFFD foundation through grant No.

1.4/356.

References

[1] P. Olver, Application of Lie Groups to Differential Equations (N.Y., Springer, 1986);

N.Ch. Ibragimov, Transformation Groups in Mathematical Physics (Nauka, Moscow,
1983).

[2] J. Niederle and A.G. Nikitin, J. Phys. A 30, 999 (1997).

[3] J. Niederle and A.G. Nikitin, J. Nonlin. Math. Phys. 4, 436 (1997).

[4] N. B. Borisov, K. N. Illinski, and V. M. Uzdin, Phys. Lett. A 169, 422 (1992); Teor.
Mat. Fiz. 94, 418 (1993);

A. D. Dolgallo and K. N. Illinski, Ann. Phys. 236, 219 (1994).

[5] L. E. Gendenshtein, Yad. Fiz. 41, 261 (1985);

L. E. Gendenshtein and N. V. Krive, Usp. Fiz. Nauk 146, 583 (1985).

[6] A.G. Nikitin, On Extended Supersymmetries and Parasupersymmetries, In: X Inter-
national Conference ”Problems of Quantum Field Theory”, JINR E2-96-369, Dubna,
1996;

A.G.Nikitin, On Extended Supersymmetries in Quantum Mechanics, In: GROUP21
Physical applications and mathematical aspects of geometry, groups and algebras,
Vol. 1, Eds. H.-D. Doebner, W. Sherer, P. Natterman, World Scientific, Singapoore,
1997, p. 509-514.

[7] V.M. Tkachuk, S.I. Vakarchuk, Phys.Lett. A 228, 141 (1997).

[8] E.P. Wigner, Unitary Representations of Lorentz Group Including Reflections, in:
Theoretical Concepts and Methods in Elementary Particle Physics, Lect.Istanbul
School of Theor.Phys. (Gordon and Breach, 1964).

[9] E. Witten, Nucl. Phys. B 185, 563 (1981).

13


