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Abstract

In this paper, we apply Foldy-Wouthuysen transformations to rel-
ativistic equation for a free particle of arbitrary spins, which has the
symmetry group O(5) associated with it. By noting the isomorphism
of O(5) to the symplectic group Sp(4), the mass and spin content of
the problem is found using the group reduction Sp(4) ⊃ U(1)⊗SU(2)
where U(1) is associated with the masses while SU(2) is related to
the spins.

In this paper, we apply Foldy-Wouthuysen transformations to relativistic
equation for a free particle of arbitrary spins, which has the symmetry group
O(5) associated with it. By noting the isomorphism of O(5) to the symplectic
group Sp(4), the mass and spin content of the problem is found using the
group reduction Sp(4) ⊃ U(1) ⊗ SU(2) where U(1) is associated with the
masses while SU(2) is related with the spins.

One of the promising approaches to the analysis of relativistic wave equa-
tions is connected with Foldy-Wouthuysen (FW) transformations [1]. For
relativistic equations of free particle, they diagonalize the Hamiltonian and
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reduce the associated representations of the Poincare group to the direct sum
of irreducible representations. This approach is one of the simplest way to
study the mass and spin states of a particular problem.

1 FW-Transformation for Free Particle:

In this paper, we apply the FW transformation approach to the free parti-
cle of arbitrary spins whose relativistic equation can be obtained from the
previous paper [2]

HΨ ≡ (2cΛi4pi + 2mc2Λ45)Ψ = nEΨ (1)

where Λi4 and Λ45 are the matrices associated with the irreducible represen-
tations O(n1, n2) of the group algebra O(5).

This equation describes a multiplet of particles with several spins and
masses which can exist in positive as well as negative energy states. To
understand the physical content of this equation, we first diagonalize it using
the unitary FW transformations which do not change the associated energy E
of the problem. Generalizing the FW approach, we see that the diagonalizing
operator exists in the following form

U = exp(i
Λi5pi

p
θ) (2)

where p =
√

p2
1 + p2

2 + p2
3 and θ is an unknown function of p. We shall

consider equation (1) in the momentum representation.
Using the Campbell-Hausdorff formula [1]

exp(−iA)B exp(iA) = B − i[A, B]− 1

2!
[A, [A, B]]− ... (3)

and the commutation relation (see eq.(2.11) of ref. [2]) for the Λ−matrices
of the group algebra O(5), we get the transformed Hamiltonian as

H ′ ≡ UHU † = 2Λ45

√
p2c2 + m2c4 (4)

provided θ = arctan( p
mc

). Thus the transformed equation now becomes

nEΨ′ = H ′Ψ′; Ψ′ = UΨ (5)

which reduces to a set of equations

2



EΨ′
λ =

2λ

n

√
p2c2 + m2c4Ψ′

λ (6)

where λ is the eigenvalue of Λ45 with the eigenfunctions Ψ′
λ. We note that

each component Ψ′
λ of Ψ′ satisfies the Klein-Gordon equation

(E2 − v2
λp

2 −m2
λv

4
λ)Ψ

′
λ = 0 (7)

vλ =
2λ

n
c and mλ =

n

2λ
m (8)

The eigenvalues λ can be found using Gel’fand-Tsetlin inequalities [3] for
the quantum numbers (n1, n2); (m1, m2); s; σ associated with the chain of
groups O(5) ⊃ O(4) ⊃ O(3) ⊃ O(2) respectively

n1 ≥ m1 ≥ n2; n2 ≥ m2 ≥ −n2

m1 ≥ s ≥ |m2| ; s ≥ σ ≥ −s (9)

So, the maximum possible range of values for σ is n1, n1 − 1....... − n1.
Since the permutation transformation 12345 → 54321 which is an element
of group O(5), when applied to Λ45 gives Λ12, the associated eigenvalues λ
and σ take the same range of values. Thus the maximum possible range of
values for λ is n1, n1 − 1.......− n1. Since n1 ≤ n/2,

vλ ≤ c and mλ ≥ m (10)

The quantity n1 can take integer as well as half integer values, and thus
same is true for λ. Thus, for integer values of λ, there is a possibility that
λ = 0 for which the particle takes infinite rest-mass with energy E = 0.
The resulting equation (7) is not hyperbolic. To get rid of this non-physical
solution it is sufficient to impose an additional condition on Ψ′

λ,namely,

P0Ψ
′
λ = 0, P0 =

∏
λ6=0

Λ2
45 − λ2

−λ2
(11)

where P0 is the projection operator for the space of eigenvectors of the ma-
trices Λ45 corresponding to zero eigenvalue.

FW-transformed eqs. (7) and (8) of the original eq. (1) for the free parti-
cle of arbitrary spin implies that the particle can exist in multiplet of states
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associated with several spins and several masses correlated with limiting ve-
locities which can exist in positive as well as negative energy states depend-
ing on the irreducible representation of O(5) characterized by (n1, n2). The
states with positive energies are associated with positive masses and positive
limiting velocities, while the negative states have negative masses correlated
with negative limiting velocities. The state of minimum mass, and thus of
the highest spin, is the most probable state a particle can find itself in.

2 Mass and Spin Content:

To find out the possible values of spin s for a given mass mλ associated with
eigenvalue λ, we note that the symmetry group O(5) of eq. (1) is isomorphic
to the compact symplectic group Sp(4) which has following chain of groups
[4]

U(4) ⊃ Sp(4) ⊃ Uλ(1)⊗ SUS(2) (12)

where SUS(2) is the usual spin group while Uλ(1) is the group associated
with the generator Λ45. The basis associated with this chain of groups can
be written as

Ψ ∼| {h}
〈
n1, n2

〉
sσλ; γ〉 (13)

where γ distinguishes between repeated values of s and λ. The group Sp(4)
is characterized by the partition 〈n1, n2〉 which is an integral of motion for
the present problem. The quantum numbers n1, n2 are related with n1, n2

characterizing the irreps of O(5) as follows

n1 =
1

2
(n1 + n2) and n2 =

1

2
(n1 − n2) (14)

The eigenvectors [5]

Ψ ∼| (n1n2)p1p2Sσ〉 = P s
σsE

n1−p1
2−1 Ep1−s

−2−1E
p2
−20 | HW 〉 (15)

with

n1 ≥ p1 ≥ n2 ≥
1

2
p2 ≥ 0; p1 ≥ s ≥ 1

2
p2 (16)

form a complete basis of the irrep D(n1,n2) of the SO(5) algebra in the reduc-
tion

SO(5) ⊃ Uλ(1)⊗ SUs(2) (17)
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where p1 and p2 in (15) replace the values of γ and λ mentioned above. In
eq.(15) and | HW 〉 is the highest weight vector of D(n1,n2), Eik are the gen-
erators of the SO(5) algebra written in while P s

σs is the projection operator
for SUS(2) algebra. For details see ref. [5,6]. it is to be noted that genera-
tors E±10 and E1−1 coincide with the spin operators S± = S1 ± iS2 and S3

respectively while E2−2 = Λ45 and E±2±1, E±20 are connected with Λi4 and
Λi5. In particular the eigenvalue λ of Λ45 can be determined by [4]

λ = n1 + n2 + s− (2p1 + p2) (18)

It is to be noted that if λ and s are fixed then the number of solutions p1, p2

satisfying conditions (16) gives the multiplicity associated with the given
pair (λ, s). The multiplicity Ns associated with any given value of spin s can
be calculated using above arguments or by considering the Gel’fand-Tsetlin
inequalities (9) which gives that

Ns = (n1 − s + 1)(2n2 + 1) for s ≥ n2

= (n1 − n2 + 1)(2s + 1) for s < n2 (19)

The multiplicities of the spin projection σ can be easily calculated using the
relation

Nσ =
∑

s≥|σ|
Ns (20)

Since the multiplicity of λ is the same as that of σ we get

Nλ =
1

2
(n1 − |λ|+ 1)(n1 − |λ|+ 2)(2n2 + 1) for λ ≥ n2 (21)

=
1

2
(n1 − n2 + 1)

{
(n1 − n2 + 2)(2n2 + 1) + 2(n2

2 − λ2)
}

for |λ| < n2

We now find the maximum value of λ for a fixed value of spin S. We note
that all the numbers n1, n2, s and λ with

n1 ≥ p1 ≥ max(n2, s) (22)

are integers or half integers. The quantity p2 is an integer which satisfies the
condition

min(2s, 2n2) ≥ p2 ≥ 0 (23)
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By noting from eq.(16) that λmax corresponds to the minimum value of (2p1+
p2), we obtain using eqs.(18,22,23) that [4]

λmax = n1 + n2 − s for s ≥ n2

= n1 − n2 + s for s < n2 (24)

In particular if s = n1, λ takes the values n2, n2 − 1, ...,−n2 while if s = 0
which corresponds to integer values of n1 and n2, λ = n1 − n2, n1 − n2 −
2, ...,−n1 + n2. The first relation of the above equation allows us to find out
the maximum value of spin s at given value of λ, [4]

smax = n1 + n2 − |λ| for |λ| ≥ n2

= n1 for |λ| < n2 (25)

while the second relation of eq.(24) gives the minimum value of spin

smin = −n1 + n2 + |λ| for |λ| ≥ n1 − n2

= 1/2 for |λ| < n1 − n2 with n1, n2 being half integer

= 0 for |λ| < n1 − n2 with even n1 − n2 − λ

= 1 for |λ| < n1 − n2 with odd n1 − n2 − λ (26)

Using relations (24), we get all possible values of masses a particular value
of spin state can take, and relations (25,26) give all values of spin a given
state associated with mass mλ can take. Thus we conclude by saying that
the free particle of arbitrary spin whose relativistic equation is given by (1)
describes a multiplet of states associated with several masses (8) and spins
given in relations (24-26). In Table 1, we show the values of pair (λ, s) for
n1 + n2 ≤ 3.
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TABLE 1

n {h} < n1, n2 > (n1, n2) λ s
1 {1} < 1, 0 > (1/2, 1/2) ±1/2 1/2
2 {2} < 2, 0 > (1, 1) ±1 1

0 1
0 0

{11} < 1, 1 > (1, 0) ±1 0
0 1

< 0, 0 > (0, 0) 0 0
3 {3} < 3, 0 > (3/2, 3/2) ±3/2 3/2

±1/2 3/2
±1/2 1/2

{21} < 2, 1 > (3/2, 1/2) ±1/2 3/2
±3/2 1/2

{111} < 1, 0 > (1/2, 1/2) ±1/2 1/2
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