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Abstract. In 1945 Bhabha was probably the first to discuss the problem of a free relativistic
particle with arbitrary spin in terms of a single linear equation in the four-momentum vectorpν ,
but substituting theγ ν matrices of Dirac by other ones. He determined the latter by requiring
that their appropriate Lorentz transformations lead to their formulation in terms of the generators
of the O(5) group. His program was later extensively amplified by Krajcik, Nieto and others. We
returned to this problem because we had anab-initio procedure for deriving a Lorentz-invariant
equation of arbitrary spin and furthermore could express the matrices appearing in them in terms
of ordinary and what we called sign spins. Our procedure was similar to that of the ordinary and
isotopic spin in nuclear physics that give rise to supermultiplets, hence the appearance of this
word in the title. In the ordinary and sign spin formulation it is easy to transform our equation
into one linear in both thepν and some of the generators of O(5). We can then obtain the
matrix representation of our equation for an irrep (n1n2) of O(5) and find, through a similarity
transformation, that for the irrep mentioned the particle satisfying our equation will have, in
general, several spins and masses determined by a simple algorithm.

1. Introduction

The series title of this paper is related to the fact that the equations for relativistic particles
of spin up to1

2n were obtained from the sum ofn Dirac equations in which all the momenta
and coordinates are taken to be equal [1]. We then noted that theα and β matrices, or
equivalently in this paper theγ ’s, could be expressed as direct products of the ordinary spin
and a similar operator that we called sign spin. Thus our equation has two types of spins
in analogy with the ordinary and isotopic spin of nuclear physics. As the latter gives rise
to supermultiplets, this is the reason for the appearance of this word in the series title [2].

The subtitle includes the name of Bhabha as he was one of the first to consider that
free particles of higher spin should be written in Dirac form, i.e. linear in the four-vector
momentumpν, ν = 0, 1, 2, 3 with coefficients that should be matrices, but only in Dirac
form γν if the spin is 1

2. According to Bhabha, for arbitrary spin, the equation should then
have the form [3]

(0νpν +M)ψ = 0 (1.1)

whereM is a constant and0 are appropriate matrices for a particle that may have spins
up to 1

2n, that he derived through a sophisticated analysis based on the fact that the
0ν, ν = 0, 1, 2, 3, must transform as a four vector under elements of the Lorentz group.
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We shall proceed to show that using the analysis presented in the first paragraph we can
prove in an elementary fashion thatour equation of the Bhabha type is Lorentz invariant
and furthermore it can be expressed in terms of the generators of an O(5) group.

Besides, by a similarity transformation closely connected with the one of Foldy–
Wouthuysen type, we can determine the spin and mass content of the particle that the
equation represents.

The Bhabha equation and its properties have been discussed by many authors and, in
particular, by Krajcik and Nieto [4], but we believe that our approach differs from all the
others presented in the literature.

2. A linear equation in pν for a particle with arbitrary spins that is Lorentz invariant

We start with the well known proof of the Lorentz invariance of the ordinary Dirac equation,
so that we can later extend it to the problem we are interested in. Thus we have

(γ νpν + 1)ψ = 0 (2.1)

where the indexν = 0, 1, 2, 3, and when it is repeated it means a sum over the values
indicated. Throughout we shall use units in which

h̄ = m = c = 1 (2.2)

and the 4× 4 matricesγ µ are given by

γ i =
(

0 σi

−σi 0

)
i = 1, 2, 3 γ 0 =

(
I 0

0 −I
)
. (2.3)

whereσi, i = 1, 2, 3, are 2× 2 Pauli spin matrices.
Aspν is a four vector the equation (2.1) will be Lorentz invariant if theγ ν, ν = 0, 1, 2, 3

also transform as a four vector under this operation, which implies the existence of a 4× 4
matrix U such that

γ
′ν = aνµγ µ = Uγ νU−1 (2.4)

whereA ≡ ‖aνµ‖ is a Lorentz transformation.
The existence of such a matrixU is given in many places, but for completness we derive

it in the appendix.
We now considern equations of the type (2.1) distinguished by the fact that we have

γ νr , pνr , r = 1, 2, . . . , n and sum them making all four-momenta equal to get the equation

(0νpν + n)ψ = 0 (2.5)

where

0ν =
n∑
r=1

γ νr (2.6)

with γ νr being the direct product of 4× 4 matrices

γ νr = I ⊗ I ⊗ · · · ⊗ I ⊗ γ ν ⊗ I · · · ⊗ I (2.7)

with γ ν in ther position where theσi in it is replaced byσir . Because theσir , r = 1, . . . , n,
this equation can represent particles with spin going from1

2n,
1
2n− 1, . . . , 1

2 or 0.
Equation (2.5) is Lorentz invariant, because if we introduce the direct product matrix

U ≡ U1⊗ U2⊗ · · · ⊗ Ur ⊗ · · · ⊗ Un (2.8)
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whereUr is given as in the appendix by replacingσi by σir we immediately see that

0
′ν = aνµ0µ = U0νU−1. (2.9)

Thus equation (2.5) has the Lorentz invariance and spin properties of the Bhabha equation
and we shall proceed to show, first going through its supermultiplet formulation, that it is
also invariant under an O(5) group.

3. The supermultiplet form of the Bhabha equation

To achieve the object indicated in the title of this section we first have to review some
results of [2], but now as applied to theγ ν, ν = 0, 1, 2, 3 matrices.

We start by introducing two types of spin vectors, the ordinary one and what we have
called the sign spin, which have the same mathematical form, but which will be distinguished
here by round and square brackets, respectively, [2]:

Î =
(

1 0

0 1

)
s1 = 1

2

(
0 1

1 0

)
s2 = 1

2

(
0 −i
i 0

)
s3 = 1

2

(
1 0

0 −1

)
(3.1)

Ĭ =
[

1 0

0 1

]
t1 = 1

2

[
0 1

1 0

]
t2 = 1

2

[
0 −i
i 0

]
t3 = 1

2

[
1 0

0 −1

]
. (3.2)

From equations (2.3) and (3.1), (3.2) it is immediately clear that theγ ν can be expressed
as the direct products [2]

γ j = i4sj ⊗ t2 j = 1, 2, 3 γ 0 = 2Î ⊗ t3. (3.3)

We can now add an indexr = 1, 2, . . . , n, to all these matrices interpreting them in the
direct product form (2.7) and we immediately see that equation (2.5) takes the form{ n∑

r=1

[4i(sjr ⊗ t2r )pj ] +
n∑
r=1

[2(Î ⊗ t3r )p0] + n
}
ψ = 0 (3.4)

where repeated latin indices(i, j, k) are summed over their values 1, 2, 3.
Now we define

Si =
n∑
r=1

(sir ⊗ Ĭ ) Rij =
n∑
r=1

(sir ⊗ tjr ) Tj =
n∑
r=1

(Î ⊗ tjr ) i, j = 1, 2, 3 (3.5)

and, as we indicated in [2], the 15 operators close under commutation and correspond to
the SU(4) Lie algebra.

Using the definitions (3.5) the Bhabha equation (3.4) can be written as{
4iRj2pj + 2T3p0+ n

}
ψ = 0. (3.6)

As onlyRi2, T3 appear in the equation we may assume that it admits a smaller symmetry
group than SU(4). In fact we see from the commutation relations given in [2], that the ten
operators

Si Ri1 Ri2 T3 i = 1, 2, 3 (3.7)

close under commutation as[
Si, Sj

] = iεijkSk [
Si, Rj1

] = iεijkRj1[
Si, Rj2

] = iεijkRk2
[
T3, Rj1

] = iRj2
[
T3, Rj2

] = −iRj1[
Ri1, Rj2

] = 1
4iT3δij .

(3.8)
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Thus the ten operators of (3.7) form a Lie algebra which clearly is a subalgebra of
SU(4) and in fact is the unitary symplectic algebra Sp(4) whose Casimir operators commute
with the operators in (3.6) and thus is its symmetry Lie algebra.

As will be discussed in the next section Sp(4) is isomorphic to O(5) and thus we get
the symmetry Lie algebra that Bhabha derived by a very different procedure.

4. The O(5) symmetry algebra of the Bhabha equation

The generators of an orthogonal Lie algebra of dimensiond are given by antisymmetric
operators∧mm′ = −∧m′m wherem,m′ = 1, 2, . . . , d, and thus there are(d/2)(d − 1) of
them satisfying the commutations relations

[∧mm′ ,∧nn′ ] = i [δm′n ∧n′m +δmn′ ∧nm′ +δmn ∧m′n′ +δm′n′∧mn] . (4.1)

Comparing them with the commutation relations (3.8) we easily see that whend = 5
the∧mm′ with m < m′ (to avoid the repetition due to the antisymmetry) are correlated with
Si, Ri1, Ri2, T3; i = 1, 2, 3 in the following way:

∧12 = S3 ∧14 = 2R11 ∧15 = 2R12

∧13 = −S2 ∧24 = 2R21 ∧25 = 2R22 ∧45 = T3

∧23 = S1 ∧34 = 2R31 ∧35 = 2R32.

(4.2)

The O(5) has the following chains of subgroups O(5) ⊃ O(4) ⊃ O(3) ⊃ O(2) whose
generators, in terms of the operators appearing in the commutation rules (3.8), can be
selected as

10 Si, Ri1, Ri2, T3 or ∧12,∧13,∧23,∧i4,∧i5,∧45, i = 1, 2, 3 O(5)

6 Si, Ri2 or ∧12,∧13,∧23,∧i5, i = 1, 2, 3 O(4)

3 Si or ∧12,∧13,∧23 O(3)

1 S3 or ∧12 O(2)

(4.3)

where on the left-hand side we give the number of generators and on the right-hand side
the group in question, with the generators expressed both in the supermultiplet notation
Si, Rij , T3; i, j = 1, 2, 3 and the orthogonal one∧mm′ , m < m′, m = 1, 2, 3, 4, 5.

We note now that in the supermultiplet notation the Bhabha equation is given by (3.6),
so using the relations (4.2) we can also write it in the form[

2i ∧i5 pi + 2∧45 p0+ n
]
ψ = 0. (4.4)

It is with this equation we want to deal with but with a small modification that would allow
us to make use of a simple form of the matrix representation of the generators of orthogonal
groups that we require in (4.4). For this purpose we note that the transposition (4,5) can be
represented by the 5× 5 orthogonal matrix

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

 (4.5)

and thus is an element of the group O(5).



Supermultiplets and relativistic problems: II 6049

As O(5) is the symmetry group of (4.4), we can apply (4.5) to it and get a completely
equivalent equation that now has the form

Hψ ≡
[

2i
1∑

q=−1

(−1)q ∧q4 p−q − 2∧45 p0+ n
]
ψ = 0 (4.6)

where we also replaced the scalar product in Cartesian coordinatesi = 1, 2, 3 by the
spherical onesq = 1, 0,−1, and denote the operator in the square bracket byH .

We shall proceed to discuss this equation by first getting the matrix elements, in an
appropriate basis, of∧q4, q = 1, 0,−1 and∧45.

5. Matrix elements of the generators∧45,∧q4, q = 1, 0,−1 in a basis of irreps in the
chain O(5) ⊃ O(4) ⊃ O(3) ⊃ O(2)

As is well known [9, 10] the irreps of O(2k + 1) and O(2k) are characterized by partition
involving k numbers that can be integer or semi-integer and non-negative, except for the
last one in the even case which sometimes can be negative.

Rather than discussing the general theory analysed in [9, 10], we shall restrict our
analysis to the chain of orthogonal groups that appear in the title of this section where the
irreps will be denoted as follows:

O(5); n1, n2

O(4); m1, m2

O(3); s
O(2); σ.

(5.1)

As O(5) is a symmetry group of the operator (4.6) then1, n2 are integrals of motion of
the problem and remain fixed. Turning now our attention to O(4),m1, m2 are restricted by
the inequalities [9, 10]

n1 > m1 > n2 > |m2|. (5.2)

For O(3) we have the single numbers restricted by

m1 > s > |m2|. (5.3)

Finally σ of O(2) is restricted by|σ | 6 s, which implies that is given by

σ = s, s − 1, . . . ,−s + 1,−s (5.4)

as all the values indicated can only change by one unit at a time within the limits indicated in
the inequalities. We note then that the integer or semi-integer character of the representation
(n1, n2) of O(5) propagates to all of its subgroups.

The kets for the spin part of O(5) ⊃ O(4) ⊃ O(3) ⊃ O(2) chain of groups, can be
denoted by ∣∣∣∣∣∣∣∣∣

n1n2

m1m2

s

σ

B
B
B

�
�
�

(5.5)

and the matrix elements of∧45,∧q4 with respect to them have been calculated in [12, 13].
Before giving them explicitly here, we note that∧q4 is a Racah tensor of order 1 with
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respect to the O(3) group and, in particular,∧04 corresponds to the component 0 of this
tensor so by the Wigner–Eckart theorem we have [11] that

�
�
�

B
B
B

n1n2

m′1m
′
2

s ′

σ ′

∣∣∣∣∣∣∣∣∣ ∧04

∣∣∣∣∣∣∣∣∣
n1n2

m1m2

s

σ

B
B
B

�
�
�
= 〈sσ, 10|s ′σ ′〉

�
��

B
BB

n1n2

m′1m
′
2

s ′

∥∥∥∥∥∥∥ ∧4

∥∥∥∥∥∥∥
n1n2

m1m2

s

B
BB

�
��

(5.6)

where〈·|·〉 is a standard O(3) Clebsch–Gordan coefficient. Thus for∧q4 we need only the
reduced matrix element on the right hand side of (5.6), and its explicit value, together with
that of∧45, is given below [12, 13]:

�
��

B
BB

n1n2

m′1m
′
2

s

∣∣∣∣∣∣∣ ∧45

∣∣∣∣∣∣∣
n1n2

m1m2

s

B
BB

�
��

= − i
2

√
(m1− s + 1)(m1+ s + 2)(n1−m1)(n1+m1+ 3)(m1− n2+ 1)(m1+ n2+ 2)

(m1+m2+ 1)(m1+m2+ 2)(m1−m2+ 1)(m1−m2+ 2)

× δm′1,m1+1δm′2,m2

− i
2

√
(s −m2)(s +m2+ 1)(n2−m2)(n2+m2+ 1)(n1−m2+ 1)(n1+m2+ 2)

(m1+m2+ 2)(m1+m2+ 1)(m1−m2)(m1−m2+ 1)

× δm′1,m1δm′2,m2+1

+ i
2

√
(s +m1+ 1)(m1− s)(n1−m1+ 1)(n1+m1+ 2)(m1− n2)(m1+ n2+ 1)

(m1+m2)(m1+m2+ 1)(m1−m2)(m1−m2+ 1)

× δm′1,m1−1δm′2,m2

+ i
2

√
(s −m2+ 1)(s +m2)(n2−m2+ 1)(n2+m2)(n1−m2+ 2)(m2+ n1+ 1)

(m1+m2)(m1+m2+ 1)(m1−m2+ 2)(m1−m2+ 1)

× δm′1,m1δm′2,m2−1 (5.7)

�
��

B
BB

n1n2

m1m2

s ′

∥∥∥∥∥∥∥ ∧4

∥∥∥∥∥∥∥
n1n2

m1m2

s

B
BB

�
��
= −i

√
(m1− s)(m1+ s + 2)(s −m2+ 1)(s +m2+ 1)

(2s + 3)(s + 1)

× δs ′,s+1+ (m1+ 1)m2√
s(s + 1)

δs ′,s

+ i
√
(m1− s + 1)(m1+ s + 1)(s −m2)(s +m2)

(2s − 1)s
δs ′,s−1. (5.8)

We can now return to our equation (4.6) and see that the operator appearing in it
commutes with the componentspq, q = 1, 0,−1 of the momentum so they are integrals of
motion that we can denote by the constantskq . Furthermore, without loss of generality we
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can select our coordinate axis so the vectork is along the third of them sok0 ≡ k, k±1 = 0.
Thep0 is also an integral of motion and we can replace it by a numerical constant we call
E as in the units (2.2) it would be the energy. If we now consider the numerical finite and
Hermitian matrix∥∥∥∥∥∥∥2i〈sσ, 10|s ′σ 〉k

�
��

B
BB

n1n2

m′1m
′
2

s ′

∥∥∥∥∥∥∥ ∧4

∥∥∥∥∥∥∥
n1n2

m1m2

s

B
BB

�
��

− 2E
�
��

B
BB

n1n2

m′1m
′
2

s ′

∣∣∣∣∣∣∣ ∧45

∣∣∣∣∣∣∣
n1n2

m1m2

s

B
BB

�
��
δss ′ + nδm′1m1δm′2m2δs ′s

∥∥∥∥∥∥∥ (5.9)

where the indicesm1, m2, s,m
′
1, m

′
2, s
′ vary according to the rules (5.2)–(5.4) andσ is

diagonal, we see that if we equate its determinant to 0 we will get a secular equation that
gives several expressions ofE as functionk, n1, n2, σ andn.

We can then denote the energy as

E(knn1n2σµ) (5.10)

whereµ is a number that differentiates the energies that correspond to the samekn1n2σ .
The eigenstateψ of (4.6) can be denoted by

ψ = |knn1n2σµ〉 exp{i[kx3− E(knn1n2σµ)t ]}

=
∑
m1m2s

Akn1n2σµ
m1m2s

∣∣∣∣∣∣∣∣∣
n1n2

m1m2

s

σ

B
B
B

�
�
�

exp{i[kx3− E(knn1n2σµ)t ]} (5.11)

where theA’s are coefficients determined from the process of diagonalization of the matrix
(5.9). As we choosek in a fixed direction only its absolute valuek appears withx3, and
we also replacex0 by t .

We shall see, in the following section, that by a similarity transformations, analogous
to the Foldy–Wouthuysen (FW) one, we can get the relation of the energyE with the other
variables in (5.10) in a much simpler way.

6. A similarity transformation for the operator H in (4.6)

We now wish to find an operator exp(i1) such that under the similarity transformation

e−i1Hei1 = H (6.1)

we get a new operatorH in which the positive and negative energy parts are separated and,
besides,H becomes proportional to an operator related to the numerical term(E2− k2)1/2

associated with Einstein’s expression for the mass.
To achieve our purpose we follow a procedure similar to that ofFW [14] and propose

a1 of the form

1 = (∧i5pi/p)θ (6.2)

wherep is magnitude of the three vectorpi andθ will be a function ofp to be determined
later by requiring that

H = ∧45f + n (6.3)
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with f also being a function ofp which we obtain in the process of determining (6.3). The
appearance ofn is due to the fact that inH of (4.6) it is a number and it will remain the
same after the similarity transformation.

We shall analyse the problem in an inverse fashion by writing

H = ei1He−i1 (6.4)

which from the Campbell–Hausdorf formula can be written as

H = H +
∞∑
m=1

im

m!

[
1,
[
1,
[
1 · · · [1,H]

] · · ·]]
m

(6.5)

where the last term is am-tuple commutator of orderm.
The first termm = 0 is obviously theH operator, while form = 1 we have[∧i5pi

p
θ, ∧45f

]
= θf pi

p
[∧i5,∧45] = if θpi

p
∧i4 . (6.6)

The second, i.e. withm = 2, is given from (6.6) by[∧i5pi
p

θ, if
∧j4pj

p
θ

]
= if

pipj θ
2

p2
[∧i5,∧j4] = θ2f ∧45 . (6.7)

Now using equations (6.7) and (6.6) we see that form = 3 we obtain[∧i5pi
p

θ, θ2 ∧45 f

]
= iθ3f

∧i4pi
p

(6.8)

and continuing in this way we finally obtain the following expression for the right-hand
side of (6.5):

f

[
∧45 cosθ − ∧i4pi

p
sinθ

]
+ n. (6.9)

Comparing it now withH of (4.6), which in Cartesian components is

H = 2i ∧i4 pi − 2∧45 p0+ n (6.10)

we get the relations

f
sinθ

p
= −2i f cosθ = −2p0 (6.11)

from which we conclude thatθ must be imaginary, i.e.θ = iφ with φ real and we get the
relations

f sinhφ = −2p f coshφ = −2p0 (6.12)

which imply

φ = arctanh(p/p0) f = −2
√
p2

0 − p2. (6.13)

The − sign for thef comes from to the fact that ifp = 0, φ = 0 and from (6.12) we
conclude thatf = −2p0.

The operatorH obtained from the similarity transformation (6.1) applied toH of (4.6)
is then

H = −2∧45

√
p2

0 − p2+ n = 0. (6.14)

The operatorH of (6.14) makes perfect sense in the momentum representation and it
is clearly invariant under Lorentz transformations, as we should expect from the discussion
in section 2.
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Table 1.

n (n1, n2) s λ Mλ = n
2λ

1 (1/2, 1/2) 1/2 ±1/2 ±1
2 (1, 1) 1 ±1 ±1

1 0 −
0 0 −

(1, 0) 0 ±1 ±1
0 0 −
1 0 −

(0, 0) 0 0 −
3 (3/2, 3/2) 3/2 ±3/2 ±1

3/2 ±1/2 ±3
1/2 ±1/2 ±3

(3/2, 1/2) 3/2 ±1/2 ±3
1/2 ±3/2 ±1
1/2 ±1/2 ±3

(1/2, 1/2) 1/2 ±1/2 ±3
4 (2/2) 2 ±2 ±1

2 ±1 ±2
2 0 −
1 ±1 ±2
1 0 −
0 0 −

(2, 1) 2 ±1 ±2
2 0 −
1 ±2 ±1
1 ±1 ±2
1 0 −
0 ±1 ±2

(1, 1) 1 ±1 ±2
1 0 −
0 0 −

(2, 0) 2 0 −
1 ±1 ±2
0 ±2 ±1
0 0 −

(1, 0) 1 0 −
0 ±1 ±2

(0, 0) 0 0 −

We note from (5.7) that∧45 is a Hermitian matrix and thus it can be diagonalized with
real eigenvalues. In fact as the permutation taking us from 12345 to 54321 is an element of
the O(5) group, we see that eigenvalues of∧45 are the same of∧12 and the latter given by
σ are integers or semi-integers positive or negative restricted by the relations (5.2)–(5.4).
The eigenvalues of 2∧45 are all integers and we shall denote them by 2λ.

Turning now to the eigenvaluesE2, k2 of p2
0, p

2 discussed in the previous section and
selecting a frame of reference in which∧45 is diagonal, we can write

E2 = k2+ (n/2λ)2 (6.15)

which implies that the Bhabha equation does not represent a single mass but all those given
by

Mλ ≡ n/2λ. (6.16)
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There is no problem with this result if the irrep(n1n2) of O(5) is made of semiintegers,
because thenλ is also a semiinteger and does not vanish. If(n1n2) are integersλ can take the
value 0, but that state can be projected out as shown in [4, 15]. Thus in all representations
(n1n2) of O(5) we can get the different masses that can take a particle satisfying the Bhabha
equation (2.5).

It is of great interest to know the different values of spin and mass that a Bhabha particle
can take. For the possible values of the spin we have to use the inequalities (5.2,3). For
the masses associated with a given irrep(n1n2) of O(5) and definite spins, we have to find
the eigenvaluesλ of the matrix∧45 whose elements are given by (5.7) and then use (6.16).
There are other more compact ways of getting thes andMλ values associated with irrep
(n1n2) of O(5) given in [4] and [15], but the ones mentioned in the previous phrase are the
more direct ones and were used to obtain table 1 of thes,Mλ content in the lowest irreps
(n1n2) of O(5) given below.

As a last point we note that in (2.5) the integer parametern appears, which implies that
all partitions [h1, h2 . . . hn] with

h1 > h2 > · · · > hn h1+ h2+ · · · + hn = n (6.17)

are possible irreps of the SU(4) group mentioned earlier, which is isomorphic to an O(6)
group whose irreps are characterized(q1q2q3) related with the irreps of SU(4) [16] by

q1 = 1
2(h1+ h2− h3− h4)

q2 = 1
2(h1− h2+ h3− h4)

q3 = 1
2(h1− h2− h3+ h4).

(6.18)

The irreps of(n1n2) of O(5) must then satisfy the inequalities [16]

q1 > n1 > q2 > n2 > |q3|. (6.19)

Thus we see that oncen is given the irreps(n1n2) of O(5) cannot be chosen at random.
We have shown through the supermultiplet representation of the equation (2.5) that it

is actually characterized by the irreps(n1n2) of O(5). This result was known to Bhabha in
his work of 1945, but our approach to it followed a very different path.

So far we have analysed the case of a free particle but in subsequent articles we plan
to discuss cases in which it is in potentials of various forms.

Appendix

To determine the 4× 4 U matrix satisfying (2.4) we first note that if the Lorentz
transformationA is only a rotation,U will consist of two blocks in the diagonal associated
with the spinor representation of the rotation, i.e.D1/2.

We need then restrict ourselves only to boosts, and as they can be reduced by rotations
to boosts in theν = 3 direction we only need to consider theU corresponding to the Lorentz
transformation

A =


c 0 0 s

0 1 0 0

0 0 1 0

s 0 0 c

 (A.1)

wherec = coshδ, s = sinhδ andδ is an arbitrary real parameter.
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We now note that in terms of theγ ’s the spin operator [7] takes the form

Sµν = 1
2(γ

µγ ν − γ νγ µ) (A.2)

and thus for the particular Lorentz transformations in (A.1) we have the result that the
matrix corresponding to an infinitesimal transformation in theγ space is given by

S03 = i

2
(γ 0γ 3− γ 3γ 0) = i

2

(
0 σ3

σ3 0

)
(A.3)

and thus for the finite one corresponding toA in (A.1) we have

U = exp(iδS03) =
(
cI sσ3

sσ3 cI

)
(A.4)

where we used the fact thatσ 2
3 = I is a 2× 2 unit matrix and denote byc, s the functions

c = cosh(δ/2) s = sinh(δ/2). (A.5)

Thus we have shown the existence of aU related toA and, in particular, if the boost is
in an arbitrary directions given by the unit vectorb instead ofν = 3, then obviouslyU
becomes

U =
(

cI s(σ · b)
s(σ · b) cI

)
. (A.6)
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