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Abstract. In 1945 Bhabha was probably the first to discuss the problem of a free relativistic
particle with arbitrary spin in terms of a single linear equation in the four-momentum vegtor

but substituting the/¥ matrices of Dirac by other ones. He determined the latter by requiring
that their appropriate Lorentz transformations lead to their formulation in terms of the generators
of the O(5) group. His program was later extensively amplified by Krajcik, Nieto and others. We
returned to this problem because we hadabrinitio procedure for deriving a Lorentz-invariant
equation of arbitrary spin and furthermore could express the matrices appearing in them in terms
of ordinary and what we called sign spins. Our procedure was similar to that of the ordinary and
isotopic spin in nuclear physics that give rise to supermultiplets, hence the appearance of this
word in the title. In the ordinary and sign spin formulation it is easy to transform our equation
into one linear in both the, and some of the generators of O(5). We can then obtain the
matrix representation of our equation for an irrepn(z) of O(5) and find, through a similarity
transformation, that for the irrep mentioned the particle satisfying our equation will have, in
general, several spins and masses determined by a simple algorithm.

1. Introduction

The series title of this paper is related to the fact that the equations for relativistic particles
of spin up to%n were obtained from the sum afDirac equations in which all the momenta
and coordinates are taken to be equal [1]. We then noted that #hred 8 matrices, or
equivalently in this paper thg’s, could be expressed as direct products of the ordinary spin
and a similar operator that we called sign spin. Thus our equation has two types of spins
in analogy with the ordinary and isotopic spin of nuclear physics. As the latter gives rise
to supermultiplets, this is the reason for the appearance of this word in the series title [2].
The subtitle includes the name of Bhabha as he was one of the first to consider that
free particles of higher spin should be written in Dirac form, i.e. linear in the four-vector
momentump,,, v = 0, 1, 2, 3 with coefficients that should be matrices, but only in Dirac
form y, if the spin is%. According to Bhabha, for arbitrary spin, the equation should then
have the form [3]

Tpy+ M)y =0 (1.1)

where M is a constant and’ are appropriate matrices for a particle that may have spins
up to %n that he derived through a sophisticated analysis based on the fact that the
'Y, v=0,1, 2,3, musttransform as a four vector under elements of the Lorentz group.
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We shall proceed to show that using the analysis presented in the first paragraph we can
prove in an elementary fashion thatir equation of the Bhabha type is Lorentz invariant
and furthermore it can be expressed in terms of the generators of an O(5) group.

Besides, by a similarity transformation closely connected with the one of Foldy—
Wouthuysen type, we can determine the spin and mass content of the particle that the
equation represents.

The Bhabha equation and its properties have been discussed by many authors and, in
particular, by Krajcik and Nieto [4], but we believe that our approach differs from all the
others presented in the literature.

2. Alinear equation in p,, for a particle with arbitrary spins that is Lorentz invariant

We start with the well known proof of the Lorentz invariance of the ordinary Dirac equation,
so that we can later extend it to the problem we are interested in. Thus we have

' +DYy =0 (2.1)
where the index = 0,1, 2, 3, and when it is repeated it means a sum over the values
indicated. Throughout we shall use units in which

h=m=c=1 (2.2)

and the 4x 4 matricesy” are given by

i—<0 m) i =1,2.3 °—<I O) 2.3)
"\ o) 77 “\o -1) '

whereg;, i =1, 2, 3, are 2x 2 Pauli spin matrices.

As p, is a four vector the equation (2.1) will be Lorentz invariant if fite v =0,1,2, 3
also transform as a four vector under this operation, which implies the existencesofia 4
matrix I/ such that

Y= a,y" = Uy Ut (2.4)

whereA = |la, || is a Lorentz transformation.

The existence of such a matiikis given in many places, but for completness we derive
it in the appendix.

We now consider equations of the type (2.1) distinguished by the fact that we have

v), b, ¥ =1,2,...,n and sum them making all four-momenta equal to get the equation

pv+m) =0 (2.5)
where

r=1

with y,” being the direct product of % 4 matrices

' =101 - QIQy" QI ---®1 2.7)
with y” in ther position where the; in itis replaced by;,. Because the;,, r =1,...,n,
this equation can represent particles with spin going féomin —1,..., 3 or 0.

Equation (2.5) is Lorentz invariant, because if we introduce the direct product matrix
U= QU@ QU ®---QU, (2.8)
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wherel, is given as in the appendix by replaciagby o;, we immediately see that
M =a M =ur'v. (2.9)
Thus equation (2.5) has the Lorentz invariance and spin properties of the Bhabha equation

and we shall proceed to show, first going through its supermultiplet formulation, that it is
also invariant under an O(5) group.

3. The supermultiplet form of the Bhabha equation

To achieve the object indicated in the title of this section we first have to review some
results of [2], but now as applied to the’, v =0, 1, 2, 3 matrices.

We start by introducing two types of spin vectors, the ordinary one and what we have
called the sign spin, which have the same mathematical form, but which will be distinguished
here by round and square brackets, respectively, [2]:

s (10 10 1 10 —i 1/1 0
o 1 1=%5\1 o 2=5\i o B#=5\0 -1

(3.1)

o A e I 1 LA e
0 1 211 0 2li O 20 -1
From equations (2.3) and (3.1), (3.2) it is immediately clear thaythean be expressed
as the direct products [2]
yl=ids;®n j=1,23 v =21 ®1s. (3.3)

We can now add an index = 1,2,...,n, to all these matrices interpreting them in the
direct product form (2.7) and we immediately see that equation (2.5) takes the form

{Z[4i<s,,-, ® 2)p;] + Y _[2U ® t3,) po] + n}vf =0 (3.4)
r=1 r=1

where repeated latin indic€s, j, k) are summed over their values2l 3.
Now we define

S = 2;@" ®I) Rj= Z;(s,-, ®1,) Tj= E(i@) ) 0j=123 (3.5)

and, as we indicated in [2], the 15 operators close under commutation and correspond to
the SU(4) Lie algebra.
Using the definitions (3.5) the Bhabha equation (3.4) can be written as

{4iRj2p; + 2T3po+n}y = 0. (3.6)

As only R;,, T3 appear in the equation we may assume that it admits a smaller symmetry
group than SU(4). In fact we see from the commutation relations given in [2], that the ten
operators

S; Ri1 Rz Tz i=123 (3.7)
close under commutation as

[Si. 8] = i€ijuSe [Si, Rj1] = i€ijuRj1

[Si. Rj2]) = i€ijkRiz [T3. Rj1] = iR)2 [T3. Rj2] = —iRj1 (3.8)

[Ri1. Rj2] = i T35,
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Thus the ten operators of (3.7) form a Lie algebra which clearly is a subalgebra of
SU(4) and in fact is the unitary symplectic algebra Sp(4) whose Casimir operators commute
with the operators in (3.6) and thus is its symmetry Lie algebra.

As will be discussed in the next section Sp(4) is isomorphic to O(5) and thus we get
the symmetry Lie algebra that Bhabha derived by a very different procedure.

4. The O(5) symmetry algebra of the Bhabha equation

The generators of an orthogonal Lie algebra of dimengicare given by antisymmetric
operatorsA, = —Apm Wherem,m’ = 1,2, ...,d, and thus there ar&l/2)(d — 1) of
them satisfying the commutations relations

[/\mm’s /\nn’] =i [am’n /\n’m +8mn/ /\nm’ +6mn /\m’n’ +8m’n’/\mn] . (41)

Comparing them with the commutation relations (3.8) we easily see that wherb
the A,y With m < m’ (to avoid the repetition due to the antisymmetry) are correlated with

Si, Ri1, Riz, Ts; i = 1, 2, 3 in the following way:
N2 = 83 A14 = 2R11 A15 = 2R12
A3 = —S2 A24 = 2R21 N25 = 2Rz, Nas = T3 (4.2)
N2z = 81 N34 = 2R31 A35 = 2R3p.

The O(5) has the following chains of subgroup&sD> O(4) > O(3) D 0O(2) whose
generators, in terms of the operators appearing in the commutation rules (3.8), can be
selected as

10 Siy Ri1, Riz, Ta  Or  A12, A13, A23, Aia, Nis, Ass, 1 =1,2,3 O(5)
6 Siv Riz or /\121 /\13’ /\237 /\i57 l = 17 2, 3 0(4)
(4.3)
3 S or A1z, A13, A23 0B
1 S3 or A1 0(2)

where on the left-hand side we give the number of generators and on the right-hand side
the group in question, with the generators expressed both in the supermultiplet notation
Si, Rij, Ts; i, j =1, 2, 3 and the orthogonal one,,,,,, m <m’, m =1,2,3,4,5.
We note now that in the supermultiplet notation the Bhabha equation is given by (3.6),
so using the relations (4.2) we can also write it in the form
[2i Ais pi +2 Aas po+n]y =0. (4.4)

It is with this equation we want to deal with but with a small modification that would allow
us to make use of a simple form of the matrix representation of the generators of orthogonal
groups that we require in (4.4). For this purpose we note that the transposition (4,5) can be
represented by the 5 5 orthogonal matrix

10 0
0 0
0 0
0 0
0 0 1
and thus is an element of the group O(5).

(4.5)

O O O -
o O O
© +r O O
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As O(5) is the symmetry group of (4.4), we can apply (4.5) to it and get a completely
equivalent equation that now has the form

1
Hy = [2[ Z (—=D? Nga P—q — 2 Aas po + n:|1// =0 (46)
g=—1
where we also replaced the scalar product in Cartesian coordinatesl, 2, 3 by the
spherical oneg = 1,0, —1, and denote the operator in the square bracketby
We shall proceed to discuss this equation by first getting the matrix elements, in an
appropriate basis, of,4, ¢ = 1,0, =1 andAgs.

5. Matrix elements of the generatorsass, Aqa, ¢ = 1,0, —1 in a basis of irreps in the
chain O(5) D 0(4) > O0(3) D 02

As is well known [9, 10] the irreps of @k + 1) and Q2k) are characterized by partition
involving k numbers that can be integer or semi-integer and non-negative, except for the
last one in the even case which sometimes can be negative.

Rather than discussing the general theory analysed in [9, 10], we shall restrict our
analysis to the chain of orthogonal groups that appear in the title of this section where the
irreps will be denoted as follows:

O(5); ni,n2
O@); my, mp
0O®d); s
0(2); o.

As O(5) is a symmetry group of the operator (4.6) then, are integrals of motion of
the problem and remain fixed. Turning now our attention to Qf4),m. are restricted by
the inequalities [9, 10]

ni = my = np = |moyl. (5.2)

(5.1)

For O(3) we have the single numberestricted by
mi = s 2> |mp|. (5.3)
Finally o of O(2) is restricted byo| < s, which implies that is given by
oc=s,5s—1...,—s+1 —s (5.4)
as all the values indicated can only change by one unit at a time within the limits indicated in
the inequalities. We note then that the integer or semi-integer character of the representation
(n1, np) of O(5) propagates to all of its subgroups.

The kets for the spin part of @) > O(4) > O(3) > O(2) chain of groups, can be
denoted by
nin
a2 (5.5)

N

o

and the matrix elements ofss, A4 With respect to them have been calculated in [12, 13].
Before giving them explicitly here, we note that, is a Racah tensor of order 1 with
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respect to the O(3) group and, in particula, corresponds to the component O of this
tensor so by the Wigner—Eckart theorem we have [11] that

niny ning
, niny niny
m1m2 mimys ;) ;o
, | Aoa = (5o, 10is'c") ( mim’ | Aa | mima (5.6)
s s
, s’ s
o o

where(-|-) is a standard O(3) Clebsch—Gordan coefficient. Thusxfarwe need only the
reduced matrix element on the right hand side of (5.6), and its explicit value, together with
that of A4s, is given below [12, 13]:

nin nins

m/lm/z A45 | MM

N N

_ i [mi—s+Dmi+s5+2)(n1 —ma) (g +my+3)0my —na+ DH(my+n2+2)
2 (my+my+ D) (my +my+ 2)(mg —mp + 1)(my —mp + 2)

X Sm’l,m1+18m/2,m2

L [(s =m2)(s +ma+ D(na —ma)(n2 +ma+ D(ng —ma 4+ 1 (n1 +mz+2)
2 (m14+mz 4+ 2)(my+mp+ 1)(m1 —mo)(my —mo + 1)

X 6rn’l,lnlfsm’z,mzﬂ

L feAmid Dona = 5)(a —ma + D+ ma + 2 0m = ng)(ma + 12 + 1)
2 (m1+mz)(my+mz + 1)(m1 —m2)(m1 — mz+ 1)

X Sm’l,ml—lsm’z,mz

EJ@—”u+1X&+mﬂm2—m2+D@2+m9m1—m2+3MQ+n1+D

2 (m1+m2)(ml+m2+l)(ml_m2+2)(m1_m2+1)
X 5m/1,m18m’2,m271 (57)
ninz niny
mams | Ax lmams ) = —i (my—s)(my+ s +2)(s —mo+ 1)(s +mo+ 1)
K B 136+
s s
(ml + 1)?}12
8y s+1+ ——=—="0ys
X Oy’ 541 S(s - 1) ;
- 1 (s —
4 (my—s+Dmy+ s+ D(s —mo)(s +my) . 58
(2s — s

We can now return to our equation (4.6) and see that the operator appearing in it
commutes with the components, g = 1, 0, —1 of the momentum so they are integrals of
motion that we can denote by the constaints Furthermore, without loss of generality we



Supermultiplets and relativistic problems: Ii 6051

can select our coordinate axis so the vedtas along the third of them sky = k, k., = 0.
The pg is also an integral of motion and we can replace it by a numerical constant we call
E as in the units (2.2) it would be the energy. If we now consider the numerical finite and
Hermitian matrix
ninz ninz
2i(so, 10|s'o )Yk ( mim)y | Aa || mam2

/7

s s
ninz nin
/ /
— 2E ( mym}y | Aas | mamy ) 8ssr + N8 my Smtym,S's (5.9)
s K

where the indicesny, mo, s, my, m5, s’ vary according to the rules (5.2)—(5.4) andis
diagonal, we see that if we equate its determinant to 0 we will get a secular equation that
gives several expressions ffas functionk, nq, n, o andn.

We can then denote the energy as

E (knnynso ) (5.10)
whereu is a number that differentiates the energies that correspond to theksame .
The eigenstatey of (4.6) can be denoted by
¥ = lknnyngo ) expli[kxs — E(knnyinoo )t}

ninz

mimas

mim
= > Abmeon | TET2 Y expfifkog — E(knnango 1) (5.11)
mimss s

o

where theA’s are coefficients determined from the process of diagonalization of the matrix
(5.9). As we choosé: in a fixed direction only its absolute valueappears withxs, and
we also replacey by ¢.

We shall see, in the following section, that by a similarity transformations, analogous
to the Foldy—Wouthuysen (FW) one, we can get the relation of the erengith the other
variables in (5.10) in a much simpler way.

6. A similarity transformation for the operator H in (4.6)

We now wish to find an operator ei@) such that under the similarity transformation

e PHe'® =H (6.1)
we get a new operatdt in which the positive and negative energy parts are separated and,
besidesH becomes proportional to an operator related to the numerical tBfm- £2)%/2
associated with Einstein’s expression for the mass.

To achieve our purpose we follow a procedure similar to thak @f [14] and propose
a A of the form

A = (Nispi/p)o (6.2)

where p is magnitude of the three vectpr andé will be a function ofp to be determined
later by requiring that

H=~Arasf +n (6.3)
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with f also being a function op which we obtain in the process of determining (6.3). The
appearance af is due to the fact that it of (4.6) it is a number and it will remain the
same after the similarity transformation.

We shall analyse the problem in an inverse fashion by writing

H=¢"He 2 (6.4)
which from the Campbell-Hausdorf formula can be written as

H="H —i—Zl%[A,[A,[A~~~[A,H]]~~]]m (6.5)

where the last term is a-tuple commutator of orden.
The first termm = 0 is obviously theH operator, while form = 1 we have

[ Aispi i .. Op;i
sPig, /\45f} = Qf% [Ais, Ags] =if % Ni4 . (6.6)
The second, i.e. witln = 2, is given from (6.6) by
[ Aispi japj ip;0°
SPig if A""’fe] — if PP (A5, Ajal = 62 f Aas. (6.7)
L P p p
Now using equations (6.7) and (6.6) we see thatrioe 3 we obtain
/\i5pi9’ 02 Mg f] _i0%f NiaDi 6.8)
L p

and continuing in this way we finally obtain the following expression for the right-hand
side of (6.5):

f |:/\45 cosf — Liapi sin@] +n. (6.9)
p
Comparing it now withH of (4.6), which in Cartesian components is
H =2 N4 Di — 2 Ass po+n (610)
we get the relations
sing
f— =2 fcosh = —2pg (6.11)
p

from which we conclude that must be imaginary, i.e? = i¢ with ¢ real and we get the
relations

fsinhg = —2p fcoshp = —2pg (6.12)
which imply

¢ = arctantip/po) f=-2/p§—p2 (6.13)

The — sign for the f comes from to the fact that ip = 0,¢ = 0 and from (6.12) we
conclude thatf = —2po.
The operatofH obtained from the similarity transformation (6.1) appliedHoof (4.6)

is then
H = —2A45/pé — p?>+n=0. (6.14)

The operatorH of (6.14) makes perfect sense in the momentum representation and it
is clearly invariant under Lorentz transformations, as we should expect from the discussion
in section 2.
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Table 1.

n  (n1,n2) K A M,

=

1 1/2,1/2) 1/2 +1/2 +1
2 (1D

1,0

POOORR
H_
=
H_
=

o
o
|

0,0
3 (3/23/2) 3/2 +3/2 +1
3/2 +£1/2 +3

1/2  +1/2 43

(3/2,1/2) 3/2 +1/2 +3
12 +£3/2 +1

12 +1/2 +3

(1/2,1/2) 1/2 +1/2 +3
4 2/2 2 2 41
2 £1 £2
2 0 -
1 41 42
10 -
0 0 -
2,1 2 +£1 £2
2 0 -
1 +2 41
1 +1 42
1 0 -
0 £1 @ £2
(1, 1) 1 +1 42
1 0 -
0 0 -
(2,0 2 0 -
1 +1 2
0 2 £1
0 0 -
(1,0 10 -
0 +£1 @ £2
(0,0 0 0 -

We note from (5.7) thats is a Hermitian matrix and thus it can be diagonalized with
real eigenvalues. In fact as the permutation taking us from 12345 to 54321 is an element of
the O(5) group, we see that eigenvalues\gf are the same ok, and the latter given by
o are integers or semi-integers positive or negative restricted by the relations (5.2)—(5.4).
The eigenvalues of 245 are all integers and we shall denote them hy 2

Turning now to the eigenvalueg?, k2 of pg, p? discussed in the previous section and
selecting a frame of reference in whiehs is diagonal, we can write

E? = k% + (n/2)0)? (6.15)

which implies that the Bhabha equation does not represent a single mass but all those given
by

M, = n/2h. (6.16)
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There is no problem with this result if the irrépin,) of O(5) is made of semiintegers,
because then is also a semiinteger and does not vanish(n{f,) are integers. can take the
value 0, but that state can be projected out as shown in [4, 15]. Thus in all representations
(n1n2) of O(5) we can get the different masses that can take a particle satisfying the Bhabha
equation (2.5).

It is of great interest to know the different values of spin and mass that a Bhabha particle
can take. For the possible values of the spin we have to use the inequalities (5.2,3). For
the masses associated with a given ir¢ep:,) of O(5) and definite spin, we have to find
the eigenvaluesa of the matrixAss whose elements are given by (5.7) and then use (6.16).
There are other more compact ways of getting ¢hend M, values associated with irrep
(n1n2) of O(5) given in [4] and [15], but the ones mentioned in the previous phrase are the
more direct ones and were used to obtain table 1 ofstldé;, content in the lowest irreps
(n1np) of O(5) given below.

As a last point we note that in (2.5) the integer parametappears, which implies that
all partitions p, k2. .. h,] with

hi>hy>--->h, hi+hy+--+h,=n (6.17)

are possible irreps of the SU(4) group mentioned earlier, which is isomorphic to an O(6)
group whose irreps are characterizggg.gs) related with the irreps of SU(4) [16] by

q1= %(hl—i-hz — h3 — hyg)
q2 = 3(h1 — ha + h3 — hs) (6.18)
q3 = 3(h1 — ha — h3 + ha).
The irreps of(n1n,) of O(5) must then satisfy the inequalities [16]
q1=n1 > qz > nz > |qal. (6.19)

Thus we see that onaeis given the irrepsnin,) of O(5) cannot be chosen at random.

We have shown through the supermultiplet representation of the equation (2.5) that it
is actually characterized by the irrepsin,) of O(5). This result was known to Bhabha in
his work of 1945, but our approach to it followed a very different path.

So far we have analysed the case of a free particle but in subsequent articles we plan
to discuss cases in which it is in potentials of various forms.

Appendix

To determine the 4x 4 U/ matrix satisfying (2.4) we first note that if the Lorentz
transformationA is only a rotationZ{ will consist of two blocks in the diagonal associated
with the spinor representation of the rotation, i#2.

We need then restrict ourselves only to boosts, and as they can be reduced by rotations
to boosts in the = 3 direction we only need to consider thecorresponding to the Lorentz
transformation

s
0
0
s 0 0 ¢

wherec = coshd, s = sinh§ and$ is an arbitrary real parameter.

(A.1)

o o o
o »r O
= O O
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We now note that in terms of theg’s the spin operator [7] takes the form
SHY — %(yuyv _ J/VJ/M) (AZ)

and thus for the particular Lorentz transformations in (A.1) we have the result that the
matrix corresponding to an infinitesimal transformation in thepace is given by

) /0 os
503 _ L0,3 30=i< ) A.3
Sy vy =3 S (A.3)

and thus for the finite one corresponding4an (A.1) we have

U = exp(iss®) = < < 503) (A.4)

soz cl
where we used the fact thaf = I is a 2x 2 unit matrix and denote by, 5 the functions
¢ = cosh($/2) s = sinh(§/2). (A.5)

Thus we have shown the existence of{arelated toA and, in particular, if the boost is
in an arbitrary directions given by the unit vectbrinstead ofv = 3, then obviouslyi/

becomes
U= (_ o st b)>. (A.6)
s(o - b) cl

References

[1] Moshinsky M and del Sol Mesa A 1998 Phys. A: Math. Gen29 4217
[2] Moshinsky M and Smirnov Yu F 1998. Phys. A: Math. Ger29 6027
[3] Bhabta H J 1945Rev. Mod. Physl7 200
[4] Krajcik R A and Nieb M M 1974 Phys. RevD 10 4049
Krajcik R A and Nieb M M 1975 Phys. RevD 11 1442
Krajcik R A and Nieb M M 1975 Phys. RevD 11 1459
Krajcik R A and Nieb M M 1976 Phys. RevD 13 924
Krajcik R A and Nieb M M 1977 Phys. RevD 14 418
Krajcik R A and Nieb M M 1977 Phys. RevD 15 433
Loide R K, Ots | and Saar R 199¥. Phys. A: Math. Ger39 4005
[5] Moshinsky M, Loyola G and Villegas C 1991 Math. Phys32 373.
[6] Wigner E P 1937Phys. Rev51 106
[7] KimY S and Noz M E 1986Theory and Applications of the Poin@Group (Dordrecht: Reidel) pp 69, 70
[8] Moshinsky M 1968Group Theory and the Many Body Probldidew York: Gordon and Breach) p 36
[9] Gelfard | M and Zetln M L 1950 Dokl. Akad. Nauk. USSR1 147 (in Russian)
[10] Parg S C and HechK T 1967 J. Math. Phys8 1233
[11] Roe M E 1957Elementary Theory of Angular Momentuiew York: Wiley) pp 85-8
[12] Filippov G F, Ovcharen& V | and Smirnov Yu F 1981Microscopic Theory of Collective Excitations of
Atomic Nuclei(Kiev: Nauka Dumka) pp 252—4 (in Russian)
[13] Nikitin A G and Tretynk V V 1995 J. Phys. A: Math. Ger28 1655
[14] Foldy L | and Wouthuysa S A 1950Phys. Rev78 29
[15] Sharma A, Smirnov Yu F and NikitiA G 1998 Mass and spin content of a free relativistic particle and the
group reduction S@) > U(1) ® SU(2) 1998 Rev. Mex. 5. 44 to appear
[16] Moshinsky M, Nikitin A G, Sharma A and Smirnov Yu F 1998 Analysis of relativistic particles through
different chains of groupRev. Mex. I5. 44 to appear



