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PARASUPERALGEBRA

A.G. NIKITIN

Institute of Mathematics of the National Academy of Sciences
of the Ukraine,

3 Tereshenkivska Street, Kiev, 252004, Ukraine

Abstract

We find irreducible unitary representations of the extended Poincaré
parasuperalgebra for timelike, lightlike, and spacelike four-momenta.
This parasuperalgebra includes as a particular case the usual Poincaré
superalgebra and can serve as the group–theoretical foundation of
parasupersymmetric quantum field theory.

1 Introduction

Parasupersymmetric quantum mechanics [1] awaked undoubted interest and
stimulated appearance of a lot of papers, see [2] and papers cited therein.

Beckers and Debergh [3] asked for Poincaré invariance of the theory
and formulated group–theoretical foundations of so–called parasupersymmet-
ric quantum field theory (QFT). This theory is a natural generalization of
SUSY QFT, dealing with parastatistics instead of the usual Fermi or Bose
statistics and with the Poincaré parasupergroup (or Poincaré parasuperalge-
bra, (PPSA)) instead of the Poincaré supergroup (or Poincaré superalgebra
(PSA)).

In paper [4] irreducible representations (IRs) of the simplest N = 1 PPSA
(including the only parasupercharge) were described.
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Here, using the Wigner induced representations method, we find IRs of
the extended PPSA with arbitrary number of parasupercharges. In this way
we formulate the group–theoretical foundations of the PSSFT with arbitrary
N , and generate a new view–point to the PSA which appears in our approach
as a particular realization of the PPSA.

2 The Poincaré parasuperalgebra

The PPSA [3] includes ten generators Pν , Jνσ of the Poincaré group, satis-
fying the usual commutation relations

[Pµ, Pν ] = 0, [Pµ, Jνσ] = i(gµνPσ − gµσPν),

[Jµν , Jρσ] = i(gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ)
(1)

(Jµν = −Jνµ, µ, ν = 0, 1, 2, 3), and N parasupercharges Qj
A, Q̄j

A (A =
1, 2, j = 1, 2, ..., N) which satisfy the following double commutation relations

[Qi
A, [Qj

B, Q̄k
C ]] = −4δikQ

j
B(σµ)ACP µ, [Q̄i

A, [Qj
B, Q̄k

C ]] = 4δikQ̄
j
C(σµ)BAP µ,

[Qi
A, [Qj

B, Qk
C ]] = [Q̄i

A, [Q̄j
B, Q̄k

C ]] = 0. (2)

Here σν are the Pauli matrices, (.)AC are the related matrix elements.
Furthermore, parasupercharges commute with generators of the Poincaré

group as follows

[Jµν , Q
j
A] = − 1

2i
(σµν)AB Qj

B, [Pµ, Q
j
A] = 0, (3)

where σνσ = −σσν = σνσσ and commutation relations for Q̄i
A are obtained

from (3) using hermitian conjugation.
The PPSA is a direct (and natural) generalization of the PSA [5] whose

masis elements satisfy relations (1)-(3) also. The converse is not true, i.e.,
basis elements of the PPSA in general does not satisfy PSA.

3 Classification of IRs and representations of

class I

It is convenient to introduce the four–vector Bµ = Wµ + Xµ where Wµ =
1
2
εµνρσJ

νρP σ is the Lubanski–Pauli vector, Xµ = (σµ)AB Q̄AQB.
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It follows from (1)-(3) that C1 = PµP
µ and C2 = PµP

µBνB
ν − (BµP

µ)2

are the Casimir operators of the PPSA.
We will search for representations of the algebra (1)– (3) in the momen-

tum representation. As in the case of the ordinary Poincaré algebra [6] we
distinguish three main classes of IRs corresponding to: I. PµP

µ = M2 >
0, II. PµP

µ = 0, III. PµP
µ = −η2 < 0.

For representations of class I there exist the additional Casimir operator
C3 = P0/|P0|. We restrict ourselves to considering IRs corresponding to
ε = +1. Let us define ”a Wigner little parasuperalgebra ” (LPSA) associated
with the time–like four–vector P = (M, 0, 0, 0). We set Bk = Wk + Xk =
−MSk + Xk ≡ Mjk, k = 1, 2, 3, then [jk, Q

i
A] = [jk, Q̄

i
A] = 0, and

[jk, jj] = iεkjljl (4)

[Qi
A, [Q̄j

A, Qk
B]] = 4δijMQk

B, [Q̄i
A, [Qj

A, Q̄k
B]] = 4δijMQ̄k

B, (5)

the other double commutators of Qi
A and Q̄j

A are equal to zero.
Relations (4) define algebra o(3). To find IRs of algebra (5) we denote

Qi
A =

√
2M(S4N+1 4i+2A−5 + iS4N+1 4i+2A−4), and

[Qj
A, Q̄k

B] = 2M [S4j+2A−5 4k+2B−4 − S4j+2A−4 4k+2B−5

+i (S4j+2A−5 4k+2B−5 + S4j+2A−4 4k+2B−4)] ,

[Qj
A, Qk

B] = 2M [S4j+2A−5 4k+2B−4 − S4j+2A−5 4k+2B−4

+i (S4j+2A−5 4k+2B−5 − S4j+2A−4 4k+2B−4)] ,

and suppose SAB to be hermitian. As a result we come to commutation
relations which characterize algebra so(4N+1) (k, l = 1, 2, . . . 4N + 1):

[Skl, Smn] = i(δkmSln + δlnSkm − δknSlm − δlmSkn), (6)

Thus for PνP
ν > 0 the LPSA reduces to the direct sum of the algebras

o(3) and so(4N+1). The explicit form of the corresponding parasupercharges
and generators of the Poincaré is

Qi
1 = 1√

E+M
[(S4N+1 4i−3 + iS4N+1 4i−2)(E + M + εp3)

+ε(S4N+1 4i−1 + iS4N+1 4i)(p1 − ip2)],

Qi
2 = 1√

E+M
[ε(S4N+1 4i−3 + iS4N+1 4i−2)(p1 + ip2)

+(S4N+1 4i−1 + iS4N+1 4i)(E + M − εp3)], Q̄A = Q+
A,

(7)
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Pa = pa, Jab = xapb − xbpa + εabcSc,
P0 = εE, J0a = x0pa − iε

2
[ ∂
∂pa

, E]+ − ε εabcpbSc

E+M

(8)

where Sa = 1
2
Σn−1

i=0

(
εa b+4i c+4iSb+4i c+4i + S4(i+1) a+4i

)
, E =

√
M2 + p2, and

p2 = p2
1 + p2

2 + p2
3.

In analogous way, choosing the time-like and space-like four-vectors P =
(M, 0, 0, M)) and P = (0, 0, 0, η), we prove, that for representations of classes
II and III the LPSA reduces to the direct sum of the algebras so(2N+1)⊕e(2)
and so(2N+1,2N)⊕so(1,2). The corresponding basis elements of IRs of the
PPSA also can be calculated in an explicit form.

Thus, we have described all possible (up to equivalence) IRs of the PPSA
with arbitrary number of parasupercharges. Physical interpretation of these
representations can be formulated in analogy with [4].
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