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Abstract

New algebras of symmetries of the Dirac equation are presented, which are formed by
linear and antilinear first–order differential operators. These symmetries are applied
to decouple the Dirac equation for a charged particle interacting with an external field.

I. Introduction

Symmetries of differential equations have important applications in construction of conser-
vation laws [1], separation of variables [2], reduction of nonlinear problems to more simple
ones [3], etc. All that causes the continuous interest of physicists and mathematicians in
the classical group-theoretical approach [4] and its modern generalizations.

Early in the seventies, W.I. Fushchych proposed the fruitful concept of non-Lie symme-
tries. It happens that even such well-studied subjects as the Maxwell and Dirac equations
admit extended symmetry algebras which cannot be found using the classical Lie approach
[5-7]. The distinguishing feature of these algebras is that they have usual Lie structures
in spite of the fact that their basis elements are not Lie derivatives and belong to classes
of higher-order differential operators or even integro-differential operators.

In recent paper [8] a new invariance algebra D of the Dirac equation was found. Being
the algebra of the higher dimension than other known finite symmetry algebras of this
equation, the algebra D is formed by discrete symmetries like parity or charge conjugation.
This algebra has useful applications in searching for hidden supersymmetries and reduction
of the Dirac equation for a particle interacting with various external fields [8].

In the present paper we continue the analysis of algebraic structures of discrete sym-
metries and study their connections with non-Lie symmetries of the Dirac equation. We
find a finite dimensional symmetry algebra of the Dirac equation, which unites both the
non-Lie [6, 7] and involutive discrete [8] symmetries. We also apply discrete symmetries
to decouple the Dirac equation for a particle interacting with an external field.
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II. Lie and non-Lie symmetries of the Dirac equation

Let us start with the free Dirac equation

Lψ = 0, L = γµpµ −m. (2.1)

Here pµ = i
∂

∂xµ
, µ = 0, 1, 2, 3, γµ are the Dirac matrices which we choose in the form

γ0 =

(
0 I
I 0

)
, γa =

(
0 −σa

σa 0

)
, γ4 = iγ0γ1γ2γ3 =

(
I2 0
0 −I2

)
, (2.2)

σa(a = 1, 2, 3) are the Pauli matrices, I2 is the 2× 2 unit matrix.
We say a linear operator Q is a symmetry of equation (2.1) if there exists such an

operator αQ that

[Q,L] = αQL. (2.3)

In the classical Lie approach [4] symmetry operators are searched for in the form

Q = aµpµ + b (2.4)

where aµ are functions of x = (x0, x1, ...), b is a matrix dependent on x. The maximal
invariance algebra of equation (2.1) in the class of operators (2.4) is the Poincaré algebra
whose basis elements are

Pµ = pµ, Jµν = xµpν − xνpµ +
i

4
[γµ, γν ] . (2.5)

In other words, any symmetry of the Dirac equation, which has form (2.4), is a linear
combination of generators (2.5) (refer, e.g., to [9]). The related αQ in (2.3) are equal to
zero.

Supposing that coefficients aµ in (2.4) are matrices, we find the simplest non-Lie sym-
metry algebra for equation (2.1) which is generated by the following operators [7, 9]

Σµν =
1
2

[γµ, γν ] +
1
m

(1− iγ4) (γµpν − γνpµ) ,

Σ1 = γ4 −
i

m
(1− iγ4) γµpµ.

(2.6)

Operators (2.6) satisfy relations (2.3) for αΣµν =
1
m

(γµpν − γνpµ) and αΣ1 = − 1
m
γ4γ

µpµ.

Moreover, operators Σµν commute with Σ1 and form the Lie algebra isomorphic to so(1,3).
We notice that Lie symmetries (2.5) and non-Lie symmetries (2.6) can be united in

frames of the 17-dimensional Lie algebra which includes (2.5) and (2.6) as subalgebras [9].

III. Algebras of discrete symmetries of the Dirac equation

It is well known that the Dirac equation is invariant w.r.t. specific discrete transformations
like parity or charge conjugation. Let us analyze algebraic structures generated by these
symmetries.
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Consider reflections of independent variables x = (x0, x1, x2, x3):

θ0x = (−x0, x1, x2, x3) , θ1x = (x0,−x1, x2, x3) , θ2x = (x0, x1,−x2, x3) ,

θ3x = (x0, x1, x2,−x3) , θx = (−x0,−x1,−x2,−x3) .
(3.1)

The corresponding symmetry operators for equation (2.1) have the form

Γ0 = γ4γ0θ̂0, Γ1 = γ4γ1θ̂1, Γ2 = γ4γ2θ̂2, Γ3 = γ4γ3θ̂3, Γ4 = iγ4θ̂ (3.2)

where θ̂µ and θ̂ are operators defined as follows:

θ̂µψ(x) = ψ (θµx) , θ̂ψ(x) = ψ(−x). (3.3)

Let us add the list of symmetries (3.2) by the following antilinear operator

Γ5 = C = iγ2c (3.4)

where c is the complex conjugation, cψ(x) = ψ∗(x).
Operators (3.2), (3.4) generate very interesting algebraic structures. First, they satisfy

the Clifford algebra

ΓkΓl + ΓlΓk = 2gkl (3.5)

where g00 = −g11 = −g22 = −g33 = g44 = g55 = 1; gkl = 0, k 6= l. Secondly, this Clifford
algebra can be extended by adding the seventh basis element

Γ6 = Γ0Γ1Γ2Γ3Γ4Γ5 = iC. (3.6)

Finally, the enveloping algebra of this seven-dimensional Clifford algebra is isomorphic
to the algebra gl(8, R). In other words, there are 64 linearly independent products of the
operators Γf (f = 0, 1, ...6):{

Γm, ΓmΓn, ΓkΓmΓn, Î
}
, k, l,m,= 0, 1, ...6 (3.7)

(Î is the unit operator) which form a basis of the Lie algebra isomorphic to gl(8, R). This
isomorphism will be constructed explicitly in Section V.

Thus the discrete symmetries of the Dirac equation generate a very extended Lie alge-
bra. Restricting ourselves to linear symmetries we come to the 16-dimensional Lie algebra
including the identity operator Î and the following 15 operators

{Γa, ΓbΓc} , a, b, c = 0, 1, ...4 (3.8)

with Γa defined in (3.2). Operators (3.8) form a basis of the algebra so(2, 4).
We notice that the Dirac equation for a charged particle interacting with an external

field

(γµπµ −m)ψ = 0, πµ = pµ − eAµ(x) (3.9)

still admits some of symmetries (3.7) provided functions Aµ(x) have definite parities w.r.t.
the related reflections (3.1) or their combinations. Moreover, if the corresponding symme-
try (3.7) is diagonalizable, then equation (3.9) can be reduced to two uncoupled subsystems
[8]. We will demonstrate in Section VI that for some classes of vector-potentials Aµ the
Dirac equation can be reduced to eight uncoupled equations.
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IV. The maximal present symmetry algebra for the Dirac
equation

Thus there exist two symmetry algebras for the Dirac equation which are defined by
relations (2.6), (3.7) and which are of different origin. Symmetries (2.6) are of the form of
differential operators whereas (3.7) are functional operators of discrete transformations.
Nevertheless, it is possible to find an algebraic structure which unify both of them.

First let us note that it is impossible to include all symmetries (2.6) and (3.8) into a
finite-dimensional Lie algebra. Indeed, commutators of operators (2.6) and (3.2) gener-
ate second-order differential operators whose commutators give fourth-order differential
operators, and so on. However the subset of symmetries (3.7) which commute with γ4,
i.e.,

ΓkΓl, Γ4, Γ4ΓkΓl, k, l 6= 4 (4.1)

can be united with operators (2.6) in framework of a 120-dimensional (!) Lie algebra with
the following basis

Q4µ,4µ = CΓµ, Q5µ,5µ = CΓ4Γµ, Q5ν,5µ = gµµCΓ4ΓµΣµν ,

Q4ν,4µ = gµµCΓµΣµν , Q4ν,5µ = −γ4Q5µ,5ν , Qµν,µν = γµν θ̂µθ̂ν ,

Q5ν,4µ = −γ4Q4µ,4ν , Q54,54 = iΓ4, Q54,µν = εµνλσγµγν θ̂µθ̂νΣλσ,

Qµλ,µσ = gµµΣµλγµγν θ̂µθ̂ν , Qσλ,µν = εµσνλgµµgννΣ1γµγν θ̂µθ̂ν ,

Qµν,mn = Σµν , Q54,mm = iΓ4.

(4.2)

Here Qkl,mn are tensors which are antisymmetric w.r.t. permutations of the first pair
of indices and symmetric w.r.t. permutations of the second pair of indices and whose
diagonal elements are equal, i.e., Qkn,ll = Qkn,mm for any l and m. The Greek indices
runs over the values 0, 1, 2, 3 and no summation over repeated indices is assumed.

Let us notice that algebra (4.2) can be extended by the following 136 elements

Q4µ,λσ = CΓµθ̂µλσ, Q4µ,45 = CΓµθ̂νλσ, ν, λ, σ 6= µ,

Q5µ,λσ = CΓ4Γµθ̂µλσ, Q5µ,45 = CΓ4Γµθ̂νλσ, ν, λ, σ 6= µ,

Qµν,4λ = γµγν θ̂µθ̂ν θ̂µνλ, Qµν,5λ = γµγν θ̂µθ̂ν θ̂µνλΓ4Σ1,

Qµν,45 = γµγν θ̂λσ, Q54,µν = iΓ4θ̂µν

(4.3)

where

θ̂µν = 1 +
1
m

(1− iγ4) (γµpµ + γνpν) θ̂µθ̂ν , µ 6= ν,

θ̂µνλ = 1 +
1
m

(1− iγ4)
(
γµpµ + γνpν + γλpλ

)
θ̂µθ̂ν θ̂λ, µ 6= ν, µ 6= λ, ν 6= λ

(no sum over repeated indices).
These elements are new symmetries of equation (2.1), which cannot be expressed via

commutators of symmetries (2.6), (4.1).



440 J. NIEDERLE, A. NIKITIN

Operators (4.2), (4.3) form a basis of the 256-dimensional real invariance algebra of the
Dirac equation, defined over the field of real numbers. This algebra is characterized by
the following commutation relations[

Qkl,mn, Qk′l′,m′n′
]
=

−2[δmm′
(
gkk′Qll′,nn′ + gll′Qkk′,nn′ − gkl′Qlk′,nn′ − glk′Qkl′,nn′

)
+

δnn′
(
gkk′Qll′,mm′ + gll′Qkk′,mm′ − gkl′Qlk′,mm′ − glk′Qkl′,mm′

)
+

δmn′
(
gkk′Qll′,nm′ + gll′Qkk′,nm′ − gkl′Qlk′,nm′ − glk′Qkl′,nm′

)
+

δnm′
(
gkk′Qll′,mn′ + gll′Qkk′,mn′ − gkl′Qlk′,mn′ − glk′Qkl′,mn′

)
]+

gmnm′n′gf

(
gkk′Qll′,gf + gll′Qkk′,gf − gkl′Qlk′,gf − glk′Qkl′,gf

)
−

1
2 (δmm′δnn′ + δmn′δnm′)

(
gkk′Qll′,ss + gll′Qkk′,ss − gkl′Qlk′,ss − glk′Qkl′,ss

)

(4.4)

where m 6= m′, n 6= n′, gmnm′n′gf is the totally symmetric unit tensor whose nonzero
components correspond to noncoinciding values of all indices, and no sum over s, g, f .

For m = n ve have[
Qkl,nn, Qk′l′,m′n′

]
= −2

(
gkk′Qll′,m′n′ + gll′Qkk′,m′n′ − gkl′Qlk′,m′n′ − glk′Qkl′,m′n′

)
.(4.5)

Taking into account both the invariance algebra of the two-component Klein-Gordon
equation and equivalence of this equation to the Dirac one, it is possible to shaw that
relations (4.2), (4.4) present the maximally extended finite symmetry algebra for equation
(2.1).

Thus we found the most extended symmetry algebra for the Dirac equation, which in-
cludes non-Lie symmetries (2.6), discrete symmetries (4.1) and their combinations. Sym-
metries (4.2) form its 120-dimensional subalgebra and also satisfy relations (4.4), (4.5) for
the restricted set of values of indices defined in (4.3). Another its interesting subalgebra
is 56-dimensional one formed by the linear (i.e., without complex conjugation) operators
which are presented as follows:

{Qµν,λσ, Qµν,54, Q54,µν , Q54,54} , µ, ν, λ, σ = 0, 1, 2, 3. (4.6)

V. Commutative discrete symmetries

In order to describe all possible reductions of the Dirac for a charged particle interacting
with an external field we shall prove that operators (3.7). It is easy to see that the
four-component complex wave function of (3.9)

Ψ = column(Ψ1,Ψ2,Ψ3,Ψ4), Ψk = Ψ(1)
k + iΨ(2)

k , k = 1, 2, 3, 4 (5.1)

is equivalent to the eight–component real function

Ψ̃ = column
(
Ψ(1)

1 ,Ψ(2)
1 ,Ψ(1)

2 ,Ψ(2)
2 ,Ψ(1)

3 ,Ψ(2)
3 ,Ψ(1)

4 ,Ψ(2)
4

)
. (5.2)

In representation (5.2) the Dirac matrices (2.2) are extended to the 8× 8 real matrices

γ0 → γ̃0 =

(
0 I4
I4 0

)
, γa → γ̃a =

(
0 −σ̃a

σ̃a 0

)
, γ4 → γ̃4 =

(
I4 0
0 I4

)
,
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where I4 is the 4× 4 unit matrix,

σ̃1 =

(
0 I2
I2 0

)
, σ̃2 =

(
0 −iσ2

iσ2 0

)
, σ̃3 =

(
I2 0
0 −I2

)
. (5.3)

All symmetries (3.2), (3.4), (3.6) are then expressed via the 8×8 real matrices as follows

Γµ → Γ̃µ = γ̃4γ̃µθµ, Γ4 → Γ̃4 = γ̃4θ, Γ5 → Γ̃µ = γ̃5, Γ6 → Γ̃6 = γ̃6 (5.4)

where

γ̃5 =

(
0 −γ3

γ3 0

)
, γ̃6 =

(
0 −γ1

γ1 0

)
.

The set of 64 matrices{
γ̃m, γ̃mγ̃n, γ̃kγ̃mγ̃n, Î

}
, k, l,m,= 0, 1, ...6 (5.5)

forms a basis in the space of real matrices of dimension 8× 8, i.e., the basis of the algebra
gl(8, R). Relations (3.2), (3.4), (3.6), (5.4) establish the isomorphism of this algebra with
the algebra of discrete symmetries of the Dirac equation (3.7). Using relations (5.4) we
can represent these symmetries as operators with real matrix coefficients{

Γ̃m, Γ̃mΓ̃n, Γ̃kΓ̃mΓ̃n, Î
}
, k, l,m,= 0, 1, ...6. (5.6)

Diagonalizing various of operators (5.6) we can reduce the corresponding Dirac equation
(3.9) to uncoupled subsystems [8]. We note that only symmetric matrices are diagonaliz-
able over the field of real numbers. Set (5.6) includes the 36 symmetric operators:{

Γ̃α, Γ̃αΓ̃a, Γ̃αΓ̃βΓ̃a, Γ̃1Γ̃2Γ̃3, Î,
}
, a = 1, 2, 3, α, β = 0, 4, 5, 6. (5.7)

To describe all possible reductions of equation (3.9) is then equivalent to find all sets of
commuting operators (5.7). Unfortunately, these operators do not form a Lie algebra and,
thus, it is not possible to use standard algebraic methods for classifying these reductions.
To overcome this difficulty we multiply any element of (5.7) by î = Γ5Γ6 and obtain a
basis of algebra the sp(4, R) ⊂ gl(8, R):

{̂iΓ̃α, îΓ̃αΓ̃a, îΓ̃αΓ̃βΓ̃a, îΓ̃1Γ̃2Γ̃3, î}. (5.8)

Indeed, formula (5.8) defines 36 linearly independent real matrices whose products with
the skew symmetric matrix î, î2 = −1, are hermitian.

Taking into account that algebra sp(4, R) is of rank 3, we conclude that its commuting
functionally independent elements form doublets or triplets only. The same is true for set
(5.7), moreover, all its commuting subsets are given by the following formulae

{Γ̃α, Γ̃βΓ̃a}, {Γ̃αΓ̃a, Γ̃βΓ̃b}, {Γ̃σΓ̃αΓ̃b, Γ̃σΓ̃βΓ̃c}, {Γ̃µΓ̃νΓ̃a, Γ̃1Γ̃2Γ̃3}, (5.9)

{Γ̃µ, Γ̃νΓ̃a, Γ̃λΓ̃b}, {Γ̃6, Γ̃0Γ̃a, Γ̃4Γ̃b}, {Γ̃σΓ̃αΓ̃a, Γ̃σΓ̃βΓ̃b, Γ̃1Γ̃2Γ̃3} (5.10)

where α, β, σ = 0, 4, 5, 6, µ, ν, λ = 0, 4, 5, a, b, c = 1, 2, 3, α 6= β, β 6= σ, σ 6= α, µ 6= ν,
ν 6= λ, λ 6= µ, a 6= b, b 6= c, c 6= a.
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It is not difficult to calculate that there are 105 doublets of commuting operators (5.9)
and 48 triplets (5.10). To reduce these numbers we use the equivalence transformation

generated by U =
1√
2

(1 + Γ5Γ6) (such an operator commutes with arbitrary vector–

potential) and also delete the sets which include Γ5 (they are valid only for trivial zero
vector-potentials). As a result we obtain 51 doublets [8]

{Γ̃4, Γ̃µ}, {Γ̃0, Γ̃µΓ̃a} {Γ̃νΓ̃b, Γ̃µΓ̃a}, {Γ̃5Γ̃b, Γ̃6Γ̃a},

{Γ̃µΓ̃4Γ̃a, Γ̃1Γ̃2Γ̃3}, {ΓµΓνΓa,Γµ′Γν′Γa}, a > b
(5.11)

and 27 triplets:

{Γ̃ν , Γ̃µΓ̃a, Γ̃λΓ̃b}, λ 6= µ, µ 6= ν, ν 6= λ, a 6= b. (5.12)

VI. Reduction of the Dirac equation

Operators (5.7) and sets of operators (5.11), (5.12) can be used to reduce the Dirac equa-
tion (3.9), provided parities of Aµ are such that these operators are symmetries. Here we
present an example of such a reduction.

Let parities of the vector-potential A = (A0, A1, A2, A3) be described by the following
relations

A(θθ0x) = θθ0A(x), A(θ2x) = θ2A(x), A(θθ3x) = −θθ3A(x),

where θ, θ0, θ2, and θ3 are reflections defined by relations (3.1). Then equation (3.9) admits
three commuting symmetries

Γ0 = Cγ0θ̂0, Γ4Γ2 = γ4γ2θ̂2, Γ5Γ3 = Cγ3θθ̂3, (6.1)

where C, θ̂, θ̂0, θ̂2 and θ̂3 are operators defined in (3.3), (3.4).
Operators (6.1) form one of 27 triplets given by formula (5.12).
The commuting symmetries (6.1) can be simultaneously diagonalized. Indeed, using

the operator

W =
1
4

(1 + γ0C)
(
1 + γ1γ3θ̂θ̂1

) (
1 + γ0γ4Cθ̂1θ̂3

) (
1 + γ2θ̂2

)
,

W−1 =
1
4

(
1− γ2θ̂2

) (
1− γ0γ4Cθ̂1θ̂3

) (
1− γ1γ3θ̂θ̂1

)
(1− γ0C)

we obtain

WΓ0W
−1 = γ0γ3c, WΓ2Γ4W

−1 = −iγ4c, WΓ5Γ3W
−1 = c (6.2)

where c is the complex conjugation operator.
The transformed Dirac operator L′ = WLW−1 has to commute with operators (6.2):

[L′, c] =
[
L′, γ0γ3

]
=
[
L′, iγ4

]
= 0. (6.3)

It follows from (2.2), (6.3) that L′ is a direct sum of four orthogonal operators with
real coefficients. Thus the related equation

L′ψ′ = 0, ψ′ = Wψ (6.4)
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is decoupled to eight subsystems for real and imaginary parts of ψ′. Indeed, by direct
calculation we obtain

L′ = iγ4

(
θ̂0θ̂3

∂

∂x0
− ceθ̂θ̂0A0

)
− γ0γ3

(
cθ̂0θ̂3

∂

∂x1
− eθ̂θ̂0A1+

cθ̂2
∂

∂x2
+ eθ̂0θ̂1A3

)
+ cθ̂0θ̂1

∂

∂x2
+ eθ̂2A2

(6.5)

and equation (6.4) does decouple.
Explicit reductions which correspond to other sets of symmetries (5.12) can be found

in analogy with (6.1)-(6.5).

VII. Discussion

We have shown that the discrete symmetries of the Dirac equation generate very rich
algebraic structures, namely, the algebra gl(8, R) (in the case of linear and antilinear
symmetries (3.7)) and so(3, 3) (in the case of linear symmetries (3.8)). The important
for applications subalgebra sp(4, R) is generated by operators (5.8). Finally, algebra (3.7)
includes the subalgebra so(1, 2) formed by operators {Γ5,Γ6,Γ5Γ6}. The invariance of
the Dirac equation w.r.t. this subalgebra was discovered by Pauli, Gursey, Pursey and
Plebanski [10].

We have also demonstrated that the discrete symmetries discussed in paper [8] can be
unified with the non-Lie symmetries (2.6) [7] in frames of algebra (4.2), (4.3) which is the
maximal finite Lie algebra of symmetries of the Dirac equation, known until now.

The distinguishing feature of symmetries (4.2), (4.3) is that all of them are involutive.
This makes it possible to use them for reducing equation (3.9) (and of the Dirac-Pauli
equation). A class of such reductions to uncoupled subsystems was found and discussed
in paper [8]. Here this class is extended by including reductions to eight uncoupled sub-
systems.

One more perspective in the use of symmetries (4.2), (4.3) is connected with searching
for hidden supersymmetries of equation (3.9) [8]. We plan to present an extension of the
present results elsewhere.
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