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1 Introduction

Twenty five years ago a very constructive idea and concept of supersym-
metry (SUSY) was born in particle physics. This concept provided new and
effective ways for solution of fundamental problems of physics and caused
the generation of new branches of mathematics. But till now we do not have
a satisfactory answer for the question of principle: does this fine kind of
symmetry be realized in nature?

A positive answer for this question can be formulated on quantum me-
chanical level. Indeed, there exist such realistic physical problems which can
be described with good accuracy in frames of ordinary quantum mechan-
ics and generate exact SUSY. They are the Coulomb problem for the Dirac
particle, interaction of a spin 1/2 particle with a constant and homogeneous
magnetic field and others [1-3]. But at the best of my knowledge, the prob-
lems with an extended SUSY (i.e., generating more then two supercharges)
were not indicated yet.

In the following I will present some results of systematic search for ex-
tended SUSY in quantum mechanics. We will see that this kind of symmetry
is generated by a number of realistic problems.
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2 Dirac particle interacting with a magnetic

field

Consider the Dirac equation for a charged particle interacting with an exter-
nal (time-independent) magnetic field

LΨ ≡ (γµπµ −m) Ψ = 0 (1)

where π0 = p0 = i ∂
∂x0
, πa = pa − eAa(x), pa = − ∂

∂xa
.

We say a linear first order differential operator Q be a symmetry operator
(SO) for equation (1) provided [5]

[L,Q]Ψ = 0 (2)

where Ψ is a solution of equation (1).
For general methods of solution of equation (2) for arbitrary order SOs

refer to [5].
Let us search for special SOs for the Dirac equation, which satisfy super-

algebra the Witten superalgebra

{Qa, Qb} = 2δabH, [Qa, H] = 0, (3)

where [., .] and {., .} are commutator and anticommutator respectively, a, b =
1, 2, ....

It is convenient to transform (1) to the following equivalent form

(πµπ
µ −m2 − 2eS ·H) Φ̂ = 0, (1 + iγ5) Φ̂ = 0 (4)

where S = i
2
γ × γ, γ5 = γ0γ1γ2γ3, H = iπ × π. The corresponding

transformation has the form [5]

Φ̂ = V +Φ̂, Ψ = V −Φ̂, V ± = 1± (1 + iγ5)γµπ
µ/m. (5)

For the diagonal γ5, iγ5 = diag(1, 1,−1,−1), the function Φ̂ has two
non-zero components only which we denote by Φ. Moreover,

(p2
0 −m2) Φ = ĤΦ, Ĥ = π2 + eσ ·H. (6)
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Consider the eight-dimension group formed by the unity transformation
and reflections of spatial variables x = (x1, x2, x3):

r1x = (−x1, x2, x3), r2x = (x1,−x2, x3), r3x = (x1, x2,−x3), rx = −x
r12x = (−x1,−x2, x3), r23x = (x1,−x2,−x3), r31x = (−x1, x2,−x3).

(7)
We say that the vector-potential A(x) has the proper parity w.r.t. one

of reflections (7) if it satisfies one of the following relations correspondingly
(for fixed a, b)

A(rax) = raA(x), A(rabx) = rabA(x), A(rx) = −A(x). (8)

A(x) has unproper parities if the r.h.s. of (8) have the opposite signs.
If A(x) satisfies two or more relations (8) simultaneously then problem

(6) generates extended SUSY. Let us present the corresponding supercharges
explicitly: {

A(r1x) = r1A(x), A(r2x) = r2A(x),
Q1 = iR1σ · π, Q2 = iR2σ · π, Q3 = σ · π. (9a)

{
A(r12x) = r12A(x), A(r23x) = r23A(x),

Q1 = R23σ · π, Q2 = R31σ · π, Q3 = R12σ · π.
(9b)

{
A(r1x) = r1A(x), A(r2x) = r2A(x), A(r3x) = r3A(x),
Q1 = iR1σ · π, Q2 = iR2σ · π, Q3 = iR3σ · π, Q4 = σ · π;

(10)

Here Ra, Rab denote space reflection transformations:

RaΦ(x) = σaΦ(rax), RabΦ(x) = σaσbΦ(rabx).

For cases (9) we have N = 3 extended SUSY, while case (10) corresponds
to N = 4 extended SUSY.

Supposing that A(x) has unproper parities w.r.t. two or more reflections
(7), or that A(x) has combined parities (e.g., proper w.r.t. r1 and unproper
w.r.t. r2), we come to a wide class of problems admitting extended SUSY.
Here we consider only one example.

Let A has unproper parities w.r.t. the reflection of any component of x,

A(r1x) = −r1A(x), A(r2x) = −r2A(x), A(r3x) = −r3A(x),
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then equation (1) admits N = 4 SUSY generated by the following operators

Q1 = iσ2cR1σ · π, Q2 = iσ2cR2σ · π, Q3 = iσ2cR3σ · π, Q0 = σ · π,
(11)

where c is the complex conjugation operator.
Operators (11) satisfy the following relations

{Qµ, Qν}+ = 2gµνĤ,
[
Qµ, Ĥ

]
= 0

µ, ν = 0, 1, 2, 3, g00 = −g11 = −g22 = −g33 = 1; gµν = 0, µ 6= ν.
(12)

In contrast with (3), the structure constants of superalgebra (12) are
defined via components of the metric tensor gµν .

3 Dirac particle in the Coulomb field

The corresponding Dirac equation again has form (1), where, however,

π0 = p0 − α
x
, πa = pa, x =

√
x2

1 + x2
2 + x2

3. (13)

In analogy with (4)-(6) we come to the following two-component equation
:

(p2
0 −m2)φ =

(
p2 + iασ·x

x3 − α2

x 2
+ 2αp0

x

)
Φ.

Changing p0 by an eigenvalue E and choosing the new variables ρ = Ex
we obtain

m2

E2 Φ = ĤΦ, −Ĥ = p2 + iασ·x
x3 +

(
α
x
− 1

)2
. (14)

The ”Hamiltonian” Ĥ can be represented as a square of any of the following
supercharges

Q0 = iσ2c
(
σ · p− 1 + α

x

)
, Qa = σara

(
σ · p− 1 + α

x

)
, a = 1, 2, 3,

(15)
which satisfy relations (12). N = 2 SUSY for the problem (1), (12) was
established long time ago, refer, e.g., to [2,3]. We prove that this problem
generates N=4 extended SUSY.
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4 The Dirac equation with a scalar potential

Let us investigate supersymmetries of the following equation

(γµπµ −m− ϕ)ψ = 0 (16)

where ϕ is a scalar potential which we suppose to be time independent.
Equation (16) has many useful applications in particle and nuclear physics

[1,6]. The corresponding eigenvalue problem for the operator p0 = i ∂
∂x0

reduces to the following two-component equation (compare with (14))

p2
0Φ = ĤΦ, Ĥ = p2 − σ · E +m2 + 2mϕ+ ϕ2 (17)

where E = ∇ϕ.
Let ϕ(x has definite parities w.r.t. the reflections (7). Then equation

(16) is supersymmetric. More precisely, let ϕ(x) satisfies one of the following
relations for fixed a, b

ϕ(rax) = ϕ(x), (18)

ϕ(rx) = ϕ(x), (19)

ϕ(rabx) = ϕ(x), (20)

ϕ(rax) = ϕ(x), ϕ(rbx) = ϕ(x), (21)

or
ϕ(rax) = ϕ(x), a = 1, 2, 3; (22)

ϕ(rabx) = ϕ(x), ϕ(rbcx) = ϕ(x). (23)

Then equation (17) admits N = 2 SUSY for the cases (18), (19) and (20),
the related supercharges have the form (24), (25) and (26) respectively:

Q0 = iσ2c(iσ · π +m+ ϕ), Q1 = R12Q0 (24)

Q0 = iσ2c(iσ · π +m+ ϕ), Q1 = R1(iσ · π +m+ ϕ), (25)

Q0 = iσ2c(iσ · π +m+ ϕ), Q1 = R23Q0. (26)

For the cases (21), (22) and (23) equation (17) admits N = 4 SUSY
generated by the supercharges (27), (28) and (29) correspondingly:

Q0 = iσ2c(iσ · π +m+ ϕ), Q1 = R12Q0,
Q2 = iRaQ0, Q3 = RbQ0,

(27)

5



Q0 = iσ2c(iσ · π +m+ ϕ), Qa = Ra(iσ · π +m+ ϕ), a = 1, 2, 3, (28)

Q0 = iσ2c(iσ · π +m+ ϕ), Qa = RbcQ0, a = 1, 2, 3, , a 6= b, b 6= c.
(29)

Relations (18)-(23) are valid for an extended class of potentials including
ϕ being an arbitrary function of x. It is possible to show that for ϕ = C

x
the

problem (16) admits a SUSY formulation with a shape invariant potential,
and so the corresponding energy spectra can be calculated algebraically.

5 Conclusions and comments

Thus we present a number of relativistic physical problems generating ex-
tended SUSY. The very existence of such problems gives a proof that this
find kind of symmetry does be realized in nature. Moreover, the found ex-
tended SUSYs enables to make a priori predictions about specific four-fold
degeneration of the corresponding energy spectra.

An extended SUSY is generated also by another equations of quantum
mechanics. For example, all results of Section 2 can be reformulated for the
Schrődinger-Pauli equation.

Without any doubts, the number of problems admitting an extended
SUSY can be added by analysis of another types of external fields for the
Dirac equation. We plan to study such problems elthewhere.

In conclusion we notice that the relatively new kind of symmetry called
parasupersymmetry [7] also is admitted by realistic physical problems, which
are connected with a motion of spin-one particles in an external fields. A
short survey of such problems is present in [8].
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