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Abstract: We relate three different approaches to relativistic bosonic oscillators, and find
non-Lie constants of motion for them. We show that all these approaches admit hidden
parasupersymmetry and point out reducibility of the two-body Dirac oscillator.

Résumé: Nous comparons trois approches diffØrentes au problŁme de l�oscillateur bosonique
relativiste et trouvons des constantes du mouvement qui ne sont pas du type de Lie. Nous
montrons que les trois mØthodes admettent une parasupersymØtrie cachØe et soulignons que
l�oscillateur de Dirac à deux corps est rØductible.
[Traduit par la rØdaction]

1. Introduction

The problem of the quantum relativistic harmonic oscillator has root in the attempts to find relativistic
equations for interacting particles. The aim of such a question at the first quantized level is to look for
relativistic wave equations which, in the nonrelativistic limit, give rise to the quantum harmonic oscil-
lator.

A well-known example of such an equation is the Dirac oscillator [1]. Its modern treatment was
proposed by Moshinsky and Sczcepaniak [2]; it has stimulated a lot of investigations connected with
symmetries [3], supersymmetries (SUSY) [4, 5], possible generalizations to the cases of multiparticle
systems [6�8], and particles of higher spins [9�12]. In particular, let us mention that the spin-one
equations with oscillatorlike potentials [9] admit a relatively new kind of symmetry called parasu-
persymmetry (PSUSY) [13, 14].

The main goal of ref. 9 was to describe a consistent multidimensional physical model that generates
PSUSY. As we prove in the following, it happens that such a model was proposed earlier by Moshinsky
et al. [6] who were not considering symmetry aspects of their equations. In a relatively recent paper [11]
the so called Duffin�Kemmer�Petiau (DKP) oscillator was proposed. We find that it also admits hidden
PSUSY.

Of course it is interesting to compare the above mentioned models, which are selected by the same
type of symmetry. In the present paper we analyze connections between them and demonstrate that
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(i) the two-body Dirac oscillator [6] is reducible and generates equations of motion for the pararela-
tivistic oscillators [9];

(ii) the eigenvalue problems for the pararelativistic oscillator and DKP oscillator [11] are connected by
the unitary transformation;

(iii) the pararelativistic oscillator is equivalent to the DKP oscillator supplemented by the additional
constraint;

(iv) all the above-mentioned equations admit a common non-Lie constant of motion;
(v) these equations admit hidden PSUSY.

2. Bosonic oscillators

The two different possibilities to generalize the Dirac oscillator to the cases of spin-zero and spin-one
particles were used in refs. 9 and 11. We start with the DKP oscillator proposed recently in ref. 11. Using

the Heaviside units h = c = 1 and the notations of paper [9] we represent the corresponding equations in
the form

Lψ ≡ 

β0 p0 − βa(pa − iωηxa) − m


ψ = 0 (1)

where p0 = i
∂

∂x0

; pa = i
∂

∂xa

; η = 2β0
2 − 1; a = 1, 2, 3; β0 and βa are 5 × 5 or 10 × 10 DKP matrices

satisfying the algebra

βµβνβλ + βλβνβµ = gµνβλ + gνλβµ, G = {gµν} = diag (1, −1, −1, −1) (2)

Equation (1) includes a specific interaction term linear in x. Setting ω = 0, we come to the free KDP
equation in the covariant formulation [15]. Moreover, the case of 5 × 5 matrices corresponds to scalar
(spin-zero) particles while vector (spin-one) particles are described by (1) with 10 × 10 matrices.

The other (Hamiltonian) formulation of the DKP equation was used in the earlier paper [9] where the
following pararelativistic oscillator was proposed

L1ψ ≡ 

i

∂
∂x0

− H

ψ = 0, H = 


β0, βa



pa − iωηxa

+ β0m (3a)

L2ψ ≡ (Hβ0 − m)ψ = 0 (3b)

Comparing these formulations we recognize that for the spin-zero case (1) is equivalent to system

(3). Indeed, multiplying (3a) from the left by β0 and adding the result to (3b) we come to (1). On the

other hand, by multiplying (1) from the left by (1 − β0
2) and








1 − βa

(pa − iηωxa)
m




β0 −

(1 − β0
2)p0

m





we come to (3b) and (3a) correspondingly. In other words, (1) is a differential consequence of system
(3), and system (3) is a differential consequence of (1).

For the case of vector particles (1) again is a differential consequence of the system (3) (this statement
can be verified in analogy with the spin-zero case), and so any solution of system (3) satisfies (1). But
now system (3) is not a consequence of (1), since it includes an implicit condition that is absent in (1)
(this fact is proved in the following). In other words, there exist solutions of (1) that do not satisfy (3)
and so these equations are not equivalent.

To understand the difference between (1) and (3) in the case of 10 × 10 β-matrices we consider the
compatibility condition for system (3)
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L1, L2

ψ = 0 (4)

Equation (4) is a differential consequence of (3). Evaluating the commutator we obtain



L1, L2

= − β0b ⋅ pL2 − b ⋅ pβ0b ⋅ p, p = p − iωηx b ⋅ p = βaπa

thus, in accordance with (3b), the condition (4) can be reduced to the form

L3ψ ≡ b ⋅ pβ0b ⋅ pψ ≡ − 2

1 − β0

2




β5, b


⋅ Lψ = 0 (5)

where

β5 = i

4!
eµνρσ βµβνβρβσ, L = x × p

Thus the compatibility condition for system (3) leads to the nontrivial constraint (5), which is absent in
the approach based on the single equation (1). In other words, system (3) is not equivalent to (1) but can
be reduced to the symmetrical form (1) supplemented by the additional condition (5).

It is not difficult to verify that condition (5) is compatible with (3), i.e., commutators of operators L1,
L2, and L3 reduce to linear combination of these operators. In other words, relation (4) is the necessary
and sufficient condition for compatibility of the system (3).

Relation (5) admits a clear physical interpretation. To formulate it we notice that both (1) and (3),
admit the hidden constant of motion

Q = η
2(S ⋅ J)2 − 2S ⋅ J − J 2

 + J2 (6)

(where J = x × p + ib × b) whose eigenvalues are q = 0 or 2j(j + 1), j = 0,1,... [16]. We denote the

corresponding eigenvectors by ψq. Indeed, Q commutes with L, L1, and L2, so its eigenvalues are good
quantum numbers that can be used to label solutions of (1) or (3). Moreover, if we define parity states

in accordance with ref. 11, then the eigenvalue q = 0 corresponds to the parity (�1) j, and q = 2j(j + 1)
corresponds to the parity �(�1) j.

Inasmuch as L3
2 ≡ − 2


1 − β0

2

Q, condition (5) implies that



1 − β0

2


Qψ = 0 (7)

For the eigenvectors ψq=0 this condition is satisfied automatically, but for ψ2j(j + 1) (3) and (7) have
only trivial solutions. Thus, condition (5) suppresses eigenvectors of Q corresponding to nonzero eigen-
values. In other words, system (3) admits solutions with the definite (�natural� [11]) parities only, while
(1) admits solutions with both types of parities.

3. The two-body Dirac oscillator

Let us investigate connections of (1) and (3) with the two-body Dirac oscillator [6�8] that we write in
the form

Hψ = p0ψ, H = 1
√2

(a1 − a2) (p − ixωB) + m(β1 + β2) (8)

where {a1, β1}and {a2, β2}are commuting sets of 16 × 16 Dirac matrices [6]
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a1 = 



0
s1

s1

0




#




I

0

0

I





, a2 =




I

0

0

I





#




0
s2

s2

0




β1 = 



I

0
0
−I





# 


I
0

0
I




, β2 = 


I
0

0
I




#




I

0
0
−I





(9)

and B = β1 β2.

For ω = 1 (8) is reduced to equation (4.1) of ref. 6.

It happens that (1) and (3) are closely related to (8). Indeed, let us denote

αa
1 = γ0

(1)γa
(1), αa

2 = γ0
(2)γa

(2), β1 = γ0
(1), β2 = γ0

(2), βµ = 1
2



γµ

(1) + γµ
(2)


, µ = 0, 1, 2, 3 (10)

where {γµ
(1)}and {γµ

(2)}are commuting sets of Dirac matrices, satisfying the relations

γµ
(i) γν

(i) + γν
(i) γµ

(i) = 2gµν, 

γµ

(1), γν
(2)


= 0, i = 1, 2 (11)

Then, making the similarity transformation ψ F ψ′ = γ0
(2) ψ, H F H′ = γ0

(2) Hγ0
(2), we reduce (8) to the

form

p0 ψ′ = H′ψ′, H′ = √2 

β̂0, β̂a



pa − iη̂ωxa

+ 2mβ̂0, η̂ = 2β̂0
2 − 1 (12)

In accordance with (11) the matrices βµ (10) satisfy the DKP algebra (2). Moreover, these matrices

can be reduced to a direct sum of 10 × 10, 5 × 5, and 1 × 1 matrices realizing irreducible representations

of the Kemmer algebra (2) (moreover, the one-dimensional representation is trivial and is realized by

zero elements) [15]. Indeed, starting with the realization (9) and making the transformation

βµ F β′µ = UβµU� where

U = (1 − i) 

(e1, 1 + e1, 13 + e2, 2 + e2, 14 + e3, 3 + e3, 15 − e10, 8 + e10, 12 − e11, 4 − e11, 16 + e13, 15



− e13, 9 + e14, 6 − e14, 10 + e15, 7 − e15, 11) / 2 


+ (1 + i) 


(− e4, 5 − e4, 9 − e5, 6 − e5, 10 − e6, 7

− e6, 11 − e7, 1 + e7, 13 − e8, 2 + e8, 14 − e9, 3



+ e9, 15 − e12, 4 + e12, 16 + e16, 8 + e16, 12) / 2


(13)

we obtain

β′ =










βµ
(10)

⋅
⋅

⋅
βµ

(5)

⋅

⋅
⋅

0










(14)

where βµ
(10) and βµ

(5) are the 10 × 10 and 5 × 5 KDP matrices

β0
(10) = i(e1, 7 + e2, 8 + e3, 9 − e7, 1 − e8, 2 − e9, 3)

β1
(10) = −i(e1, 10 − e5, 9 + e6, 8 + e8, 6 − e9, 5 + e10, 1)

β2
(10) = −i(e2, 10 + e4, 9 − e6, 7 − e7, 6 + e9, 4 + e10, 2)

β3
(10) = −i(e3, 10 − e4, 8 + e5, 7 + e7, 5 − e8, 4 + e10, 3)

β0
(5) = −i(e1, 2 − e2, 1), β1

(5) = i(e1, 3 + e3, 1), β2
(5) = −i(e1, 4 + e4, 1), β3

(5) = i(e1, 5 + e5, 1)
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ekl denotes the unit matrix elements placed on the kth row and lth column and the dots denote zero
matrices. In this way system (12) is reduced to uncoupled subsystems of ten equations for spin-one
states, five equations for spin-zero states, and one equation with the trivial (zero) Hamiltonian.

We conclude from (3a), (12), and (14) that up to the constant factors √2 and 2 (which can be reduced
to unities by changing of scaling), the two-body Dirac oscillator [6, 7] is reduced to a direct sum of the
equations of motion (3a) for the DKP oscillators [9, 10]. Nevertheless, the DKP oscillator models
include the additional condition (3b) and so are not equivalent to reduced versions of (12).

4. Connections between energy spectra

Now it is interesting to compare the mass spectra generated by (12) and the energy spectra of the DKP
oscillator. The corresponding eigenvalue problems have the form

H′ψ′ = µψ′ (15)

where H′ is the operator given in (12), and

β0Eψ = 

βa(pa − iωηxa) + m


ψ (16)

It was demonstrated in ref. 6 that the eigenvalues µ satisfy the relations

µ2 = 0, s = 0, 1 (17)

µ2 = 2M 2 + 4Nω, s = 0 (18a)

µ 2 = 2M 2 + 4 (N + 1) ω, s = 1 (18b)

or

µ2
µ2 − 4(N + 1)ω − 2M 2



µ2 − 4(N + 2)ω − 2M 2

 = 32M 2ω2j(j + 1), s = 1 (18c)

Here M = √2m, N is the main quantum number, N = 2n + j, j = 0, 1, ..., n = 0, 1, ..., and the relations
(18b) and (18c) correspond to the parities (�1) j and �(�1) j.

The eigenvalues E for (16) have the form (refer to equations (21), (31), (37) in ref. 11)

E2 = m2 + 2Nω, s = 0 (19a)

E2 = m2 + 2(N + 1)ω, s = 1 (19b)

or are roots of the algebraic equation

m2(E2 − m2 − 2(N + 1)ω) (E2 − m2 − 2(N + 2)ω) = 4E2ω2J(J + 1) (19c)

Moreover, (19b) and (19c) correspond to the parities (�1) j and�(�1) j, respectively.
In accordance with the results given in Sect. 2 the eigenvalue problem for the pararelativistic oscil-

lator (3) can be represented in the form (16) but the corresponding solutions have to be constrained by
the additional condition (7). This condition nullifies solutions corresponding to the parities �(�1)j and
so the admissible eigenvalues E has the form (19a) and (19b).3

Formulae (19) reduce to the form (18) if we denote

3 Nonrelativistic energy eigenvalues for pararelativistic oscillator (3) found in ref. 10 (refer to formulae (3.31a)
and (3.31b) therein) correspond to solutions that do not satisfy the compatibility condition (5) and so are
forbidden.
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E = iM, m = −iµ / √2 (20)

This observation is in accordance with the fact that the change (20) together with the similarity
transformation

ψ F ψ′ = exp(iβ0π / 2)ψ, LF L′ = exp(iβ0π / 2)Lexp(−iβ0π / 2) (21)

reduces (16) to the form (15). This transformation is nothing but a transition to the new realization of

β-matrices

β′0 = β0, β′a = i[β0, βa]

which also satisfy the DKP algebra (2).

5. Hidden PSUSY

All the above equations have a specific feature that is called hidden PSUSY [9]. Indeed, the Hamiltoni-
ans (3a), (12), and the operator L of (1) have the following structure

H = Q1 + β0m, Q1 = 

β0, βa



pa − iωηxa

(22)

H = √2 Q̂1 + 2β0m, Q̂1 = 

β̂0, β̂a



pa − iωηxa

(23)

L = β0p0 − iQ1
~ − m, Q1

~ = −iβa
pa − iωηxa

(24)

where Q1, Q1
^ , and Q1

~ are parasupercharges, i.e., operators that satisfy the following double commutation

relations [14]



[Qi, Qj], Qk

= 4

δjkQi − δikQj

HPSS, [HPSS,Qi] = 0, i, j, k = 1, 2 (25)

For case (22) the second parasupercharge Q2 and the corresponding (parasuper)Hamiltonian HPSS

have the form

Q2 = i

2


η, Q1

= i

β0βa + βaβ0



pa − iωηxa

, HPSS = p2 + ω2 x2 − 

η − 2 + 2β5

2

ω (26)

The operators Q2 and HPSS related to (23) can be obtained from (26) by changing βa F β̂a and
β5 F β̂5.

The parasupercharge Q1 (24) also satisfies relations (25) together with

Q2
~ = iηQ1

~ , HPSS
~ = p2 + ω2 x2 + 


η − 2 + 2(β0

2 − β5
2)2


ω

The representation analogous to (22) has already been recognized for the Dirac Hamiltonian (either
for a free [17] or for an interacting [18] particle). Such a representation is useful for searching for
parasupersymmetries of the approximate nonrelativistic Hamiltonians and for constructing of the
Foldy�Wouthuysen transformation [9, 10].

6. Discussion

Thus we demonstrated that the two-body Dirac oscillator can be reduced to the direct sum of (3a), and
that the pararelativistic oscillator is equivalent to the DKP oscillator supplemented by the subsidiary
condition (5). The related eigenvalue problems are connected by relations (20) and (21), ensuring the
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eigenvalues for the pararelativistic oscillator are given in (19a) and (19b).
The absence of the subsidiary condition (3b) deleting nonphysical solutions and appearence of the

trivial Hamiltonian (refer to (12) and (14)) is the source of nonphysical eigenvalues (17). Let us recall
that the problems connected with zero-energy solutions for two-particle equations were discussed else-
where [19].

In accordance with the above, it is interesting to formulate reasonable constraints for the two-body
oscillator that avoid the nonphysical solutions. Such constraints can be chosen in the form of relation
(3b) (where H is the Hamiltonian (8), β0 = β1 + β2, β1 and β2 are matrices defined in (9)), supplemented
by the following condition:



1 − 


1 + γµ

(1)γ(2)µ




1 + 2γµ

(1)γ(2)µ


+ 

(3 + 2γµ

(1)γ(2)µ

γµ

(1)γ(2)µ

ψ = 0 (27)

where γ-matrices are defined in accordance with (10).

The operator in the square brackets is the projector to the subspace corresponding to the trivial (zero)
β-matrices, refer to (14). The system of equations (8), (3b), and (27) is compatible and does not admit
nonphysical solutions with E = 0. Refer to ref. 20 for more about constraints for two-particle equations.

We notice that a new version of the two-body Dirac oscillator proposed in ref. 8 (refer to equation
(27) therein) also reduces to noncoupled subsystems of 10, 5, and 1 equations in the realization (10),
(14).

All of (1), (3), and (12) have an evident symmetry under the rotation group O(3). Moreover, they are
invariant with respect to the parity transformation

ψ (x0, x) F η ψ (x0, −x)

where η is the same matrix as used in (1), (3), and (12). An effective algorithm for construction of hidden
constants of motion for such equations was proposed in ref. 16. Using this algorithm we found the
symmetry (6).

The next note is connected with the hidden parasupersymmetries of the equations considered. Their
presence for the pararelativistic oscillator was indicated in refs. 9 and 10. The above equivalence
relations enable us to reformulate the results given in refs. 9 and 10 for the DKP and two-body oscilla-
tors.

Finally we point out that, in contrast with the Dirac oscillator [1], the equations considered above
cannot be represented in a covariant form with an anomalous (Pauli) interaction.4 Nevertheless, the
covariant equations



βµpµ − m + ωgSµνFµν


ψ = 0

where

Sµν = i 

βµ, βν


, g = a + bβ5

2, Fµν = nµxν − nνxµ

a, b, and nµ are numerical parameters. The case n1 = n2 = n3 = 0 also generates oscillatorlike spectra and
so presents alternative possibilities in the generalization of the Dirac oscillator to the cases of scalar or
vector particles. We will analyse these possibilities elsewhere.

4 The representation proposed in ref. 10 (refer to equations (3a) and (3b) therein) for the pararelativistic
oscillator is not covariant inasmuch as the corresponding Pauli term is not a Lorentz scalar but is a zero
component of a four vector.
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