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It is well known that supersymmetry has great perspectives in many branches
of physics and mathematics. But till now the following fundamental question is not
answered: if this fine kind of symmetry does be realized in Nature.

With some stipulations, a positive answer for this question was obtained on
quantum mechanical level. Namely, it was recognized, that a number of realistic
quantum mechanical problems generate exact SUSY, refer, e.g. to survey [1]. But
at my knowledge, any problem with extended SUSY was not indicated yet.

In this topic we present a number of quantum mechanical problems generating
extended SUSY and the relatively new kind of symmetry called parasupersymmetry
(PSUSY) [2,3].

1. Let us start with the ordinary SUSY quantum mechanics whose equations of
motion

HΨ = EΨ (1)

admit two symmetry operators (supercharges) Q1, Q2, moreover,

{Qa, Qb}+ = 2δabH, [Qa, H] = 0, a, b = 1, 2. (2)

The standard generalization of Witten superalgebra (2) is

Q1 = 1√
2

(σ1p+ σ2W ) , Q2 = 1√
2

(σ2p− σ1W ) (3)

where p = −i ∂
∂x

, σ1, σ2 are the Pauli matrices, W = W (x) is a superpotential.
Proposition 1. Let W is an odd function, i.e., W (−x) = −W (x). Then the

superalgebra (2), (3) is reducible.
Proof. For odd superpotentials there exist the invariant operator I commuting

with Qa and H
I = σ3R (4)

where R is the space reflection operator: RΨ(x) = Ψ(−x). Transforming I to the
diagonal numeric matrix

I → I ′ = UIU † = σ3, U = 1
2
(1− iσ2) (1 + iσ2R) .
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we find immediately that Q′
a = UQaU

† and H ′ = UHU † are reduced to direct sums
of two orthogonal operators.

Proposition 2. Let W is an even function, i.e., W (−x) = W (x). Then the
superalgebra (2), (3) can be extended by including the third supercharge

Q3 = iσ1RQ1. (5)

Proof. Using the relations [σ1R,Q2] = {σ1R,Q1} = 0; (σ1R)2 = 1 one con-
vinced himself that operators (3), (5) satisfy algebra (2) for a = 1, 2, 3.

These propositions show a way for searching for extended SUSY in quantum
mechanics. Namely, we can hope to find extended SUSY if the investigated problem
is characterized by potentials having definite parities.

2. Let us consider the Dirac particle interacting with a time independent external
magnetic field. The corresponding equation of motion has the form

Lψ ≡ (γµπ
µ −m)ψ = 0, (6)

where π0 = p0 = i ∂
∂x0
, πa = pa − eAa(x), γµ are Dirac matrices.

Equation (6) is equivalent to the second-order equation for two- component func-
tion

(πµπ
µ −m2 + 2eS ·H) Φ̂ = 0,

(1− γ5) Φ̂ = 0
(7)

where S = i
2
γ × γ, γ5 = γ0γ1γ2γ3, H = iπ × π.

Relations between ψ and Φ̂ have the form

Φ̂ = V ψ, ψ = V −1P̂ hi, V = 1 + (1− γ5) γµπ
µ/m, V −1 = V (−πµ). (8)

For γ5 diagonal function Φ̂ has two non-zero components only which we denote
by Φ. Moreover, Φ satisfies the following equation

(p2
0 −m2) Φ = ĤΦ,

Ĥ = π2 − eσ ·H, σ = (σ1, σ2, σ3) .
(9)

Two-component equation (9) is much more convenient for searching of extended
SUSY than Dirac equation (6). On the other hand using (8) we can establish one-
to-one correspondence between symmetries of equations (9) and (6).

For any vector-potential A there exist the following supercharge for (9):

Q = σ · π, Q2 = Ĥ. (10)

In other words, equation (9) (and the corresponding equation (6)) always generate
N = 1 SUSY.
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To find additional supercharges we have to impose some restrictions for the
vector-potential. To formulate them let us consider the eight dimensional group
generated by reflections of spatial variables:

r1x = (−x1, x2, x3) , r2x = (x1,−x2, x3) , r3x = (x1, x2,−x3) ,
r12x = (−x1,−x2, x3) , r31x = (−x1, x2,−x3) , r23x = (x1,−x2,−x3) ,

rx = −x, Ix = x.
(11)

We say A(x) is an even function in respect with one of transformations (11) if
one of the following relations is satisfied:

A(rax) = raA(x), A(rabx) = rabA(x), A(rx) = rA(x) = −A(x). (12)

A is add if the r.h.s. of (12) have the opposite signs.
If the vector-potential satisfies two or more relations (12) simultaneously, we

come to the problem (9) with extended SUSY. Let

A(r1x) = r1A(x) and A(r2x) = r2A(x), (13)

then equation (9) admits three supercharges:

Q1 = iR1σ · π, Q2 = iR2σ · π, Q3 = σ · π. (14)

Here and in the following R denote space reflection transformations for spinors Φ:

RaΦ(x) = σaΦ(rax), RabΦ(x) = σaσbΦ(rabx).

Let us present more examples of extended SUSY:{
A(r12x) = r12A(x), A(r31x) = r31A(x),
Q1 = iR23σ · π, Q2 = iR31σ · π, Q3 = iR12σ · π;

(15)

{
A(r1x) = r1A(x), A(r2x) = r2A(x), A(r3x) = r3A(x),
Q1 = iR1σ · π, Q2 = iR2σ · π, Q3 = iR3σ · π, Q4 = σ · π;

(16)

{
A(r1x) = −r1A(x), A(r2x) = −r2A(x), A(r3x) = −r3A(x),
Q1 = iσ2cR1σ · π, Q2 = iσ2cR2σ · π, Q3 = iσ2cR3σ · π, Q0 = σ · π, (17)

where c denotes the antilinear operator of complex conjugation: cΦ(x) = Φ∗(x).
We notice that in the cases (13), (15) and (16), (17) we have N = 3 and N = 4

extended SUSY correspondingly. Moreover, for the case of odd vector-potentials
(refer to (17)) the corresponding supercharges generate the following superalgebra

{Qa, Qb}+ = 2gabĤ,
[
Qa, Ĥ

]
= 0

a, b = 0, 1, 2, 3, g00 = −g11 = −g22 = −g33 = 1; gab = 0, a 6= b.
(18)
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which is characterized by the metric tensor gab. We notice that it is impossible to
reduce (18) to the form (2) by changing normalization constants for supercharges.

Imposing different combinations of conditions (12) (and the corresponding con-
ditions for odd vector-potentials) we can extend the list of problems (13)-(17) gen-
erating extended SUSY. It is necessary to note that extended SUSY appears also
in some problems which do not belong to the class (6). We can prove its existence
for the Dirac oscillator [4], Dirac equation with a scalar potentials and many other
problems.

3. The relatively new kind of symmetry called parasupersymmetry (PSUSY)
is characterized by threelinear anticommutation [2] (or double commutation [3])
relations for parasupercharges{

Qa {Qb, Qc} − δbcĤQa

}
+ (terms with permutations of a, b, c) = 0;[

Qa, Ĥ
]

= 0
(19)

Of course it is interesting to discuss possible realizations of this fine symmetry in
quantum mechanical problems. Here we present an example of problem with exact
extended PSUSY.

Consider the Kemmer-Duffin equation with ”correct” [5] anomalous interaction[
βµπµ −m− (1− β2

5)
e2

2m

(
SµνF

µν + 1
4m2FλσF

λσ
)]

Ψ = 0. (20)

where βµ are 10×10 matrices satisfying the Kemmer algebra, Fµν = i[πµ, πν ].
In analogy with (6)-(14) it is possible to show that if the vector- potential Aµ cor-

responds to the ”uniform” magnetic field, i.e., A0 = A3 = 0, A1 = A1(x1, x2), A2 =
A2(x1, x2), and A1, A2 satisfy relations (13), equation (20) admits extended N = 4
PSUSY.

Thus we demonstrated that extended SUSY and PSUSY are generated by many
of quantum mechanical problems. These symmetries do be realized in Nature.

References

[1] F.Cooper, A.Khare, and U. Sukthatme, Phys.Rep. 251, 267 (1995).

[2] V.A.Rubakov and V.P. Spiridonov, Mod. Phys. Lett. A 3, 1337 (1988).

[3] J.Beckers and N.Debergh, Nucl. Phys. B 340, 767 (1990).

[4] D.It, K.Mori, and E.Carreri, Nuovo Cim. A 51, 119 (1967).

[5] J.Beckers, N.Debergh, and A.G.Nikitin, Fortschr. Phys. 43, 67, 81 (1995).

4


