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A new approach for the analysis of partial differential equations is developed which
is characterized by a simultaneous use of higher and conditional symmetries.
Higher symmetries of the Schiinger equation with an arbitrary potential are
investigated. Nonlinear determining equations for potentials are solved using re-
ductions to Weierstrass, Painlewand Riccati forms. Algebraic properties of higher
order symmetry operators are analyzed. Combinations of higher and conditional
symmetries are used to generate families of exact solutions of linear and nonlinear
Schralinger equations. €1997 American Institute of Physics.
[S0022-248807)03110-1

I. INTRODUCTION

Higher order symmetry operatofSOg have many important applications in modern math-
ematical physics. These operators correspond to hidden symmetries of partial differential equa-
tions, including Lie—Baklund symmetried;? as well as super- and parasupersymmeftiés.

Higher order SOs can be used to construct new conservation laws which cannot be found in
the classical Lie approactf These operators are applied to separate varidd\ésteover, one
should use SOs whose order is higher than the order of the equation whose variables are
separated?

In the present paper we investigate higher order SOs of the @olger equation, which are
“non-Lie symmetries.’®®!! The simplest non-Lie symmetries are considered in detail and all
related SOs are explicitly calculated. The potentials admitting these symmetries are found as
solutions of the corresponding nonlinear compatibility conditions. It is shown that the higher order
SOs extend the class of potentials which were previously obtained in the Lie symmetry analysis.

Algebraic properties of higher order SOs are investigated and used to construct exact solutions
of the linear and related nonlinear ScHimger equations. We propose a new method to generate
extended families of exact solutions by using both the conditional symnfetfié¢éand higher
order SOs.

The Schrdinger equation with a time-independent potentiakV(x) is studied mainly.
Time-dependent potentials=V(t,x) are discussed briefly in Sec. VI. By this, we recover the old
result® connected with the Lax representation for the Boussinesq equation, and generate some
other nonlinear equations admitting this representation.

The distinguishing feature of our approach is that coefficients of symmetry operators and the
corresponding potentials are defined as solutions of differential equations which can easily be
generalized to the case of multidimensional Sdimger equation contrary to the method of
inverse scattering problem.

This paper continue@nd in some sense completesir works®~8where non-Lie symmetries
of the Schrdinger equation were considered. A detailed analysis of higher symmetries of multi-
dimensional Schidinger equations will be a subject of our subsequent paper.

dDeceased.
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Il. SYMMETRY OPERATORS OF THE SCHRODINGER EQUATION

Let us formulate the concept of higher order SO for the Sdinger equation

LW (t,x)=0, L=id—H,
(2.1

H=3(—d;+U(x)) =l g=l
== FUX), = =

In every sense of the word, a SO of equati@l) is any (linear, nonlinear, differential,
integro-differential, etg.operatorQ transforming solutions into solutions. Restricting ourselves to
linear differential operators of finite orderwe represen@ in the form

Q:igo (hi-p)i, (hi-p)i={(hi-p)i-1.p}, (hi-p)o=h;, (2.2

whereh; are unknown functions oft(x), {A,B}=AB+BA, p=—id,.

Operator(2.2) includes no derivatives w.r.t.which can be expressed §p2+U) on the set
of solutions of Eq.(2.1).

Definition® Operator(2.2) is a SO of orden of equation(2.1) if

[Q,L]=0. 2.3

Remark:The more general invariance conditidiQ,L]= agl, whereaq is a linear operator,
reduces to relatioi2.3) if L andQ are operators defined if2.1), (2.2). Terms proportional to
i(o9/dt) cannot appear as a result of commutatiorQo&éndL; hence, without loss of generality,
an=0.

© Forn=1,2 SOs(2.2) reduce to differential operators of the first order and can be interpreted
as generators of the invariance group of the equation in questiom>Brthese operatorsvhich
we call higher order SPcorrespond to non-Lfe"t symmetries.

The Lie symmetries of equatiof2.1) were described in Refs. 19-21 The general form of

potentials admitting nontriviali.e., distinct from time displacementsymmetries is as follows:

as

U=ag+ax+aX’+ ——,
0 1 2 (X+a4)2

(2.9

whereag,...,a4 are arbitrary constants. No other potentials admitting local invariance groups
exist.

Group properties of equatiof2.1) with potentials(2.4) were used to solve the equation
exactly, to establish connections between equations with different potentials, to separate variables,
etc® Unfortunately, all these applications are valid for a very restricted class of potentials given by
formula (2.4).

The class of admissible potentials can be essentially extended if we require that e¢Ridjion
admits higher order SJ4.The problem of describing such potentiésd the corresponding SDs
reduces to solving operator equatiai2s?), (2.3). Evaluating the commutators and equating the
coefficients for linearly independent differentials we arrive at the following system of determining
equationswhich is valid forarbitrary n):®

J. Math. Phys., Vol. 38, No. 11, November 1997



5946 W. |. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions

9h,=0, ah,_1+23h,=0,

2(n—m+ 2+ 2k)!
(2k+1)!I(n—m+1)!

Ixhn-mt20thy 1= E(n 2 /2( 1)k hnfm+2k+2(9§k+1UZO,
(2.9
dtho+ 3 ("(— 1)P* thy, 4 92P T TU=0,

wherem=2,3,...n, and[y] is the entire part of.

Formulas(2.5 define a system of nonlinear equationshinand U. For n=2 the general
solution forU is given by formula(2.4).

Let us consider the case= 3, which corresponds to the simplest non-Lie symmetry, in more
detail. The corresponding systei&5) reduces to

h4=0, hj+2hy=0, 2h,+h]—6hyU’ =0, (2.69
2h,+h)—4h,U’ =0, h'o—h,U’+hU"”=0, (2.6b

where the dots and primes denote derivatives W.randx, respectively.
Excludinghg from (2.6b and using(2.68 we arrive at the following equation:

F(a,b,c;U,x)=aU"" — (2ax2+6aU+c— 2bx)U”— 6(2ax+aU’ —b)U’
— 123U - 2(2d%ax?— 2bx+¢)=0, (2.7)

wherea,b,c are arbitrary functions of.
Equation(2.7) is nothing but the compatibility condition for syste(®2.6). If the potentialU
satisfies(2.7) then the corresponding coefficients of the SO have the form

h3:a, h2=—2é.X+b, h1=gl+6aU,

(2.9
4 . .. ) ) .
h0=—§ ax3+2bx?—2cx—4ap+4(b—2ax)U+d,
where
g,=28x2—2bx+c, ¢=JUdx, u=¢', d=d(t). (2.9

IIl. EQUATIONS FOR POTENTIAL

Equation(2.7) was obtained earliéf (see Ref. 22and, moreover, particular solutions for
were found'’ Here, we analyze this equation in detail.

First of all, let us reduce the order of equati@?). Integrating it twice w.r.tx and choosing
the new dependent variabledefined in(2.9) we obtain

ale”—3(¢")?]~(g10) = ttaxt— 2bx3+Ex2+ dx+e. (3.1

Using the fact thatp depends ox only while a,b,c,d, e are functions of, it is possible to
separate variables ¥8.1). Indeed, dividing any term df3.1) by a# 0, differentiating w.r.tt and
integrating overx we obtain the following consequence:

g.a—g;a 1/1

1. 1 1
e NET- dpaxd— = bx +—cx2+ dx?+ex+f (3.2

3
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Consider equatiofi3.2) separately in two following cases:
g,a—g.a#0, (3.39
gla—glézo. (33b)

Let condition(3.3a be valid. Then dividing the I.h.s. and r.h.s.(8t2) by ,(g,/a) we come
to the following general expression far

ay Bix+ B2
+ 2 y
X+as X°+gbsx+ B,

0= X3+ aX?+ a;x+ ap= (3.9

whereqy,...,as, B1,...,B4 are constants.

It is possible to verify by a straightforward but cumbersome calculation that relegidnis
compatible with(3.1) only for 8;= 8,=0. We will not analyze solution€3.4) inasmuch as they
correspond to potentiai®.4) and to SOs which are products of the usual Lie symmet?ies.

If condition (3.33 is valid, we obtain from equatio(8.2)

a=akq, b=k2a, c=ksa, (3.9
wherek,,k,,k; are arbitrary constants. The corresponding equatol) reduces to
@"=3(¢")?—(G"¢)' =2k;G+Kyx+Ks, (3.5
where
G= 2k x*— Hox3+ 2kax?,  G"=g;=2k;x?—2k,x+Ks, (3.6

k, andkg are constants.
Let us prove that, up to equivalence, equat{8rb) can be reduced to one of the following
forms:

U”—3U%+3w,;=0, (3.8a
U”—3U?—8w,x=0, (3.8b

(U"=3U?)’ —2w3(xU’ +2U)=0, (3.89
@”’—3(¢')2—2w4(X2¢)’=%wﬁx4+w5, U=¢’, (3.80

wherew,,...,ws are arbitrary constants. Indeed, by using invertible transformations
(P—>QD+C]_X+C2, X—>X+C3, (39)

whereC,(k=1,2,3) are constants, it is possible to simplify the r.h.s(30f). These transforma-
tions cannot change the order of polynon@l and so there exist four nonequivalent possibilities

k]_:O, k2:0, k4:O, (3106)
k1=0, k2:0, k4¢ O, (310[:)
k]_:O, k27&0, (310()
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k,#0. (3.10d
Setting in(3.9
Clz—%k:;, C2:C3:0, k5—ﬁk§=wl, (3113
) ks K3
Ci=—35ks, C2=0, C3:_k_4+1_2<4’ ky=8w,, (3.11b
Kq ks 3K3  ksk, ky 3k4
CCay g I wE Cag tag M Tes (A0
1K ke koks K3
“T el g ©T A ek, T 2ad
Ky kS koks  K3ks K3
Coma, MaTes kTR o T ek 1eE O (3.119

for cases(3.103—(3.109 correspondingly, we reducg.5 to one of the forms(3.8a—(3.80
respectively.
From (2.2), (2.9), (3.4), (3.9—(3.11) we find the corresponding symmetry operators

Q=p3+H{U,p}=2pH+3Up+;U’, (3.123
Q=p*+HU,p}—w,t, (3.120
3 3 1
Q=p +Z{U,p}+w3(tH—z{X,p}), (3.120
Q _ I03+i— w{{x,p} p}+l{3cp’—w2X2 p}+i— ® <p+Zqu’—w—2x3 exp(+iwt)
+ \/ﬂ —4 i 1 4 3 —2 3 — I
w0=\—ws, (3.129

whereU and ¢ are solutions of3.2) andH is the related HamiltoniaR.1).
Thus,the Schrdinger equation (2.1) admits a third-ord&O if potential U satisfies one of
the equations (3.8)The explicit form of the corresponding SOs is present3ri2.

IV. ALGEBRAIC PROPERTIES OF SOs

Let us investigate algebraic properties of SOs defined by relafi®). We shall see that
these properties are predetermined by the type of equatBo@ssatisfied byU. By direct calcu-
lations, using(2.3), (2.1), and(3.12, we find the following relations:

[Q., H]=0, (4.1
3 C
Q2:8H3_§(01H_§ (41b)

if the potential satisfies equatidB.89. [C is the first integral of equatio(8.839, refer to(5.1)];

[Q! H]:inI! [Q, l]:[H1 I]:O (42)
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if the potential satisfies equatiaB.8b);
[Q, H]=—iw3H 4.3

if the potential satisfies equatidB.8¢, and

[H! Qi]:iniv (443
1
[Q., Q. ]=w H2+4—8(2w2+w5) (4.4b)

if the potential satisfie$3.8d).

It follows from (4.1)—(4.3) that non-Lie SOQ and HamiltoniansH form consistent Lie
algebras which can have rather nontrivial applications.

Formula(4.1b presents an example of the general thedfeftstating that commuting ordi-
nary differential operators are connected by a polynomial algebraic relation with constant coeffi-
cients. In Sec. VIl we use relatiorid.1) to integrate the related equatiofisl).

Relations(4.2) define the Heisenberg algebra. The linear combinations (1/2)(H=iQ)
realize the unusual representation of creation and annihilation operators in terms of third-order
differential operators.

In accordance with4.3), Q plays a role of dilatation operator which continuously changes
eigenvalues ofH. Indeed, let

H\PE:E’\PE, (45)

then the function¥’' =exp{\Q)W¥e (where\ is a real parametgiis also an eigenvector of the
HamiltonianH with the eigenvalue\E.

It follows from (4.4) that for w,<0 the operator€), and Q_ are raising and lowering
operators for the corresponding Hamiltonian. In other word¥,dfsatisfieg4.5) thenQ. V¢ are
also eigenfunctions of the Hamiltonian which, however, correspond to the eigen#&tues

H(Q.¥g)=(E* w)(Q. V). (4.6

Relations(4.6) are typical for creation and annihilation operators of the quantum oscillator.
This observation shows a way for constructing exact solutions of the @iolger equation whose
potential satisfies relatiof8.80d. Moreover, relationg4.4g allow Q to be interpreted as a condi-
tional symmetny®12such symmetries are of particular interest in the analysis of partial differential
equations*?>26 Thus third-order SOs of equatiof2.1) generate algebras of certain interest.
Moreover, algebraic properties of these SOs are the same for wide classes of potentials described
by one of equation$3.8).

V. REDUCTION OF EQUATIONS FOR POTENTIALS

Let us consider equatior(8.8) in detail and describe the corresponding classes of potentials.
A solution of some of these nonlinear equations is a complicated problem which, however, can be
simplified by using reductions to other well-studied equations.

A. The Weierstrass equation

Formula (3.89 defines the Weierstrass equation whose solutions are expressed via either
elementary functions or via the Weierstrass function, depending on values of the parajreter
the integration constant. Here, we represent these well-known sol\tifies, e.g., to the classic
monograph of Whittaker and Watsdhin the form convenient for our purposes.

Multiplying the Lh.s. of(3.8a by U’ and integrating we obtain
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HU")2-U%+3w,U=C, (5.1

whereC is an integration constant which appeared abovétitih). Then by changing roles of
dependent and independent variables it becomes possible to intégdtand to findU as an
implicit function of x. We will distinguish five qualitatively different cases

C2—4w3=0, C>0, (5.2a
C?-4w3=0, C<O0, (5.2b
C=w;=0, (5.29
C?—4wi<o0. (5.39
C?—4w3>0. (5.3b

For (5.29—(5.20, solutions of(5.1) can be expressed via elementary functions, wi&il&a,h
generate solutions in elliptic functions.

For our purposes, it is convenient to transfofil) to another equivalent form. Using the
substitution

U=v— % (5.4
whereu is a real root of the cubic equation
w3—3w,u+C=0, (5.5
we obtain
H(V")2=V3—woV2+4w,V+8uwyw,; =0, (5.6)
wherewy= 31 andw; = 3(w;— u?) are arbitrary real numbers.
The substitution(5.4), (5.5 transforms condition$5.2), (5.3) to the following form:
w1(w1—w5)*=0, wo<0, (5.78
01(0;~05)?=0, we>0, (5.7
(01~ 05)?=0, wo=0, (5.79
0101~ 05)#0, >0, (5.89
(01—~ w05)#0, <0. (5.8

If relations(5.79 are satisfied, thew_1=520 or w,=0. Moreover, the corresponding solutions
for V differ by a constant shiftV—V+2wq, wg— wg/2. Without loss of generality we restrict
ourselves to the former case, then solutions of equafid) corresponding to condition$.7a—¢
have the following forms:

V=12 tanf(v(x—k))—1], wo=—3v% w;=3v" (5.99

V=12 cottf(v(x—k))—1], wo=—3v% w;=3v" (5.94)
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V=1 2tarf(v(x—k)—1)], wo=3%v%, w,=" (5.9b
2

Here,k and v are arbitrary real numbers.
For the case$5.8) the general solution of5.1) has the form

V=2p(x—K)+ u (5.10

whereg is a two-periodic Weierstrass function, which is meromorphic on all the complex plane.
The invariants of this function arg,= — 3(w5+ 3w;) andgs= — swo(w5— 9w;). Moreover, if
condition (5.8a holds, the corresponding solutions are bounded and can be expressed via the
elliptic Jacobi functions

V=B cr’(Dx+k)+F, (5.113
where
B:(eg_ez), D=\(el_e3)/2, F=e2 (511b

e;>e,>e; are real solutions of the cubic equation from the r.h.9508).

We note that formulags.9) present the set of well-known potentials which correspond to the
exactly solvable Schrbinger equation&® In accordance with the above, these equations admit
extended Lie symmetries.

B. Painleve and Riccati equations

Relation(3.8b) defines the first Painléweanscendent. Its solutions are meromorphic on all the
complex plane but cannot be expressed via elementary or special functions.

Equation(3.89 is more complicated. However, by using the special change of variables and
applying the Miurd® ansatz, we shall reduce it to the Painldeem also. Indeed, making the
following change of variables:

s (3 \F .
U=- ? , X=— 6_(03y' (52'

V"+VV' =XV —3V=0, V'=4V/dy. (5.13

we obtain

The ansatz
V=W’ —iw? (5.14
reduces5.13 to
(Gy= W) (W" — BWAW' — 3y W' — W) =0.

Equating the expression in the second brackets to zero and integrating it we come to the
second Painleveranscendent

W= L2We+ yW+K, (5.15

whereK is an arbitrary constant.
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To make one more reduction of equati8g we takeU = ¢’. Then, integrating the result-
ant equation, we obtain

¢"=3(¢')*~2w3(x¢)' =C. (5.16

Then, defining

1 C
e=232wzé+ 7V e y=32wsx,

W=g g2 =% 5.1
we represent5.16 as
W’ — 4£" W+ 26W' —yW=0. (5.18

The trivial solutions of(5.18 correspond to the following Riccati equation fér

¢ -&-y=0. .19

It follows from the above that any solution of equatidbsl5 or (5.19 generates a potential
U defined by relation$5.12), (5.14), or (5.17). The corresponding Schiimger equation admits a
third-order SO.

The last of the equations considered, i.e., equaBaBd), is the most complicated. The change

e=2f—1w,x® (5.20
reduces it to the following form:
£ —6(f")2+ 4wy (f' X°—xf )= w,+ Sws. (5.21)
Multiplying (5.21) by f” and integrating we obtain the first integral
312 2(1)* +204(f—xf")~ (04 + Jwg)f' =C (5.22

which is still a very complicated nonlinear equation.
Let us demonstrate thdb.21) can be reduced to the Riccati equation. To realize this we
rewrite (5.21) as follows:

F'+2fF —4f'F=3ws— 0y, (5.23
where
F=f"—f2—w,x°
Choosingws=2w, we conclude that any solution of the Riccati equation
f/ =12+ @ x? (5.29

generates a solution of equati@®8d, given by relation(5.20.

One more possibility in solving of equatiaq®.8d consists in its reduction to the Painleve
form. Making the change of variables=—w,x, x=(1/J/— w,)y and differentiating equation
(3.80 w.r.t. y, we obtain
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(Gr1_302)17+(66+sxa'+20”):4)(2’ (5.26

whereU = (ax/dy) = — (Llws)U.
Using the following generalized Miura ansatz.

U=—V'+V2+2Vy+y2—1, (5.27)
we reduce equatiofb.26) to the form
dy(dy—2V—2y—2)(V"—=6V3V'—4V,—12yVV —4yV—4V'y*~2V')=0.

Equating the expression in the right brackets to zero, integrating and dividing ivbyve
come to the fourth Painlévieanscendent

V/2

v"=—+§v~°’+8yv2+(2y2—1)v+E (5.28
2V ' 2 V' '

We note that the double differentiation and consequent change of variables

, (OF)) (I)+1 2) 1
= — —_— —_ s X:—
o'=—\75|P+gY Voo

transform equatiori3.89 to the form
P P+D"DP+D P’ — 8D+ XD+ 7xP')=0

which coincides with the reduced Boussinesq equatidhe procedures outlined above reduces
the equation either to the fourth Painlewanscendent5.28 or to the Riccati equatiofs.24).

Thus, the third-order SOs are admitted by a very extended class of potentials described above.
We should like to emphasize that in general the corresponding” @clger equation does not
possesses any nontriviaistinct from time displacement&ie symmetry.

VI. EQUATIONS FOR TIME-DEPENDENT POTENTIALS

Consider briefly the case of time-dependent potentiatslU (x,t). The determining equations
(2.6) are valid in this case also. Moreover, the compatibility condition for syg&6) takes the
form

F(a,b,c;x,U)+12aU—4(b—2ax)U’ =0 (6.1)

whereF(a,b,c;x,U) is defined in(2.7).

Equation(6.1) is much more complicated thdf.7) due to the time dependence df which
makes it impossible to separate variables. For any fixed set of funai@hs b(t), andc(t),
formula (6.1) defines a nonlinear equation for potential. Moreover, any of these equations admits
the Lax representation

[H, Q]=i (6.2

Q
gt
cf. (2.3). Refer to Refs. 30, 31 for the general results connected with arbitrary ordinary differential
operators satisfying6.2).

We will not analyze equation§.1) here, but present a few simple examples concerning
particular choices of arbitrary functiorss b, andc.
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a=const,b=c=0:

—12U+U"—6(UU’)’ =0; (6.3
a,b are constant;=0:
120 - (4bU—U"+6UU")" =0; (6.4)
a=c=0, b=wsa:
120 — 4(wst— 2X)U" + (U" = 3U%)" + 2w4(xU’ +2U)" =0; (6.5
a=expt), b=c=0:
1204 8xU’ + (U"—U2)"— 12(Ux)’ — 2x2U" — 4x2=0. (6.6)

Formula(6.3) defines the Boussinesq equation. The Lax representdi@nfor this equation
is well known!® Formulas(6.4—(6.6) present other examples of nonlinear equations admitting
this representation and arise naturally under the analysis of third-order SOs of theligaro
equation.

VII. EXACT SOLUTIONS

Let us regard the case of potentials satisfy{i88a or (5.4), (5.6). Taking into account
commutativity of the corresponding S@3.12a with Hamiltonian(2.1) it is convenient to search
for solutions of the Schidinger equation in the form

W (t,x)=exp —iEt)¥(x), (7.1

where (x) are eigenfunctions of the commuting operatdrand Q

H(x) =E(X), (7.2a
Qu(X) =N ih(X). (7.2
Using (7.29, (3.123, and(5.4) we reduceg(7.2b to the first-order equation
2E+¥+w_o ¢’=(EV’+i)\ W (7.3
2 4

whose general solution has the form

dx
_ \/7_ . f S .
=AW +4E+ 2w, exp 2i\ ViiET T (7.4)

whereA is an arbitrary constant. Then, expressifigvia ¢ in accordance witl{7.3) and using
(5.6), we reducg7.29 to the followingalgebraicrelation forE and\ [compare with(4.1b]:

A2=8E%(E+ wy). (7.5

Thus there exists a remarkably simple way to integrate the 8itger equation which admits
a third-order SO. The integration reduces to the problem of solving the first-order ordinary dif-
ferential equation{7.3) and algebraic equatiofY.5).
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Let us show that the existence of a third-order SO for the linear Sadger equation enables
one to find exact solutions for the followingpnlinearequation:
o~ 1 o~ 1 - - =
I(?t\PZE P v+ W (\I’ ‘I’)‘P (76)
Indeed, ifA%>0, solutions(7.1), (7.4) satisfy the following relations:
V* ¥ =A%(V+4E+ 2wy). (7.7
Using (7.29 and(7.7) we make sure that the functions
V=expiet)y(x), e=—3E—wp (7.9

[where(x) are functions defined i(7.4)] are exact solutions af7.6).

Thus we obtain a wide class of exact solutions of the nonlinear 8tiger equation, which
depend on arbitrary parametetsog, w1, k [see(7.8), (7.4), (5.6), (5.8)]. Properties of thes@nd
some more genenasolutions are discussed in the following section.

VIII. LIE SYMMETRIES AND GENERATION OF SOLUTIONS

It is well known that equatiori7.6) is invariant under the Galilei transformatiotrefer, e.g.,
to Refs. 2, 3

Xx— X' =x—ut,
2

\I’(t,X)—)\P,(t,X/)=eX[{i(vx— v?_{—(PO

}qf(t,x), (8.2

wherev and ¢ are real parameters. Usili8.1) it is possible to generate a more extended family
of solutions starting with7.8)

V=AW(x—k—0vt) +4E+ 20,

X exp{i

Here,V is an arbitrary solution of equatidb.6), v, wg, w1, K, o andE are real parameters,
\ and e are defined in7.5), (7.8).

In order for\ to be real we require=0, other parameters are arbitrary.

Solutions(8.2) are qualitatively different for different values of free parameters enumerated in
(5.7). If wg andw, satisfy (5.7a or (5.79, possibleV are given by formulag5.93, (5.9d) or
(5.99. Solutions(8.2), (5.99 are bounded for any andt, whereas solution§8.2), (5.9d) and
(8.2, (5.99 are singular ak—k—uvt=0. For vy and w, satisfying (5.7b the modulus of the
complex function(8.2), (5.9b) is periodic and singular at—k—vt=(2n+1)#/2v. All the above
mentioned singularities are simple poleswlf andw; satisfy relationg5.839, the solutiong8.2)
are expressed via the two-periodic Weierstrass funcgigmefer to (5.10] and are, generally
speaking, unbounded. But if we restrict ourselves to solut(brisl) for potential, the correspond-
ing solutions(8.2) are periodic and bounded.

To inquire into a physical content of the obtained solutions let us consider in more detail the
caseq8.2), (5.99 and(8.2), (5.11).

For potential45.99 the corresponding relatiofY.5) reduces to

) t x—k—uvt dy
(2e—v°) §+UX+QDO+2)\JO m

]. (8.2
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N2=4E%, e=2E—1?, (8.3

and the integral in8.2) can be easily calculated. This enables us to represent soliBads
(5.99 as follows:

~ Av ] (VZ_UZ) L

\I’_COSF[V(X—k—vt)] expil| —— t+uvx+eg|;, E=0; (8.9
_ 1/2—1)2
\P:A{vtant[v(x—k—vt)]ii\/Z}exp(i( 5 —-3E t+(v1\/;)x+(p0 , E#0, e=0.
(8.5
For potentialg5.11) we obtain from(8.2)

VU=",=A\B crD(x—vt)+klexdif,(t,x)], E=0; (8.6
V=",=A\B cr[D(x—vt)+ K]+ F expif,(t,x)], E+wy=0, 8.7

where

3 v?
fi(t,x)="f(t,x)+ > Ft=<F— ?)t+vx+ ©0,

B, D, andF are parameters defined {6.11D.

For other values o solutions(8.2), (5.11) are also reduced to the forf8.7) where the phase
fo(t,x) is expressed via elliptic integrals.

Formula(8.4) presents a fast decreasing one-soliton solutfd®elation(8.5) defines a soliton
solution whose behavior at— oo is typical of solitons with a finite density. Formulé’.6), (8.7)
describe “cnoidal” solutions for the nonlinear Schiinger equation.

IX. CONDITIONAL SYMMETRY AND GENERATION OF SOLUTIONS

Let us return to the linear Schiimger equatior(2.1) with the potentialU satisfying(3.84.
Generally speaking it possesses no nontriviétinct from time displacementdie symmetry.
Nevertheless, its solutions can be generated within the framework of the concept of conditional
symmetry?>3121432|ndeed, these solutions satisfy.7), and equation(2.1) with the additional
condition(7.7) is invariant under the Galilei transformatio(&1) [i.e., condition(7.7) extends the
symmetry of equatiorf2.1)].

This conditional symmetry enables us to generate new solutions. StartingAnwith(7.4) and
using(8.1) we obtain

T=AV(x—k—vt)+4E+ 2w,

><exp[i

Functions(9.1) satisfy the Schrdinger equation with a potenti®l(x—k—wvt), whereV(x) is
a solution of equatior(5.6). In the particular cas&= —wy/2 these functions are reduced to
solutions(8.2) of the nonlinear equatiofv.6).

One more generation of solutions can be made using a third-order SO. InasmM¢R)as
satisfieq5.6), thenV(x—uvt) satisfies the Boussinesq equatiérB). It means that the correspond-
ing linear Schrdinger equation admits a third-order SO. In accordance i9, (2.6) this SO
can be represented in the form

t x—k—uvt dy
_ 2y _ -7
(2E+v°) 2+vx+<p0+2)\fo V(y)+4E+2w_0“' (9.9
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Q=p3*+ H{3V+2wy+6v%,pt+ 3V
=2pH+ X V+2wy+6v3)p+V+ iV, 9.2

Formula(9.2) generalizeg3.123 to the case of time-dependent potential.
Acting by operator(9.2) on ¥ in (9.1) we obtain a new family of solutions

V' =Q¥=ay+iv?¥,, 9.3

wherea=\ +4Ev + wgv —4v3, V¥ is the initial solution(9.1),

.= V' +4i\ v 0.4
1 2(4E+V+2wg) 4
We note that if¥ is a soliton solution
s S 1 9
~ costiv(x—vt)] SR T VX T o 9.5
[the corresponding potential is present(f9a], then(9.4) is a soliton solution too:
v _VPA sinH v(x—ut)] o v? R 06
1= o v(x—ot)] CH! T FTUXT o] ©.6
Starting with the potential5.11) we obtain from(9.1) a particular solution
2
v
V¥ =A\B crz+F ex;{i(—iH—vxﬂpo ,  2=D(x—vt). (9.7
The corresponding generated soluti®y) reads
ABDcnzsnzdnz | v? 08
1=- B on 2t oF expgi —?I+UX+<,DO . (9.9

and is also bounded.

Acting by SO(9.2) on solutions(9.3), (9.8) we again obtain new solutions. Moreover, this
procedure can be repeated. In particular, in this way it is possible to construct multisoliton solu-
tions of the linear Schidinger equation.

We see that higher order SOs present efficient possibilities for solving equations of motion
and generating new solutions starting with known ones.

X. CONCLUSION

Higher order SOs present a powerful tool for analyzing and solving the Siciger equation.
The concept of higher symmetries enables us to extend the class of privileged pot@ntiasd
to investigate invariance algebras of the equations whose potentials satisfy one of ré¢Bions

We note that potential§5.9) can be represented in the forM=W?+W’, where W
=v tanj »(x—K)] for solution (5.9a (superpotential®V for solutions(5.99—(5.99 can also be
easily calculatel Moreover, the corresponding superpartnées W2—W’ reduce to constants,
therefore it is possible to integrate easily the Sdimger equation with potential$.9) using the
Darboux transformatioft

It is worth noting that invariance conditid2.3) for operatorg2.1), (3.12) can be treated as a
zero curvature condition for equations associated with the eigenvalue problem for oggrator

J. Math. Phys., Vol. 38, No. 11, November 1997



5958 W. |. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions

as the Lax condition where a role of the Lax operdiois played by a SO, refer t(6.2). The
reasons stimulating our research of such a well-studied subject and distinguishing features of our
approach are the following:

(1) The main goal of our paper is to present a constructive description of potentials for the
Schralinger equation which admit higher symmetries. In this way we extend the fundamental
result$®~2! connected with the search for potentials admitting usual Lie symmetries.

To solve the deduced determining equations for potentials we use direct reductions to the
Painleveor Riccati forms. The obtained results can be used for analysis and solution of the
Schralinger equation as well as for construction of exact solutions of the Boussinesq equation, see
item 5 in the following.

In the method of inverse problem, description of pairs of operd®, (2.8 satisfying the
Lax condition(6.2) is reduced to the Gelfand-Marchenko-Levitan equafibos to the Riemann
problent>3! which can be solved explicitly for a restricted class of potentials.

(2) We use non-Lie symmetries of the ScHirmger equation for construction and generation
of exact solutions. Moreover, we are interested not so much in fim#mg solutionsas in devel-
oping anew methoaf their derivation, which consists in simultaneous using of higher order and
conditional symmetries. Nevertheless, the cnoidal soluti®g, (9.8) and (8.6), (8.7) for the
linear and nonlinear Schdinger equations can be of interest for physicists as well as infinite
series of soliton and cnoidal solutions generated by a repeated application of the procedure de-
scribed in Sec. IX.

We believe that the combination “higher order symmettiesnditional symmetries” may be
used effectively in the investigations and analysis of other equations of mathematical physics.

(3) Our approach admits a direct generalization to multidimensional 8itger equations.

Note that higher symmetries of the three-dimension Stihger equation were investigated in
Refs. 18, 35 for particular potentials.

(4) Algebraic relations(4.1)—(4.4) are valid for extended classes of potentials. They open
additional possibilities in the application of algebraic methods to investigate the diufeo
equation, in particular, the use of raising and lowering operators for this equation with potentials
satisfying(3.8d. We note that relation&3.89 are valid also for time-independent operatQs
=exp(Fiwt)Q., whereQ.. are given by relation$3.12d.

(5) Equationg3.8) which describe potentials that admit third-order symmetries are equivalent
to the reduced versions of the Boussinesq equation, which appear under the similarity ré8uction
[this is the case fo(3.8a,d] and the reduction with using symmetri&&>?°[the last is valid for
(3.8b,0]. Thus the results obtained in Sec. V can be used to construct exact solutions of the
Boussinesq equation.

A systematic study of higher symmetries of multidimensional Sdinger equations is
planned to be carried out elsewhere.
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