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Higher symmetries and exact solutions of linear
and nonlinear Schro ¨ dinger equation

W. I. Fushchycha) and A. G. Nikitin
Institute of Mathematics, National Academy of Sciences of Ukraina,
3 Tereshchenkivska Street, Kyiv-4, Ukraina

~Received 13 June 1995; accepted for publication 14 July 1997!

A new approach for the analysis of partial differential equations is developed which
is characterized by a simultaneous use of higher and conditional symmetries.
Higher symmetries of the Schro¨dinger equation with an arbitrary potential are
investigated. Nonlinear determining equations for potentials are solved using re-
ductions to Weierstrass, Painleve´, and Riccati forms. Algebraic properties of higher
order symmetry operators are analyzed. Combinations of higher and conditional
symmetries are used to generate families of exact solutions of linear and nonlinear
Schrödinger equations. ©1997 American Institute of Physics.
@S0022-2488~97!03110-1#

I. INTRODUCTION

Higher order symmetry operators~SOs! have many important applications in modern ma
ematical physics. These operators correspond to hidden symmetries of partial differential
tions, including Lie–Ba¨cklund symmetries,1,2 as well as super- and parasupersymmetries.3–7

Higher order SOs can be used to construct new conservation laws which cannot be fo
the classical Lie approach.3,8 These operators are applied to separate variables.9 Moreover, one
should use SOs whose order is higher than the order of the equation whose variab
separated.10

In the present paper we investigate higher order SOs of the Schro¨dinger equation, which are
‘‘non-Lie symmetries.’’8,11 The simplest non-Lie symmetries are considered in detail and
related SOs are explicitly calculated. The potentials admitting these symmetries are fou
solutions of the corresponding nonlinear compatibility conditions. It is shown that the higher
SOs extend the class of potentials which were previously obtained in the Lie symmetry an

Algebraic properties of higher order SOs are investigated and used to construct exact so
of the linear and related nonlinear Schro¨dinger equations. We propose a new method to gene
extended families of exact solutions by using both the conditional symmetries8,12–14 and higher
order SOs.

The Schro¨dinger equation with a time-independent potentialV5V(x) is studied mainly.
Time-dependent potentialsV5V(t,x) are discussed briefly in Sec. VI. By this, we recover the
result15 connected with the Lax representation for the Boussinesq equation, and generate
other nonlinear equations admitting this representation.

The distinguishing feature of our approach is that coefficients of symmetry operators a
corresponding potentials are defined as solutions of differential equations which can eas
generalized to the case of multidimensional Schro¨dinger equation contrary to the method
inverse scattering problem.

This paper continues~and in some sense completes! our works16–18where non-Lie symmetries
of the Schro¨dinger equation were considered. A detailed analysis of higher symmetries of m
dimensional Schro¨dinger equations will be a subject of our subsequent paper.
a!Deceased.

0022-2488/97/38(11)/5944/16/$10.00
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II. SYMMETRY OPERATORS OF THE SCHRÖDINGER EQUATION

Let us formulate the concept of higher order SO for the Schro¨dinger equation

LC~ t,x!50, L5 i ] t2H,
~2.1!

H5 1
2~2]x

21U~x!!, ] t[
]

]t
, ]x[

]

]x
.

In every sense of the word, a SO of equation~2.1! is any ~linear, nonlinear, differential,
integro-differential, etc.! operatorQ transforming solutions into solutions. Restricting ourselves
linear differential operators of finite ordern we representQ in the form

Q5(
i 50

n

~hi•p! i , ~hi•p! i5$~hi•p! i 21 ,p%, ~hi•p!05hi , ~2.2!

wherehi are unknown functions of (t,x), $A,B%5AB1BA, p52 i ]x .
Operator~2.2! includes no derivatives w.r.t.t which can be expressed as1

2(p21U) on the set
of solutions of Eq.~2.1!.

Definition:8 Operator~2.2! is a SO of ordern of equation~2.1! if

@Q,L#50. ~2.3!

Remark:The more general invariance condition3 @Q,L#5aQL, whereaQ is a linear operator,
reduces to relation~2.3! if L and Q are operators defined in~2.1!, ~2.2!. Terms proportional to
i (]/]t) cannot appear as a result of commutation ofQ andL; hence, without loss of generality
aQ50.

For n51,2 SOs~2.2! reduce to differential operators of the first order and can be interpr
as generators of the invariance group of the equation in question. Forn.2 these operators~which
we call higher order SO! correspond to non-Lie8,11 symmetries.

The Lie symmetries of equation~2.1! were described in Refs. 19-21 The general form
potentials admitting nontrivial~i.e., distinct from time displacements! symmetries is as follows:

U5a01a1x1a2x21
a3

~x1a4!2 , ~2.4!

where a0 ,...,a4 are arbitrary constants. No other potentials admitting local invariance gr
exist.

Group properties of equation~2.1! with potentials~2.4! were used to solve the equatio
exactly, to establish connections between equations with different potentials, to separate va
etc.9 Unfortunately, all these applications are valid for a very restricted class of potentials giv
formula ~2.4!.

The class of admissible potentials can be essentially extended if we require that equatio~2.1!
admits higher order SOs.17 The problem of describing such potentials~and the corresponding SOs!
reduces to solving operator equations~2.2!, ~2.3!. Evaluating the commutators and equating t

5945W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
coefficients for linearly independent differentials we arrive at the following system of determining
equations~which is valid forarbitrary n!:5

J. Math. Phys., Vol. 38, No. 11, November 1997
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]xhn50, ]xhn2112] thn50,

]xhn2m12] thn2m112Sk50
~n22!/2~21!k

2~n2m1212k!!

~2k11!! ~n2m11!!
hn2m12k12]x

2k11U50,
~2.5!

] th01Sp50
~n21!/2~21!p11h2p11]x

2p11U50,

wherem52,3,...,n, and@y# is the entire part ofy.
Formulas~2.5! define a system of nonlinear equations inhi and U. For n52 the general

solution forU is given by formula~2.4!.
Let us consider the casen53, which corresponds to the simplest non-Lie symmetry, in m

detail. The corresponding system~2.5! reduces to

h3850, h2812ḣ350, 2ḣ21h1826h3U850, ~2.6a!

2ḣ11h0824h2U850, h˙02h1U81h3U-50, ~2.6b!

where the dots and primes denote derivatives w.r.t.t andx, respectively.
Excludingh0 from ~2.6b! and using~2.6a! we arrive at the following equation:

F~a,b,c;U,x![aU992~2äx216aU1c22ḃx!U926~2äx1aU82ḃ!U8

212äU22~2] t
4ax222b̂x1 c̈!50, ~2.7!

wherea,b,c are arbitrary functions oft.
Equation~2.7! is nothing but the compatibility condition for system~2.6!. If the potentialU

satisfies~2.7! then the corresponding coefficients of the SO have the form

h35a, h2522ȧx1b, h15g116aU,
~2.8!

h052
4

3
âx312b̈x222ċx24ȧw14~b22ȧx!U1d,

where

g152äx222ḃx1c, w5*U dx, u5w8, d5d~ t !. ~2.9!

III. EQUATIONS FOR POTENTIAL

Equation~2.7! was obtained earlier17 ~see Ref. 22! and, moreover, particular solutions forU
were found.17 Here, we analyze this equation in detail.

First of all, let us reduce the order of equation~2.7!. Integrating it twice w.r.t.x and choosing
the new dependent variablew defined in~2.9! we obtain

a@w-23~w8!2#2~g1w!85 1
3] t

4ax42 2
3b̂x31 c̈x21dx1e. ~3.1!

Using the fact thatw depends onx only while a,b,c,d, e are functions oft, it is possible to
separate variables in~3.1!. Indeed, dividing any term of~3.1! by aÞ0, differentiating w.r.t.t and
integrating overx we obtain the following consequence:

ġ1a2g1ȧ 1 1 1 1 1

5946 W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
a2 w5] t a S 15
] t

4ax52
6

b̂x41
3

c̈x21
2

dx21ex1 f D . ~3.2!

J. Math. Phys., Vol. 38, No. 11, November 1997
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Consider equation~3.2! separately in two following cases:

ġ1a2g1ȧÞ0, ~3.3a!

ġ1a2g1ȧ50. ~3.3b!

Let condition~3.3a! be valid. Then dividing the l.h.s. and r.h.s. of~3.2! by ] t(g1 /a) we come
to the following general expression forw:

w5a3x31a2x21a1x1a05
a4

x1a5
1

b1x1b2

x21gb3x1b4
, ~3.4!

wherea0 ,...,a5 , b1 ,...,b4 are constants.
It is possible to verify by a straightforward but cumbersome calculation that relation~3.4! is

compatible with~3.1! only for b15b250. We will not analyze solutions~3.4! inasmuch as they
correspond to potentials~2.4! and to SOs which are products of the usual Lie symmetries.19–21

If condition ~3.3a! is valid, we obtain from equation~3.2!

ä5ak1 , ḃ5k2a, c5k3a, ~3.4!

wherek1 ,k2 ,k3 are arbitrary constants. The corresponding equation~3.1! reduces to

w-23~w8!22~G9w!852k1G1k4x1k5 , ~3.5!

where

G5 1
6k1x42 1

3k2x31 1
2k3x2, G95g152k1x222k2x1k3 , ~3.6!

k4 andk5 are constants.
Let us prove that, up to equivalence, equation~3.5! can be reduced to one of the followin

forms:

U923U213v150, ~3.8a!

U923U228v2x50, ~3.8b!

~U923U2!822v3~xU812U !50, ~3.8c!

w-23~w8!222v4~x2w!85
1

3
v4

2x41v5 , U5w8, ~3.8d!

wherev1 ,...,v5 are arbitrary constants. Indeed, by using invertible transformations

w→w1C1x1C2 , x→x1C3 , ~3.9!

whereCk(k51,2,3) are constants, it is possible to simplify the r.h.s. of~3.5!. These transforma-
tions cannot change the order of polynomialG, and so there exist four nonequivalent possibiliti

k150, k250, k450, ~3.10a!

k150, k250, k4Þ0, ~3.10b!

5947W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
k150, k2Þ0, ~3.10c!
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k1Þ0. ~3.10d!

Setting in~3.9!

C152 1
6k3 , C25C350, k52 1

12k3
25v1 , ~3.11a!

C152 1
6k3 , C250, C352

k5

k4
1

k3
2

12k4
, k458v2 , ~3.11b!

C15
k4

4k2
, C25

k5

2k2
1

3k4
2

32k2
3 1

k3k4

8k2
2 , C35

k3

2k2
1

3k4

4k2
2 , k252v3 , ~3.11c!

C152
1

6
k31

k2
2

12k1
, C252

k4

4k1
2

k2k3

6k1
1

k2
3

24k1
2 ,

C35
k2

2k1
, k15v4 , k52

k3
2

12
1

k2k4

2k1
1

k2
2k3

3k1
2

k2
4

16k1
2 5v5 , ~3.11d!

for cases~3.10a!–~3.10d! correspondingly, we reduce~3.5! to one of the forms,~3.8a!–~3.8d!
respectively.

From ~2.2!, ~2.8!, ~3.4!, ~3.9!–~3.11! we find the corresponding symmetry operators

Q5p31 3
4$U,p%[2pH1 1

2Up1 i
4U8, ~3.12a!

Q5p31 3
4$U,p%2v2t, ~3.12b!

Q5p31
3

4
$U,p%1v3~ tH2 1

4$x,p%!, ~3.12c!

Q65
1

A24
Fp36

i

4
v$$x,p%,p%1

1

4
$3w82v2x2,p%6

i

2
vS w12xw82

v2

3
x3D Gexp~6 ivt !,

v5A2v4, ~3.12d!

whereU andw are solutions of~3.2! andH is the related Hamiltonian~2.1!.
Thus, the Schro¨dinger equation (2.1) admits a third-orderSO if potential U satisfies one o

the equations (3.8). The explicit form of the corresponding SOs is present in~3.12!.

IV. ALGEBRAIC PROPERTIES OF SOs

Let us investigate algebraic properties of SOs defined by relations~3.12!. We shall see that
these properties are predetermined by the type of equations~3.8! satisfied byU. By direct calcu-
lations, using~2.3!, ~2.1!, and~3.12!, we find the following relations:

@Q, H#50, ~4.1a!

Q258H32
3

2
v1H2

C

8
~4.1b!

if the potential satisfies equation~3.8a!. @C is the first integral of equation~3.8a!, refer to~5.1!#;

5948 W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
@Q, H#5 iv2I , @Q, I #5@H, I #50 ~4.2!
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if the potential satisfies equation~3.8b!;

@Q, H#52 iv3H ~4.3!

if the potential satisfies equation~3.8c!, and

@H, Q6#56vQ6 , ~4.4a!

@Q1 , Q2#5vS H21
1

48
~2v21v5! D ~4.4b!

if the potential satisfies~3.8d!.
It follows from ~4.1!–~4.3! that non-Lie SOsQ and HamiltoniansH form consistent Lie

algebras which can have rather nontrivial applications.
Formula~4.1b! presents an example of the general theorem23,24 stating that commuting ordi-

nary differential operators are connected by a polynomial algebraic relation with constant c
cients. In Sec. VII we use relations~4.1! to integrate the related equations~2.1!.

Relations~4.2! define the Heisenberg algebra. The linear combinationsa65(1/&)(H6 iQ)
realize the unusual representation of creation and annihilation operators in terms of third
differential operators.

In accordance with~4.3!, Q plays a role of dilatation operator which continuously chang
eigenvalues ofH. Indeed, let

HCE5ECE , ~4.5!

then the functionC85exp(ilQ)CE ~wherel is a real parameter! is also an eigenvector of th
HamiltonianH with the eigenvaluelE.

It follows from ~4.4! that for v4,0 the operatorsQ1 and Q2 are raising and lowering
operators for the corresponding Hamiltonian. In other words, ifCE satisfies~4.5! thenQ6CE are
also eigenfunctions of the Hamiltonian which, however, correspond to the eigenvaluesE6v

H~Q6CE!5~E6v!~Q6CE!. ~4.6!

Relations~4.6! are typical for creation and annihilation operators of the quantum oscilla
This observation shows a way for constructing exact solutions of the Schro¨dinger equation whose
potential satisfies relation~3.8d!. Moreover, relations~4.4a! allow Q to be interpreted as a cond
tional symmetry;8,12 such symmetries are of particular interest in the analysis of partial differe
equations.14,25,26 Thus third-order SOs of equation~2.1! generate algebras of certain intere
Moreover, algebraic properties of these SOs are the same for wide classes of potentials de
by one of equations~3.8!.

V. REDUCTION OF EQUATIONS FOR POTENTIALS

Let us consider equations~3.8! in detail and describe the corresponding classes of poten
A solution of some of these nonlinear equations is a complicated problem which, however, c
simplified by using reductions to other well-studied equations.

A. The Weierstrass equation

Formula ~3.8a! defines the Weierstrass equation whose solutions are expressed via
elementary functions or via the Weierstrass function, depending on values of the parameterv1 and
the integration constant. Here, we represent these well-known solutions~refer, e.g., to the classic

27

5949W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
monograph of Whittaker and Watson! in the form convenient for our purposes.
Multiplying the l.h.s. of~3.8a! by U8 and integrating we obtain

J. Math. Phys., Vol. 38, No. 11, November 1997
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1
2~U8!22U313v1U5C, ~5.1!

whereC is an integration constant which appeared above in~4.1b!. Then by changing roles o
dependent and independent variables it becomes possible to integrate~5.1! and to findU as an
implicit function of x. We will distinguish five qualitatively different cases

C224v1
350, C.0, ~5.2a!

C224v1
350, C,0, ~5.2b!

C5v150, ~5.2c!

C224v1
3,0. ~5.3a!

C224v1
3.0. ~5.3b!

For ~5.2a!–~5.2c!, solutions of~5.1! can be expressed via elementary functions, while~5.3a,b!
generate solutions in elliptic functions.

For our purposes, it is convenient to transform~5.1! to another equivalent form. Using th
substitution

U5V2
m

2
, ~5.4!

wherem is a real root of the cubic equation

m323v1m1C50, ~5.5!

we obtain

1
2~V8!22V32v̄0V214v̄1V18v̄0v̄150, ~5.6!

wherev̄05 3
2m and v̄15 3

4(v12m2) are arbitrary real numbers.
The substitution~5.4!, ~5.5! transforms conditions~5.2!, ~5.3! to the following form:

v̄1~v̄12v̄0
2!250, v̄0,0, ~5.7a!

v̄1~v̄12v̄0
2!250, v̄0.0, ~5.7b!

v̄1~v̄12v̄0
2!250, v̄050, ~5.7c!

v̄1~v̄12v̄0
2!Þ0, v̄1.0, ~5.8a!

v̄1~v̄12v̄0
2!Þ0, v̄1,0. ~5.8b!

If relations~5.7a! are satisfied, thenv̄15v̄0
2 or v̄150. Moreover, the corresponding solution

for V differ by a constant shift:V→V12v̄0 , v̄0→v̄0/2. Without loss of generality we restric
ourselves to the former case, then solutions of equation~5.6! corresponding to conditions~5.7a–c!
have the following forms:

V5n2@2 tanh2~n~x2k!!21#, v̄052 1
2n

2, v̄15 1
4n

4, ~5.9a!

5950 W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
V5n2@2 coth2~n~x2k!!21#, v̄052 1
2n

2, v̄15 1
4n

4, ~5.9a8!

J. Math. Phys., Vol. 38, No. 11, November 1997
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V5n2@2 tan2~n~x2k!21!#, v̄05 1
2n

2, v̄15 1
4n

4, ~5.9b!

V5
2

~x2k!2 . ~5.9c!

Here,k andn are arbitrary real numbers.
For the cases~5.8! the general solution of~5.1! has the form

V52`~x2k!1 1
2m ~5.10!

where` is a two-periodic Weierstrass function, which is meromorphic on all the complex p
The invariants of this function areg252 4

3(v̄0
213v̄1) andg352 4

27v̄0(v̄0
229v̄1). Moreover, if

condition ~5.8a! holds, the corresponding solutions are bounded and can be expressed v
elliptic Jacobi functions

V5B cn2~Dx1k!1F, ~5.11a!

where

B5~e32e2!, D5A~e12e3!/2, F5e2 ~5.11b!

e1.e2.e3 are real solutions of the cubic equation from the r.h.s. of~5.6!.
We note that formulas~5.9! present the set of well-known potentials which correspond to

exactly solvable Schro¨dinger equations.28 In accordance with the above, these equations ad
extended Lie symmetries.

B. Painlevé and Riccati equations

Relation~3.8b! defines the first Painleve´ transcendent. Its solutions are meromorphic on all
complex plane but cannot be expressed via elementary or special functions.

Equation~3.8c! is more complicated. However, by using the special change of variables
applying the Miura29 ansatz, we shall reduce it to the Painleve´ form also. Indeed, making the
following change of variables:

U52A3 v3
2

6
V, x52A3 1

6v3
y, ~5.12!

we obtain

V-1VV82 1
3xV82 2

3V50, V85]V/]y. ~5.13!

The ansatz

V5W82 1
6W

2 ~5.14!

reduces~5.13! to

~]y2 1
3W!~W-2 1

6W
2W82 1

3yW82 1
3W!50.

Equating the expression in the second brackets to zero and integrating it we come
second Painleve´ transcendent

W95 1
18W

31 1
3yW1K, ~5.15!

5951W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
whereK is an arbitrary constant.
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To make one more reduction of equation~3.8c! we takeU5w8. Then, integrating the result
ant equation, we obtain

w-23~w8!222v3~xw!85C. ~5.16!

Then, defining

w52A3 2v3j1
1

4
y21

C

2v3
, y5A3 2v3x,

Ŵ5j82j22
1

2
y, j85

]j

]y
~5.17!

we represent~5.16! as

Ŵ924j8Ŵ12jŴ82yŴ50. ~5.18!

The trivial solutions of~5.18! correspond to the following Riccati equation forj:

j82j22 1
2y50. ~5.19!

It follows from the above that any solution of equations~5.15! or ~5.19! generates a potentia
U defined by relations~5.12!, ~5.14!, or ~5.17!. The corresponding Schro¨dinger equation admits a
third-order SO.

The last of the equations considered, i.e., equation~3.8d!, is the most complicated. The chang

w52 f 2 1
3v4x3 ~5.20!

reduces it to the following form:

f-26~ f 8!214v4~ f 8x22x f !5v41 1
2v5 . ~5.21!

Multiplying ~5.21! by f 9 and integrating we obtain the first integral

1
2~ f 9!222~ f 8!312v4~ f 2x f8!22~v41 1

2v5! f 85C ~5.22!

which is still a very complicated nonlinear equation.
Let us demonstrate that~5.21! can be reduced to the Riccati equation. To realize this

rewrite ~5.21! as follows:

F912 f F824 f 8F5 1
2v52v4 , ~5.23!

where

F5 f 82 f 22v4x2.

Choosingv552v4 we conclude that any solution of the Riccati equation

f 85 f 21v4x2 ~5.24!

generates a solution of equation~3.8d!, given by relation~5.20!.
One more possibility in solving of equation~3.8d! consists in its reduction to the Painlev´

A A

5952 W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
form. Making the change of variablesw5 2w4x, x5(1/ 2v4)y and differentiating equation
~3.8d! w.r.t. y, we obtain
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~Ũ923Ũ2!91~6Ũ16xŨ812Ũ9!54x2, ~5.26!

whereŨ5(]x/]y)52(1/v4)U.
Using the following generalized Miura ansatz.

Ũ52V81V212Vy1y221, ~5.27!

we reduce equation~5.26! to the form

]y~]y22V22y22!~V-26V2V824V2212yVV824yV24V8y222V8!50.

Equating the expression in the right brackets to zero, integrating and dividing it by 2V, we
come to the fourth Painleve´ transcendent

V95
V82

2V
1

3

2
V318yV21~2y221!V1

b

V
. ~5.28!

We note that the double differentiation and consequent change of variables

w852Av4

3 S F1
1

6
y2D , x5

1

A4 4v4

y

transform equation~3.8d! to the form

]4F1F9F1F8F82 1
3~8F1x2F917xF8!50

which coincides with the reduced Boussinesq equation.3,14 The procedures outlined above reduc
the equation either to the fourth Painleve´ transcendent~5.28! or to the Riccati equation~5.24!.

Thus, the third-order SOs are admitted by a very extended class of potentials described
We should like to emphasize that in general the corresponding Schro¨dinger equation does no
possesses any nontrivial~distinct from time displacements! Lie symmetry.

VI. EQUATIONS FOR TIME-DEPENDENT POTENTIALS

Consider briefly the case of time-dependent potentialsU5U(x,t). The determining equation
~2.6! are valid in this case also. Moreover, the compatibility condition for system~2.6! takes the
form

F~a,b,c;x,U !112aÜ24~b22ȧx!U̇850 ~6.1!

whereF(a,b,c;x,U) is defined in~2.7!.
Equation~6.1! is much more complicated than~2.7! due to the time dependence ofU, which

makes it impossible to separate variables. For any fixed set of functionsa(t), b(t), and c(t),
formula ~6.1! defines a nonlinear equation for potential. Moreover, any of these equations a
the Lax representation

@H, Q#5 i
]Q

]t
, ~6.2!

cf. ~2.3!. Refer to Refs. 30, 31 for the general results connected with arbitrary ordinary differe
operators satisfying~6.2!.

5953W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
We will not analyze equations~6.1! here, but present a few simple examples concerning
particular choices of arbitrary functionsa, b, andc.

J. Math. Phys., Vol. 38, No. 11, November 1997

 02 Mar 2004 to 129.173.4.52. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ting

Downloaded
a5const,b5c50:

212Ü1U9926~UU8!850; ~6.3!

a,b are constants,c50:

12Ü2~4bU̇2U-16UU8!850; ~6.4!

ȧ5c50, ḃ5v3a:

12Ü24~v3t22x!U̇81~U923U2!912v3~xU812U !850; ~6.5!

a5exp(t), b5c50:

12Ü18xU̇81~U92U2!9212~Ux!822x2U924x250. ~6.6!

Formula~6.3! defines the Boussinesq equation. The Lax representation~6.2! for this equation
is well known.15 Formulas~6.4!–~6.6! present other examples of nonlinear equations admit
this representation and arise naturally under the analysis of third-order SOs of the Schro¨dinger
equation.

VII. EXACT SOLUTIONS

Let us regard the case of potentials satisfying~3.8a! or ~5.4!, ~5.6!. Taking into account
commutativity of the corresponding SO~3.12a! with Hamiltonian~2.1! it is convenient to search
for solutions of the Schro¨dinger equation in the form

C~ t,x!5exp~2 iEt !c~x!, ~7.1!

wherec(x) are eigenfunctions of the commuting operatorsH andQ

Hc~x!5Ec~x!, ~7.2a!

Qc~x!5lc~x!. ~7.2b!

Using ~7.2a!, ~3.12a!, and~5.4! we reduce~7.2b! to the first-order equation

S 2E1
V

2
1v̄0Dc85S 1

4
V81 il Dc ~7.3!

whose general solution has the form

c5AAV14E12v̄0 expS 2ilE dx

V14E12v̄0
D , ~7.4!

whereA is an arbitrary constant. Then, expressingc8 via c in accordance with~7.3! and using
~5.6!, we reduce~7.2a! to the followingalgebraic relation forE andl @compare with~4.1b!#:

l258E2~E1v̄0!. ~7.5!

Thus there exists a remarkably simple way to integrate the Schro¨dinger equation which admits
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a third-order SO. The integration reduces to the problem of solving the first-order ordinary dif-
ferential equation~7.3! and algebraic equation~7.5!.
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Let us show that the existence of a third-order SO for the linear Schro¨dinger equation enable
one to find exact solutions for the followingnonlinearequation:

i ] tC̃5
1

2
p2C̃1

1

2A2 ~C̃* C̃!C̃. ~7.6!

Indeed, ifl2.0, solutions~7.1!, ~7.4! satisfy the following relations:

C* C5A2~V14E12v̄0!. ~7.7!

Using ~7.2a! and ~7.7! we make sure that the functions

C̃5exp~ i et !c~x!, e523E2v̄0 ~7.8!

@wherec(x) are functions defined in~7.4!# are exact solutions of~7.6!.
Thus we obtain a wide class of exact solutions of the nonlinear Schro¨dinger equation, which

depend on arbitrary parameterse, v̄0 , v̄1 , k @see~7.8!, ~7.4!, ~5.6!, ~5.8!#. Properties of these~and
some more general! solutions are discussed in the following section.

VIII. LIE SYMMETRIES AND GENERATION OF SOLUTIONS

It is well known that equation~7.6! is invariant under the Galilei transformations~refer, e.g.,
to Refs. 2, 3!

x→x85x2vt,

C~ t,x!→C8~ t,x8!5expF i S vx2
v2

2
1w0D GC~ t,x!, ~8.1!

wherev andw0 are real parameters. Using~8.1! it is possible to generate a more extended fam
of solutions starting with~7.8!

C̄5AAV~x2k2vt !14E12v̄0

3 expH i F ~2e2v2!
t

2
1vx1w012lE

0

x2k2vt dy

V~y!14E12v̄0
G J . ~8.2!

Here,V is an arbitrary solution of equation~5.6!, v, v̄0 , v̄1 , k, w0 andE are real parameters
l ande are defined in~7.5!, ~7.8!.

In order forl to be real we requiree>0, other parameters are arbitrary.
Solutions~8.2! are qualitatively different for different values of free parameters enumerate

~5.7!. If v̄0 and v̄1 satisfy ~5.7a! or ~5.7c!, possibleV are given by formulas~5.9a!, ~5.9a8! or
~5.9c!. Solutions~8.2!, ~5.9a! are bounded for anyx and t, whereas solutions~8.2!, ~5.9a8! and
~8.2!, ~5.9c! are singular atx2k2vt50. For v̄0 and v̄1 satisfying ~5.7b! the modulus of the
complex function~8.2!, ~5.9b! is periodic and singular atx2k2vt5(2n11)p/2n. All the above
mentioned singularities are simple poles. Ifv̄0 andv̄1 satisfy relations~5.8a!, the solutions~8.2!
are expressed via the two-periodic Weierstrass function` @refer to ~5.10!# and are, generally
speaking, unbounded. But if we restrict ourselves to solutions~5.11! for potential, the correspond
ing solutions~8.2! are periodic and bounded.

To inquire into a physical content of the obtained solutions let us consider in more deta

5955W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
cases~8.2!, ~5.9a! and ~8.2!, ~5.11!.
For potentials~5.9a! the corresponding relation~7.5! reduces to
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l254E2e, e52E2n2, ~8.3!

and the integral in~8.2! can be easily calculated. This enables us to represent solutions~8.2!,
~5.9a! as follows:

C̃5
An

cosh@n~x2k2vt !#
expH i F S n22v2

2 D t1vx1w0G J , E50; ~8.4!

C̃5A$n tanh@n~x2k2vt !#6 iAe%expH i F S n22v2

2
23ED t1~v7Ae!x1w0G J , EÞ0, e>0.

~8.5!

For potentials~5.11! we obtain from~8.2!

C̃5C̃15AAB cn@D~x2vt !1k#exp@ i f 1~ t,x!#, E50; ~8.6!

C̃5C̃25AAB cn2@D~x2vt !1k#1F exp~ i f 2~ t,x!#, E1v̄050, ~8.7!

where

f 1~ t,x!5 f 2~ t,x!1
3

2
Ft5S F2

v2

2 D t1vx1w0 ,

B, D, andF are parameters defined in~5.11b!.
For other values ofE solutions~8.2!, ~5.11! are also reduced to the form~8.7! where the phase

f 2(t,x) is expressed via elliptic integrals.
Formula~8.4! presents a fast decreasing one-soliton solution.31 Relation~8.5! defines a soliton

solution whose behavior atx→` is typical of solitons with a finite density. Formulas~8.6!, ~8.7!
describe ‘‘cnoidal’’ solutions for the nonlinear Schro¨dinger equation.

IX. CONDITIONAL SYMMETRY AND GENERATION OF SOLUTIONS

Let us return to the linear Schro¨dinger equation~2.1! with the potentialU satisfying~3.8a!.
Generally speaking it possesses no nontrivial~distinct from time displacements! Lie symmetry.
Nevertheless, its solutions can be generated within the framework of the concept of cond
symmetry.2,3,12,14,32Indeed, these solutions satisfy~7.7!, and equation~2.1! with the additional
condition~7.7! is invariant under the Galilei transformations~8.1! @i.e., condition~7.7! extends the
symmetry of equation~2.1!#.

This conditional symmetry enables us to generate new solutions. Starting with~7.1!, ~7.4! and
using ~8.1! we obtain

C5AAV~x2k2vt !14E12v̄0

3expH i F2~2E1v2!
t

2
1vx1w012lE

0

x2k2vt dy

V~y!14E12v̄0
G J . ~9.1!

Functions~9.1! satisfy the Schro¨dinger equation with a potentialV(x2k2vt), whereV(x) is
a solution of equation~5.6!. In the particular caseE52v̄0/2 these functions are reduced
solutions~8.2! of the nonlinear equation~7.6!.

One more generation of solutions can be made using a third-order SO. Inasmuch asV(x)
satisfies~5.6!, thenV(x2vt) satisfies the Boussinesq equation~6.3!. It means that the correspond

¨
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ing linear Schrodinger equation admits a third-order SO. In accordance with~2.2!, ~2.6! this SO
can be represented in the form
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Q5p31 1
4$3V12v̄016v2,p%1 3

2vV

[2pH1 1
2~V12v̄016v2!p1 3

2vV1 i
4V8. ~9.2!

Formula~9.2! generalizes~3.12a! to the case of time-dependent potential.
Acting by operator~9.2! on C in ~9.1! we obtain a new family of solutions

C85QC5ac1 iv2C1 , ~9.3!

wherea5l14Ev1v̄0v24v3, C is the initial solution~9.1!,

C15
V814il

2~4E1V12v̄0!
C. ~9.4!

We note that ifC is a soliton solution

C5
nA

cosh@n~x2vt !#
expF i S 2

v2

2
t1vx1w0D G ~9.5!

@the corresponding potential is present in~5.9a!#, then~9.4! is a soliton solution too:

C15
n2A sinh@n~x2vt !#

cosh2@n~x2vt !#
expF i S 2

v2

2
t1vx1w0D G . ~9.6!

Starting with the potential~5.11! we obtain from~9.1! a particular solution

C5AAB cn2z1F expF i S 2
v2

2
t1vx1w0D G , z5D~x2vt !. ~9.7!

The corresponding generated solution~9.4! reads

C152
ABD cn z sn z dn z

B cn 2z12F
expF i S 2

v2

2
t1vx1w0D G . ~9.8!

and is also bounded.
Acting by SO~9.2! on solutions~9.3!, ~9.8! we again obtain new solutions. Moreover, th

procedure can be repeated. In particular, in this way it is possible to construct multisoliton
tions of the linear Schro¨dinger equation.

We see that higher order SOs present efficient possibilities for solving equations of m
and generating new solutions starting with known ones.

X. CONCLUSION

Higher order SOs present a powerful tool for analyzing and solving the Schro¨dinger equation.
The concept of higher symmetries enables us to extend the class of privileged potentials~2.4! and
to investigate invariance algebras of the equations whose potentials satisfy one of relation~3.8!.

We note that potentials~5.9! can be represented in the formV5W21W8, where W
5n tanh@n(x2k)# for solution ~5.9a! ~superpotentialsW for solutions~5.9a!–~5.9c! can also be
easily calculated#. Moreover, the corresponding superpartnersṼ5W22W8 reduce to constants
therefore it is possible to integrate easily the Schro¨dinger equation with potentials~5.9! using the
Darboux transformation.33

5957W. I. Fushchych and A. G. Nikitin: Higher symmetries and exact solutions
It is worth noting that invariance condition~2.3! for operators~2.1!, ~3.12! can be treated as a
zero curvature condition for equations associated with the eigenvalue problem for operatorQ, or
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as the Lax condition where a role of the Lax operatorL is played by a SO, refer to~6.2!. The
reasons stimulating our research of such a well-studied subject and distinguishing features
approach are the following:

~1! The main goal of our paper is to present a constructive description of potentials fo
Schrödinger equation which admit higher symmetries. In this way we extend the fundam
results19–21 connected with the search for potentials admitting usual Lie symmetries.

To solve the deduced determining equations for potentials we use direct reductions
Painlevéor Riccati forms. The obtained results can be used for analysis and solution o
Schrödinger equation as well as for construction of exact solutions of the Boussinesq equatio
item 5 in the following.

In the method of inverse problem, description of pairs of operators~2.1!, ~2.8! satisfying the
Lax condition~6.2! is reduced to the Gelfand-Marchenko-Levitan equations34 or to the Riemann
problem15,31 which can be solved explicitly for a restricted class of potentials.

~2! We use non-Lie symmetries of the Schro¨dinger equation for construction and generati
of exact solutions. Moreover, we are interested not so much in findingnew solutionsas in devel-
oping anew methodof their derivation, which consists in simultaneous using of higher order
conditional symmetries. Nevertheless, the cnoidal solutions~9.7!, ~9.8! and ~8.6!, ~8.7! for the
linear and nonlinear Schro¨dinger equations can be of interest for physicists as well as infi
series of soliton and cnoidal solutions generated by a repeated application of the proced
scribed in Sec. IX.

We believe that the combination ‘‘higher order symmetries1conditional symmetries’’ may be
used effectively in the investigations and analysis of other equations of mathematical phys

~3! Our approach admits a direct generalization to multidimensional Schro¨dinger equations.
Note that higher symmetries of the three-dimension Schro¨dinger equation were investigated
Refs. 18, 35 for particular potentials.

~4! Algebraic relations~4.1!–~4.4! are valid for extended classes of potentials. They o
additional possibilities in the application of algebraic methods to investigate the Schro¨dinger
equation, in particular, the use of raising and lowering operators for this equation with pote
satisfying~3.8d!. We note that relations~3.8d! are valid also for time-independent operatorsQ̃6

5exp(7ivt)Q6 , whereQ6 are given by relations~3.12d!.
~5! Equations~3.8! which describe potentials that admit third-order symmetries are equiva

to the reduced versions of the Boussinesq equation, which appear under the similarity redu36

@this is the case for~3.8a,d!# and the reduction with using symmetries14,25,26@the last is valid for
~3.8b,c!#. Thus the results obtained in Sec. V can be used to construct exact solutions
Boussinesq equation.

A systematic study of higher symmetries of multidimensional Schro¨dinger equations is
planned to be carried out elsewhere.
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