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I. INTRODUCTION

Higher order symmetry operators (SOs) have many important appli-
cations in modern mathematical physics. These operators correspond to
hidden symmetries of partial differential equations, including Lie–Bäcklund
symmetries1,2, as well as super- and parasupersymmetries3−7.

Higher order SOs can be used to construct new conservation laws which
cannot be found in the classical Lie approach3,8. These operators are applied
to separate variables9. Moreover, one should use SOs whose order is higher
than the order of the equation whose variables are separated10.

In the present paper we investigate higher order SOs of the Schrödinger
equation, which are ”non-Lie symmetries”8,11. The simplest non-Lie symme-
tries are considered in detail and all related SOs are explicitly calculated.
The potentials admitting these symmetries are found as solutions of the cor-
responding nonlinear compatibility conditions. It is shown that the higher
order SOs extend the class of potentials which were previously obtained in
the Lie symmetry analysis.

Algebraic properties of higher order SOs are investigated and used to con-
struct exact solutions of the linear and related nonlinear Schrödinger equa-
tions. We propose a new method to generate extended families of exact
solutions by using both the conditional symmetries8,12−14 and higher order
SOs.

The Schrödinger equation with a time–independent potential V = V (x)
is studied mainly. Time–dependent potentials V = V (t, x) are discussed
briefly in Section VI. By this, we recover the old result15 connected with
the Lax representation for the Boussinesq equation, and generate some other
nonlinear equations admitting this representation.

The distinguishing feature of our approach is that coefficients of symme-
try operators and the corresponding potentials are defined as solutions of
differential equations which can be easily generalized to the case of multidi-
mensional Schrödinger equation contrary to the method of inverse scattering
problem.

This paper continues (and in some sense completes) our works16−18 where
non-Lie symmetries of the Schrödinger equation were considered. A detailed
analysis of higher symmetries of multidimensional Schrödinger equations will
be a subject of our subsequent paper.
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II. SYMMETRY OPERATORS OF THE SCHRÖDINGER
EQUATION

Let us formulate the concept of higher order SO for the Schrödinger
equation

LΨ(t, x) = 0, L = i∂t −H,
H = 1

2
(−∂2

x + U(x)) , ∂t ≡ ∂
∂t
, ∂x ≡ ∂

∂x
.

(2.1)

In every sense of the word, a SO of equation (2.1) is any (linear, nonlinear,
differential, integro-differential, etc.) operator Q transforming solutions into
solutions. Restricting ourselves to linear differential operators of finite order
n we represent Q in the form

Q =
n∑

i=0
(hi · p)i, (hi · p)i = {(hi · p)i−1, p}, (hi · p)0 = hi, (2.2)

where hi are unknown functions of (t, x), {A,B} = AB +BA, p = −i∂x.
Operator (2.2) includes no derivatives w.r.t. t which can be expressed as

1
2
(p2 + U) on the set of solutions of equation (2.1).
Definition8. Operator (2.2) is a SO of order n of equation (2.1) if

[Q,L] = 0. (2.3)

Remark. The more general invariance condition3 [Q,L] = αQL, where
αQ is a linear operator, reduces to relation (2.3) if L and Q are operators
defined in (2.1), (2.2). Terms proportional to i ∂

∂t
cannot appear as a result

of commutation of Q and L; hence, without loss of generality, αQ = 0.
For n = 1, 2 SOs (2.2) reduce to differential operators of the first order

and can be interpreted as generators of the invariance group of the equation
in question. For n > 2 these operators (which we call higher order SO)
correspond to non-Lie8,11 symmetries.

The Lie symmetries of equation (2.1) were described in papers19−21. The
general form of potentials admitting nontrivial (i.e., distinct from time dis-
placements) symmetries is as follows

U = a0 + a1x+ a2x
2 +

a3

(x+ a4)2
, (2.4)

where a0, ..., a4 are arbitrary constants. No other potentials admitting local
invariance groups exist.
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Group properties of equation (2.1) with potentials (2.4) were used to
solve the equation exactly, to establish connections between equations with
different potentials, to separate variables, etc.9. Unfortunately, all these
applications are valid for a very restricted class of potentials given by formula
(2.4).

The class of admissible potentials can be essentially extended if we require
that equation (2.1) admits higher order SOs 17. The problem of describing
such potentials (and the corresponding SOs) reduces to solving operator
equations (2.2), (2.3). Evaluating the commutators and equating the coeffi-
cients for linearly independent differentials we arrive at the following system
of determining equations (which is valid for arbitrary n)5

∂xhn = 0, ∂xhn−1 + 2∂thn = 0,
∂xhn−m + 2∂thn−m+1−
−∑[m−2

2 ]
k=0 (−1)k 2(n−m+2+2k)!

(2k+1)!(n−m+1)!
hn−m+2k+2∂

2k+1
x U = 0,

∂th0 +
∑[n−1

2 ]
p=0 (−1)p+1h2p+1∂

2p+1
x U = 0

(2.5)

where m = 2, 3, ..., n, and [y] is the entire part of y.
Formulae (2.5) define a system of nonlinear equations in hi and U . For

n = 2 the general solution for U is given by formula (2.4).
Let us consider the case n = 3, which corresponds to the simplest non-Lie

symmetry, in more detail. The corresponding system (2.5) reduces to

h′3 = 0, h′2 + 2ḣ3 = 0,

2ḣ2 + h′1 − 6h3U
′ = 0,

(2.6a)

2ḣ1 + h′0 − 4h2U
′ = 0,

ḣ0 − h1U
′ + h3U

′′′ = 0,
(2.6b)

where the dots and primes denote derivatives w.r.t. t and x respectively.
Excluding h0 from (2.6b) and using (2.6a) we arrive at the following

equation

F (a, b, c;U, x) ≡ aU ′′′′ − (2äx2 + 6aU + c− 2ḃx)U ′′−
−6(2äx+ aU ′ − ḃ)U ′ − 12äU − 2(2∂4

t ax
2 − 2

...

b x+ c̈) = 0
(2.7)

where a, b, c are arbitrary functions of t.
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Equation (2.7) is nothing but the compatibility condition for system (2.6).
If the potential U satisfies (2.7) then the corresponding coefficients of the SO
have the form

h3 = a, h2 = −2ȧx+ b, h1 = g1 + 6aU,

h0 = −4
3

...
a x3 + 2b̈x2 − 2ċx− 4ȧϕ+ 4(b− 2ȧx)U + d

(2.8)

where

g1 = 2äx2 − 2ḃx+ c, ϕ =
∫
Udx, u = ϕ′, d = d(t). (2.9)

III. EQUATIONS FOR POTENTIAL

Equation (2.7) was obtained earlier17 (see endnote22) and, moreover, par-
ticular solutions for U were found17. Here we analyze this equation in detail.

First of all, let us reduce the order of equation (2.7). Integrating it twice
w.r.t. x and choosing the new dependent variable ϕ defined in (2.9) we obtain

a[ϕ′′′ − 3(ϕ′)2]− (g1ϕ)′ = 1
3
∂4

t ax
4 − 2

3

...

b x3 + c̈x2 + dx+ e. (3.1)

Using the fact that ϕ depends on x only while a, b, c, d, e are functions of
t, it is possible to separate variables in (3.1). Indeed, dividing any term of
(3.1) by a 6= 0, differentiating w.r.t. t and integrating over x we obtain the
following consequence

ġ1a− g1ȧ

a2
ϕ = ∂t

1

a

(
1

15
∂4

t ax
5 − 1

6

...

b x
4 +

1

3
c̈x2 +

1

2
dx2 + ex+ f

)
. (3.2)

Consider equation (3.2) separately in two following cases:

ġ1a− g1ȧ 6= 0, (3.3a)

ġ1a− g1ȧ = 0. (3.3b)

Let condition (3.3a) be valid. Then dividing the l.h.s. and r.h.s. of (3.2)
by ∂t(g1/a) we come to the following general expression for ϕ

ϕ = α3x
3 + α2x

2 + α1x+ α0 + α4

x+α5
+ β1x+β2

x2+β3x+β4
(3.4)

where α0, . . . , α5, β1, . . . , β4 are constants.
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It is possible to verify by a straightforward but cumbersome calculation
that relation (3.4) is compatible with (3.1) only for β1 = β2 = 0. We will not
analyze solutions (3.4) inasmuch as they correspond to potentials (2.4) and
to SOs which are products of the usual Lie symmetries19−21.

If condition (3.3a) is valid, we obtain from equation (3.2)

ä = ak1, ḃ = k2a, c = k3a (3.4)

where k1, k2, k3 are arbitrary constants. The corresponding equation (3.1)
reduces to

ϕ′′′ − 3(ϕ′)2 − (G′′ϕ)′ = 2k1G+ k4x+ k5 (3.5)

where

G = 1
6
k1x

4 − 1
3
k2x

3 + 1
2
k3x

2, G′′ = g1 = 2k1x
2 − 2k2x+ k3, (3.6)

k4 and k5 are constants.
Let us prove that, up to equivalence, equation (3.5) can be reduced to

one of the following forms:

U ′′ − 3U2 + 3ω1 = 0, (3.8a)

U ′′ − 3U2 − 8ω2x = 0, (3.8b)

(U ′′ − 3U2)′ − 2ω3(xU
′ + 2U) = 0, (3.8c)

ϕ′′′ − 3(ϕ′)2 − 2ω4(x
2ϕ)′ = 1

3
ω2

4x
4 + ω5 , U = ϕ′ (3.8d)

where ω1, . . . ω5 are arbitrary constants. Indeed, by using invertible transfor-
mations

ϕ→ ϕ+ C1x+ C2, x→ x+ C3 (3.9)

where Ck (k = 1, 2, 3) are constants, it is possible to simplify the r.h.s. of
(3.5). These transformations cannot change the order of polynomial G, and
so there exist four nonequivalent possibilities:

k1 = 0, k2 = 0, k4 = 0, (3.10a)

k1 = 0, k2 = 0 k4 6= 0, (3.10b)

k1 = 0, k2 6= 0, (3.10c)

k1 6= 0. (3.10d)
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Setting in (3.9)

C1 = −1
6
k3, C2 = C3 = 0, k5 − 1

12
k2

3 = ω1, (3.11a)

C1 = −1
6
k3, C2 = 0, C3 = −k5

k4
+

k2
3

12k4
, k4 = 8ω2, (3.11b)

C1 = k4

4k2
, C2 = k5

2k2
+

3k2
4

32k3
2

+ k3k4

8k2
2
, C3 = k3

2k2
+ 3k4

4k2
2
, k2 = −ω3, (3.11c)

C1 = −1
6
k3 +

k2
2

12k1
, C2 = − k4

4k1
− k2k3

6k1
+

k3
2

24k2
1
,

C3 = k2

2k1
, k1 = ω4, k5 − k2

3

12
+ k2k4

2k1
+

k2
2k3

3k1
− k4

2

16k2
1

= ω5

(3.11d)

for cases (3.10a)-(3.10d) correspondingly, we reduce (3.5) to one of the forms
(3.8a)-(3.8d) respectively.

From (2.2), (2.8), (3.4), (3.9)-(3.11) we find the corresponding symmetry
operators

Q = p3 + 3
4
{U, p} ≡ 2pH + 1

2
Up+ i

4
U ′, (3.12a)

Q = p3 + 3
4
{U, p} − ω2t, (3.12b)

Q = p3 + 3
4
{U, p}+ ω3

(
tH − 1

4
{x, p}

)
, (3.12c)

Q± = 1√
24

[
p3 ± i

4
ω{{x, p}, p}+ 1

4
{3ϕ′ − ω2x2, p}±

± i
2
ω
(
ϕ+ 2xϕ′ − ω2

3
x3
)]

exp(±iωt), ω =
√
−ω4

(3.12d)

where U and ϕ are solutions of (3.2) and H is the related Hamiltonian (2.1).
Thus, the Schrödinger equation (2.1) admits a third-order SO if potential

U satisfies one of the equations (3.8). The explicit form of the corresponding
SOs is present in (3.12).
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IV. ALGEBRAIC PROPERTIES OF SOs

Let us investigate algebraic properties of SOs defined by relations (3.12).
We shall see that these properties are predetermined by the type of equations
(3.8) satisfied by U . By direct calculations, using (2.3), (2.1) and (3.12), we
find the following relations

[Q,H] = 0, (4.1a)

Q2 = 8H2 − 3
2
ω1H − C

8
(4.1b)

if the potential satisfies equation (3.8a) (C is the first integral of equation
(3.8a), refer to (5.1));

[Q,H] = iω2I, [Q, I] = [H, I] = 0 (4.2)

if the potential satisfies equation (3.8b);

[Q,H] = −iω3H (4.3)

if the potential satisfies equation (3.8c), and

[H,Q±] = ±ωQ±, (4.4a)

[Q+, Q−] = ω
(
H2 + 1

48
(2ω2 + ω5)

)
(4.4b)

if the potential satisfies (3.8d).
It follows from (4.1)-(4.3) that non-Lie SOs Q and Hamiltonians H form

consistent Lie algebras which can have rather nontrivial applications.
Formula (4.1b) presents an example of the general theorem23,24 stating

that commuting ordinary differential operators are connected by a polyno-
mial algebraic relation with constant coefficients. In Section VII we use
relations (4.1) to integrate the related equations (2.1).

Relations (4.2) define the Heisenberg algebra. The linear combinations
a± = 1√

2
(H ± iQ) realize the unusual representation of creation and annihi-

lation operators in terms of third-order differential operators.
In accordance with (4.3), Q plays a role of dilatation operator which

continuously changes eigenvalues of H. Indeed, let

HΨE = EΨE, (4.5)
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then the function Ψ′ = exp(iλQ)ΨE (where λ is a real parameter) is also an
eigenvector of the Hamiltonian H with the eigenvalue λE.

It follows from (4.4) that for ω4 < 0 the operators Q+ and Q− are raising
and lowering operators for the corresponding Hamiltonian. In other words,
if ΨE satisfies (4.5) then Q±ΨE are also eigenfunctions of the Hamiltonian
which, however, correspond to the eigenvalues E ± ω:

H(Q±ΨE) = (E ± ω)(Q±ΨE). (4.6)

Relations (4.6) are typical for creation and annihilation operators of the
quantum oscillator. This observation shows a way for constructing exact so-
lutions of the Schrödinger equation whose potential satisfies relation (3.8d).
Moreover, relations (4.4a) allow Q to be interpreted as a conditional symme-
try 8,12; such symmetries are of particular interest in the analysis of partial
differential equations 14,25,26. Thus, third-order SOs of equation (2.1) gener-
ate algebras of certain interest. Moreover, algebraic properties of these SOs
are the same for wide classes of potentials described by one of equations (3.8).

V. REDUCTION OF EQUATIONS FOR POTENTIALS

Let us consider equations (3.8) in detail and describe the corresponding
classes of potentials. A solution of some of these nonlinear equations is a
complicated problem which, however, can be simplified by using reductions
to other well–studied equations.

V.a. The Weierstrass Equation
Formula (3.8a) defines the Weierstrass equation whose solutions are ex-

pressed via either elementary functions or via the Weierstrass function, de-
pending on values of the parameter ω1 and the integration constant. Here we
represent these well-known solutions (refer, e.g. to the classic monograph of
E.T. Whittaker and G.N. Watson28) in the form convenient for our purposes.

Multiplying the l.h.s. of (3.8a) by U ′ and integrating we obtain

1
2
(U ′)2 − U3 + 3ω1U = C (5.1)

where C is an integration constant which appeared above in (4.1b). Then by
changing roles of dependent and independent variables it becomes possible to
integrate (5.1) and to find U as an implicit function of x. We will distinguish
five qualitatively different cases:

C2 − 4ω3
1 = 0, C > 0, (5.2a)
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C2 − 4ω3
1 = 0, C < 0, (5.2b)

C = ω1 = 0, (5.2c)

C2 − 4ω3
1 < 0. (5.3a)

C2 − 4ω3
1 > 0. (5.3b)

For (5.2a)-(5.2c), solutions of (5.1) can be expressed via elementary func-
tions, while (5.3a,b) generate solutions in elliptic functions.

For our purposes, it is convenient to transform (5.1) to another equivalent
form. Using the substitution

U = V − µ
2
, (5.4)

where µ is a real root of the cubic equation

µ3 − 3ω1µ+ C = 0, (5.5)

we obtain

1
2
(V ′)2 − V 3 − ω̄0V

2 + 4ω̄1V + 8ω̄0ω̄1 = 0, (5.6)

where ω̄0 = 3
2
µ and ω̄1 = 3

4
(ω1 − µ2) are arbitrary real numbers.

The substitution (5.4), (5.5) transforms conditions (5.2), (5.3) to the
following form

ω̄1 (ω̄1 − ω̄2
0)

2
= 0, ω̄0 < 0, (5.7a)

ω̄1 (ω̄1 − ω̄2
0)

2
= 0, ω̄0 > 0, (5.7b)

ω̄1 (ω̄1 − ω̄2
0)

2
= 0, ω̄0 = 0, (5.7c)

ω̄1 (ω̄1 − ω̄2
0) 6= 0, ω̄1 > 0, (5.8a)

ω̄1 (ω̄1 − ω̄2
0) 6= 0, ω̄1 < 0. (5.8b)

If relations (5.7a) are satisfied, then ω̄1 = ω̄2
0 or ω̄1 = 0. Moreover, the

corresponding solutions for V differ by a constant shift: V → V +2ω̄0, ω̄0 →
ω̄0/2. Without loss of generality we restrict ourselves to the former case,
then solutions of equation (5.6) corresponding to conditions (5.7a-c) have
the following forms:

V = ν2
[
2 tanh2 (ν(x− k))− 1

]
, ω̄0 = −1

2
ν2, ω̄1 = 1

4
ν4, (5.9a)
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V = ν2
[
2 coth2 (ν(x− k))− 1

]
, ω̄0 = −1

2
ν2, ω̄1 = 1

4
ν4, (5.9a′)

V = ν2 [2 tan2 (ν(x− k)− 1)] , ω̄0 = 1
2
ν2, ω̄1 = 1

4
ν4, (5.9b)

V =
2

(x− k)2
. (5.9c)

Here k and ν are arbitrary real numbers.
For the cases (5.8) the general solution of (5.1) has the form

V = 2℘(x− k) + 1
2
µ (5.10)

where ℘ is a two-periodic Weierstrass function, which is meromorphic on all
the complex plane. The invariants of this function are g2 = −4

3
(ω̄2

0 + 3ω̄1)
and g3 = − 4

27
ω̄0 (ω̄2

0 − 9ω̄1). Moreover, if condition (5.8a) holds, the corre-
sponding solutions are bounded and can be expressed via the elliptic Jacobi
functions

V = B cn 2(Dx+ k) + F, (5.11a)

where

B = (e3 − e2), D =
√

(e1 − e3)/2, F = e2 (5.11b)

e1 > e2 > e3 are real solutions of the cubic equation from the r.h.s. of (5.6).
We note that formulae (5.9) present the set of well-known potentials which

correspond to the exactly solvable Schrödinger equations27. In accordance
with the above, these equations admit extended Lie symmetries.

V.b. Painlevé and Riccati Equations
Relation (3.8b) defines the first Painlevé transcendent. Its solutions are

meromorphic on all the complex plane but cannot be expressed via elemen-
tary or special functions.

Equation (3.8c) is more complicated. However, by using the special
change of variables and applying the Miura29 ansatz, we shall reduce it to
the Painlevé form also. Indeed, making the following change of variables

U = − 3
√

ω2
3

6
V, x = − 3

√
1

6ω3
y, (5.12)

we obtain
V ′′′ + V V ′ − 1

3
xV ′ − 2

3
V = 0, V ′ = ∂V/∂y. (5.13)

The ansatz
V = W ′ − 1

6
W 2 (5.14)
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reduces (5.13) to

(∂y − 1
3
W )(W ′′′ − 1

6
W 2W ′ − 1

3
yW ′ − 1

3
W ) = 0.

Equating the expression in the second brackets to zero and integrating it
we come to the second Painlevé transcendent

W ′′ = 1
18
W 3 + 1

3
yW +K (5.15)

where K is an arbitrary constant.
To make one more reduction of equation (3.8c) we take U = ϕ′. Then,

integrating the resultant equation, we obtain

ϕ′′′ − 3 (ϕ′)2 − 2ω3 (xϕ)′ = C. (5.16)

Then, defining

ϕ = 2 3
√

2ω3ξ + 1
4
y2 + C

2ω3
, y = 3

√
2ω3x,

Ŵ = ξ′ − ξ2 − 1
2
y, ξ′ = ∂ξ

∂y

(5.17)

we represent (5.16) as

Ŵ ′′ − 4ξ′Ŵ + 2ξŴ ′ − yŴ = 0. (5.18)

The trivial solutions of (5.18) correspond to the following Riccati equation
for ξ

ξ′ − ξ2 − 1
2
y = 0. (5.19)

It follows from the above that any solution of equations (5.15) or (5.19)
generates a potential U defined by relations (5.12), (5.14) or (5.17). The
corresponding Schrödinger equation admits a third-order SO.

The last of the equations considered, i.e., equation (3.8d), is the most
complicated. The change

ϕ = 2f − 1
3
ω4x

3 (5.20)

reduces it to the following form:

f ′′′ − 6(f ′)2 + 4ω4(f
′x2 − xf) = ω4 + 1

2
ω5. (5.21)

12
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Multiplying (5.21) by f ′′ and integrating we obtain the first integral:

1
2
(f ′′)2 − 2(f ′)3 + 2ω4(f − xf ′)2 −

(
ω4 + 1

2
ω5

)
f ′ = C (5.22)

which is still a very complicated nonlinear equation.
Let us demonstrate that (5.21) can be reduced to the Riccati equation.

To realize this we rewrite (5.21) as follows

F ′′ + 2fF ′ − 4f ′F = 1
2
ω5 − ω4, (5.23)

where
F = f ′ − f 2 − ω4x

2.

Choosing ω5 = 2ω4 we conclude that any solution of the Riccati equation

f ′ = f 2 + ω4x
2 (5.24)

generates a solution of equation (3.8d), given by relation (5.20).
One more possibility in solving of equation (3.8d) consists in its reduction

to the Painlevé form. Making the change of variables ϕ =
√
−w4χ, x = 1√

−ω4
y

and differentiating equation (3.8d) w.r.t. y, we obtain(
Ũ ′′ − 3Ũ2

)′′
+
(
6Ũ + 6xŨ ′ + +2Ũ ′′

)
= 4x2 (5.26)

where Ũ = ∂χ
∂y

= − 1
ω4
U .

Using the following generalized Miura ansatz

Ũ = −V ′ + V 2 + 2V y + y2 − 1 (5.27)

we reduce equation (5.26) to the form

∂y (∂y − 2V − 2y − 2)
(
V ′′′ − 6V 2V ′ − 4V2 − 12yV V ′ − 4yV − 4V ′y2 − 2V ′

)
= 0

Equating the expression in the right brackets to zero, integrating and
dividing it by 2V , we come to the fourth Painlevé transcendent

V ′′ =
V ′2

2V
+

3

2
V 3 + 8yV 2 +

(
2y2 − 1

)
V +

b

V
. (5.28)

13
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We note that the double differentiation and consequent change of vari-
ables

ϕ′ = −
√

ω4

3

(
Φ + 1

6
y2
)
, x = 1

4√4ω4
y

transform equation (3.8d) to the form

∂4Φ + Φ′′Φ + Φ′Φ′ − 1
3
(8Φ + x2Φ′′ + 7xΦ′) = 0

which coincides with the reduced Boussinesq equation3,12. The procedures
outlined above reduces the equation either to the fourth Painlevé transcen-
dent (5.28) or to the Riccati equation (5.24).

Thus, the third-order SO are admitted by a very extended class of po-
tentials described above. We should like to emphasize that in general the
corresponding Schrödinger equation does not possesses any nontrivial (dis-
tinct from time displacements) Lie symmetry.

VI. EQUATIONS FOR TIME-DEPENDENT POTENTIALS

Consider briefly the case of time-dependent potentials U = U(x, t). The
determining equations (2.6) are valid in this case also. Moreover, the com-
patibility condition for system (2.6) takes the form

F (a, b, c;x, U) + 12aÜ − 4(b− 2ȧx)U̇ ′ = 0 (6.1)

where F (a, b, c;x, U) is defined in (2.7).
Equation (6.1) is much more complicated than (2.7) due to the time

dependence of U , which makes it impossible to separate variables. For any
fixed set of functions a(t), b(t), and c(t), formula (6.1) defines a nonlinear
equation for potential. Moreover, any of these equations admits the Lax
representation

[H,Q] = i
∂Q

∂t
, (6.2)

cf. (2.3). Refer to Refs. 30,31 for the general results connected with arbitrary
ordinary differential operators satisfying (6.2) .

We will not analyze equations (6.1) here, but present a few simple exam-
ples concerning particular choices of arbitrary functions a, b, and c.

a = const, b = c = 0 :

−12Ü + U ′′′′ − 6(UU ′)′ = 0; (6.3)

14
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a, b are constants, c = 0 :

12Ü − (4bU̇ − U ′′′ + 6UU ′)′ = 0; (6.4)

ȧ = c = 0, ḃ = ω3a:

12Ü − 4(ω3t− 2x)U̇ ′ + (U ′′ − 3U2)′′ + 2ω3(xU
′ + 2U)′ = 0; (6.5)

a = exp(t), b = c = 0:

12Ü + 8xU̇ ′ + (U ′′ − U2)′′ − 12(Ux)′ − 2x2U ′′ − 4x2 = 0. (6.6)

Formula (6.3) defines the Boussinesq equation. The Lax representation
(6.2) for this equation is well known15. Formulae (6.4)-(6.6) present other
examples of nonlinear equations admitting this representation and arise nat-
urally under the analysis of third-order SOs of the Schrödinger equation.

VII. EXACT SOLUTIONS

Let us regard the case of potentials satisfying (3.8a) or (5.4), (5.6). Taking
into account commutativity of the corresponding SO (3.12a) with Hamilto-
nian (2.1) it is convenient to search for solutions of the Schrödinger equation
in the form

Ψ(t, x) = exp(−iEt)ψ(x) (7.1)

where ψ(x) are eigenfunctions of the commuting operators H and Q:

Hψ(x) = Eψ(x), (7.2a)

Qψ(x) = λψ(x). (7.2b)

Using (7.2a), (3.12a), and (5.4) we reduce (7.2b) to the first– order equa-
tion (

2E + V
2

+ ω̄0

)
ψ′ =

(
1
4
V ′ + iλ

)
ψ (7.3)

whose general solution has the form

ψ = A
√
V + 4E + 2ω̄0 exp

(
2iλ

∫ dx
V +4E+2ω̄0

)
(7.4)

where A is an arbitrary constant. Then, expressing ψ′ via ψ in accordance
with (7.3) and using (5.6), we reduce (7.2a) to the following algebraic relation
for E and λ (compare with (4.1b))

λ2 = 8E2(E + ω̄0). (7.5)

15
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Thus, there exists a remarkably simple way to integrate the Schrödinger
equation which admits a third order SO. The integration reduces to the
problem of solving the first-order ordinary differential equation (7.3) and
algebraic equation (7.5).

Let us show that the existence of a third-order SO for the linear
Schrödinger equation enables one to find exact solutions for the following
nonlinear equation

i∂tΨ̃ = 1
2
p2Ψ̃ + 1

2A2 (Ψ̃
∗Ψ̃)Ψ̃. (7.6)

Indeed, if λ2 > 0, solutions (7.1), (7.4) satisfy the following relations

Ψ∗Ψ = A2(V + 4E + 2ω̄0). (7.7)

Using (7.2a) and (7.7) we make sure that the functions

Ψ̃ = exp(iεt)ψ(x), ε = −3E − ω̄0 (7.8)

(where ψ(x) are functions defined in (7.4)) are exact solutions of (7.6).
Thus, we obtain a wide class of exact solutions of the nonlinear

Schrödinger equation, which depend on arbitrary parameters ε, ω̄0, ω̄1, k (see
(7.8), (7.4), (5.6), (5.8)). Properties of these (and some more general) solu-
tions are discussed in the following section.

VIII. LIE SYMMETRIES AND GENERATION OF
SOLUTIONS

It is well known that equation (7.6) is invariant under the Galilei trans-
formations (refer, e.g., to refs. 2,3)

x→ x′ = x− vt,

Ψ(t, x) → Ψ′(t, x′) = exp
[
i
(
vx− v2

2
+ ϕ0

)]
Ψ(t, x)

(8.1)

where v and ϕ0 are real parameters. Using (8.1) it is possible to generate a
more extended family of solutions starting with (7.8):

Ψ̄ = A
√
V (x− k − vt) + 4E + 2ω̄0×

exp

{
i

[
(2ε− v2) t

2
+ vx+ ϕ0 + 2λ

x−k−vt∫
0

dy
V (y)+4E+2ω̄0

]}
.

(8.2)
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Here V is an arbitrary solution of equation (5.6), v, ω̄0, ω̄1, k, ϕ0 and E
are real parameters, λ and ε are defined in (7.5), (7.8).

In order for λ to be real we require ε ≥ 0, other parameters are arbitrary.
Solutions (8.2) are qualitatively different for different values of free param-

eters enumerated in (5.7). If ω̄0 and ω̄1 satisfy (5.7a) or (5.7c), possible V are
given by formulae (5.9a), (5.9a′) or (5.9c). Solutions (8.2), (5.9a) are bounded
for any x and t, whereas solutions (8.2), (5.9a′) and (8.2), (5.9c) are singular
at x−k−vt = 0. For ω̄0 and ω̄1 satisfying (5.7b) the modulus of the complex
function (8.2), (5.9b) is periodic and singular at x− k − vt = (2n+ 1)π/2ν.
All the above mentioned singularities are simple poles. If ω̄0 and ω̄1 satisfy
relations (5.8a), the solutions (8.2) are expressed via the two-periodic Weier-
strass function ℘ (refer to (5.10)) and are, generally speaking, unbounded.
But if we restrict ourselves to solutions (5.11) for potential, the corresponding
solutions (8.2) are periodic and bounded.

To inquire into a physical content of the obtained solutions let us consider
in more detail the cases (8.2), (5.9a) and (8.2), (5.11).

For potentials (5.9a) the corresponding relation (7.5) reduces to

λ2 = 4E2ε, ε = 2E − ν2, (8.3)

and the integral in (8.2) can be easily calculated. This enables us to represent
solutions (8.2), (5.9a) as follows

Ψ̃ = Aν
cosh[ν(x−k−vt)]

exp
{
i
[(

ν2−v2

2

)
t+ vx+ ϕ0

]}
, E = 0; (8.4)

Ψ̃ = A {ν tanh[ν(x− k − vt)]± i
√
ε}×

exp
{
i
[(

ν2−v2

2
− 3E

)
t+ (v ∓

√
ε)x+ ϕ0

]}
, E 6= 0, ε ≥ 0.

(8.5)

For potentials (5.11) we obtain from (8.2)

Ψ̃ = Ψ̃1 = A
√
B cn [D(x− vt) + k] exp[if1(t, x)], E = 0; (8.6)

Ψ̃ = Ψ̃2 = A
√
B cn 2[D(x− vt) + k] + F exp(if2(t, x)], E + ω̄0 = 0 (8.7)

where

f1(t, x) = f2(t, x) +
3

2
Ft =

(
F − v2

2

)
t+ vx+ ϕ0,

B,D and F are parameters defined in (5.11b).
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For another values of E solutions (8.2), (5.11) are also reduced to the
form (8.7) where the phase f2(t, x) is expressed via elliptic integrals.

Formula (8.4) presents a fast decreasing one–soliton solution31. Relation
(8.5) defines a soliton solution whose behavior at x→∞ is typical of solitons
with a finite density. Formulae (8.6), (8.7) describe ”cnoidal” solutions for
the nonlinear Schrödinger equation.

IX. CONDITIONAL SYMMETRY AND GENERATION OF
SOLUTIONS

Let us return to the linear Schrödinger equation (2.1) with the potential U
satisfying (3.8a). Generally speaking it possesses no non-trivial (distinct from
time displacements) Lie symmetry. Nevertheless, its solutions can be gener-
ated within the framework of the concept of conditional symmetry2,3,12,14,32.
Indeed, these solutions satisfy (7.7), and equation (2.1) with the additional
condition (7.7) is invariant under the Galilei transformations (8.1) (i.e., con-
dition (7.7) extends the symmetry of equation (2.1)).

This conditional symmetry enables us to generate new solutions. Starting
with (7.1), (7.4) and using (8.1) we obtain

Ψ = A
√
V (x− k − vt) + 4E + 2ω̄0×

exp

{
i

[
−(2E + v2) t

2
+ vx+ ϕ0 + 2λ

x−k−vt∫
0

dy
V (y)+4E+2ω̄0

]}
.

(9.1)

Functions (9.1) satisfy the Schrödinger equation with a potential V (x −
k − vt) where V (x) is a solution of equation (5.6). In the particular case
E = − ω̄0

2
these functions are reduced to solutions (8.2) of the nonlinear

equation (7.6).
One more generation of solutions can be made using a third–order SO.

Inasmuch as V (x) satisfies (5.6), then V (x − vt) satisfies the Boussinesq
equation (6.3). It means that the corresponding linear Schrödinger equation
admits a third– order SO. In accordance with (2.2), (2.6) this SO can be
represented in the form

Q = p3 + 1
4
{3V + 2ω̄0 + 6v2, p}+ 3

2
vV ≡

2pH + 1
2
(V + 2ω̄0 + 6v2)p+ 3

2
vV + i

4
V ′.

(9.2)

Formula (9.2) generalizes (3.12a) to the case of time– dependent potential.
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Acting by operator (9.2) on Ψ in (9.1) we obtain a new family of solutions

Ψ′ = QΨ = aψ + iv2Ψ1 (9.3)

where a = λ+ 4Ev + ω̄0v − 4v3, Ψ is the initial solution (9.1),

Ψ1 = V ′+4iλ
2(4E+V +2ω̄0)

Ψ. (9.4)

We note that if Ψ is a soliton solution

Ψ = νA
cosh[ν[x−vt)]

exp
[
i
(
−v2

2
t+ vx+ ϕ0

)]
(9.5)

(the corresponding potential is present in (5.9a)), then (9.4) is a soliton
solution too:

Ψ1 = ν2A sinh[ν(x−vt)]

cosh2[ν(x−vt)]
exp

[
i
(
−v2

2
t+ vx+ ϕ0

)]
. (9.6)

Starting with the potential (5.11) we obtain from (9.1) a particular solu-
tion

Ψ = A
√
B cn 2z + F exp

[
i

(
−v

2

2
t+ vx+ ϕ0

)]
, z = D(x− vt) (9.7)

The corresponding generated solution (9.4) reads

Ψ1 = −ABD cn z sn z dn z

B cn 2z + 2F
exp

[
i

(
−v

2

2
t+ vx+ ϕ0

)]
. (9.8)

and is also bounded.
Acting by SO (9.2) on solutions (9.3), (9.8) we again obtain new solu-

tions. Moreover, this procedure can be repeated. In particular, in this way
it is possible to construct multisoliton solutions of the linear Schrödinger
equation.

We see that higher order SOs present efficient possibilities for solving
equations of motion and generating new solutions starting with known ones.

X. CONCLUSION
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Higher order SOs present a powerful tool for analyzing and solving the
Schrödinger equation. The concept of higher symmetries enables us to extend
the class of privileged potentials (2.4) and to investigate invariance algebras
of the equations whose potentials satisfy one of relations (3.8).

We note that potentials (5.9) can be represented in the form V = W 2+W ′

where W = ν tanh[ν(x− k)] for solution (5.9a) (superpotentials W for solu-
tions (5.9a′)-(5.9c) can be also easily calculated). Moreover, the correspond-
ing superpartners Ṽ = W 2 −W ′ reduce to constants, therefore it is possible
to integrate easily the Schrödinger equation with potentials (5.9) using the
Darboux transformation33.

It is worth to note that invariance condition (2.3) for operators (2.1),
(3.12) can be treated as a zero curvature condition for equations associated
with the eigenvalue problem for operator Q, or as the Lax condition where
a role of the Lax operator L is played by a SO, refer to (6.2). The reasons
stimulating our research of such a well-studied subject and distinguishing
features of our approach are the following:

1. The main goal of our paper is to present a constructive description of
potentials for the Schrödinger equation which admit higher symmetries. In
this way we extend the fundamental results19−21 connected with the search
for potentials admitting usual Lie symmetries.

To solve the deduced determining equations for potentials we use direct
reductions to the Painlevé or Riccati forms. The obtained results can be
used for analysis and solution of the Schrödinger equation as well as for
construction of exact solutions of the Boussinesq equation, see item 5 in the
following.

In the method of inverse problem, description of pairs of operators (2.1),
(2.8) satisfying the Lax condition (6.2) is reduced to the Gelfand-Marchenko-
Levitan equations34 or to the Riemann problem15,31 which can be solved
explicitly for a restricted class of potentials.

2. We use non-Lie symmetries of the Schrödinger equation for construc-
tion and generation of exact solutions. Moreover, we are interested not so
much in finding new solutions as in developing a new method of their deriva-
tion, which consists in simultaneous using of higher order and conditional
symmetries. Nevertheless, the cnoidal solutions (9.7), (9.8) and (8.6), (8.7)
for the linear and nonlinear Schrödinger equations can be of interest for physi-
cists as well as infinite series of soliton and cnoidal solutions generated by a
repeated application of the procedure described in Section IX..
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We believe that the combination ”higher order symmetries + conditional
symmetries” may be used effectively in the investigations and analysis of
other equations of mathematical physics.

3. Our approach admits a direct generalization to multidimensional
Schrödinger equations. Note that higher symmetries of the three-dimension
Schrödinger equation were investigated in18,35 for particular potentials.

4. Algebraic relations (4.1)-(4.4) are valid for extended classes of po-
tentials. They open additional possibilities in the application of algebraic
methods to investigate the Schrödinger equation, in particular, the use of
raising and lowering operators for this equation with potentials satisfying
(3.8d). We note that relations (3.8d) are valid also for time-independent
operators Q̃± = exp(∓iωt)Q± where Q± are given by relations (3.12d).

5. Equations (3.8) which describe potentials that admit third-order sym-
metries are equivalent to the reduced versions of the Boussinesq equation,
which appear under the similarity reduction36 (this is the case for (3.8a,d))
and the reduction with using symmetries14,25,26 (the last is valid for (3.8b,c)).
Thus, the results obtained in Section V can be used to construct exact solu-
tions of the Boussinesq equation.

A systematic study of higher symmetries of multidimensional Schrödinger
equations is planned to be carried out elsewhere.

We are indebted to our anonymous referee for the rigorous criticism and
helpful suggestions.
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