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I. INTRODUCTION

It is well-known that symmetries of differential equations

form powerful tools for the study of symmetries of these

equations. They are used to separate variables [1], to derive

conservation laws [2], to construct exact solutions of linear and

nonlinear differential equations [3-6], to find spectra of linear

differential operators [7,8], etc. etc.

In this paper we investigate special involutive symmetries

of the Dirac equation. It is well known that this equation is

invariant w.r.t. the extended Poincare group. Pauli, Gursey,

Plebanski and Pursey [9] found the additional SL(2,C) symmetry

of the Dirac equation, which is realized by antilinear

transformations (i.e., including the complex conjugation). Hidden

SL(2,C) symmetry of this equation (generated by linear non-local

integro-differential operators and by first order differential

operators with matrix coefficients) was described in papers [10]

and [11] (refer also to [8]).

In this paper we present a new symmetry algebra of the Dirac

equation. It is specified by the following features:

(i) All its basis element are involutions;

(ii) It includes proper discrete symmetries (like

reflections P, T and charge conjugation C) as well as finite

rotations;

(iii) It is a finite dimensional Lie algebra whose dimension

is much more extended than dimensions of other finite symmetry

algebras of the Dirac equation.

We use this symmetry algebra for two purposes. First, to

reduce the Dirac equation to two uncoupled subsystems or even to
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four uncoupled one-component equations. The necessary and

sufficient condition for existence of such a reduction is that

the components of the vector-potential Aµ (treated as given

functions of x0, x1, x2, x3) have definite parities, i.e., are

invariant (up to a sign) under reflections of xµ.

The other important application of involutive symmetries is

searching for systems with exact supersymmetry (SUSY). Using the

former algebra we extend the list of known systems with N=2 SUSY

[12,13] and find a class of external potentials for the Dirac

equation which generate extended SUSY.

In Section II we describe the involutive symmetry algebra

of the Dirac equation. The corresponding reductions for the Dirac

equation are discussed in Section III and presented explicitly

in the Appendix.

Sections IV and V are devoted to reduction of the Dirac

oscillator and to searching for exact SUSY. Section VI includes

application of the reduction technique to SUSY quantum mechanics.

II. INVOLUTIVE SYMMETRIES OF THE DIRAC EQUATION

We start with the free Dirac equation

which is invariant w.r.t. the complete Lorentz group. Here γµ

(2.1)

(µ=0,1,2,3) are the Dirac matrices with diagonal γ5=iγ0γ1γ2γ3:

(2.2)
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are the Pauli matrices and I2 denotes a 2x2 unit

matrix.

Let us note that this equation admits also non-Lie

symmetries [8, 10, 11].

Here we study the class of involutive symmetries of (2.1).

Such symmetries form a subset of the complete Lorentz group,

which is defined by reflections of coordinate axes, rotations by

the angle w.r.t. a given axis (each of them can be reduced

to a reflection of a pair of axes) and by products of these

transformations. There are sixteen of them, and they form a

finite group composed of:

- four reflections of coordinates xµ:

- six reflections of pairs of coordinates:

(2.3a)

- four reflections of triplets of coordinates:

(2.3b)

- a complete reflection of all coordinates:

(2.3c)

and the identity transformation

(2.4a)

(µ=0,1,2,3; no sums over µ in (2.3)). We will use also the

(2.4b)

following notation for reflections (2.3), (2.4):

(2.5)
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We see that for λ,σ =1,2,3 transformation (2.3b) are

rotations while (2.3a), (2.3c) and (2.3b) for zero λ or σ are

proper reflections.

The corresponding symmetries of the Dirac equation form a

projective representation [16] of the 16-dimensional group (2.3),

(2.4) and have the following form

where

(2.6)

and the trivial identity transformation (corresponding to (2.4b)

is omitted.

It is easy to verify that such defined operators Rkl commute

with the operator L0 and so transform solutions of (2.1) into

themselves.

Symmetries (2.6) satisfy the following commutation relations

(by definition Rab=-Rba).

(2.7)

In accordance with (2.7) symmetries (2.6) realize a

representation of the algebra so(6).

Let us now specify antilinear (i.e., including the complex

conjugation) symmetries of equation (2.1) corresponding to

reflections (2.3), (2.4). On the set of solutions of the Dirac

equation they are reduced to the form

where Rkl are transformations (2.6) and C is the charge
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conjugation transformation

(2.8)

Using the relations

(2.9)

we conclude that among the transformations (2.7) there are six

(2.10)

representatives which satisfy (BAC)
2=-I (for A,C =0,4,5 or A,C

=1,2,3) and nine representatives which satisfy the condition

(BAC)
2=I, where I is the identity operator. We have a special

interest in such transformations (2.7) whose square is positive

(otherwise the corresponding Bµλ cannot be diagonalized to the

real matrix γ5 and so they cannot be used for reductions

considered in the following section). The corresponding

symmetries are

Using (2.7), (2.10) it is not difficult to specify

(2.11a)

(2.11b)

(2.11c)

commutation and anticommutation relations for operators (2.6) and

(2.11). We notice that the set of operators forms

a basis of the 25-dimensional Lie algebra A25 characterized by

commutation relations (2.7) and (2.12):

Remark: By including all symmetries (2.8) and products of
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symmetries (2.6), (2.8) and operator of multiplication by ,

(2.12)

the algebra A25 can be extended to the 64-dimensional Lie algebra

defined over the field of real numbers. Additional extensions can

be made by including the non-Lie involutive symmetries [8, 11].

Thus involutive symmetries of the Dirac equation generate

the extended Lie algebra A25. In the following sections we use it

to reduce the Dirac equation for a charged particle interacting

with various external fields and to search for supersymmetries

of the Dirac equation.

III. REDUCTION OF THE DIRAC EQUATION

Now we shall apply the results of the previous subsection

to reduce the Dirac equation for a charged particle in an

external field

where is the vector-

(3.1)

potential.
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Equation (3.1) is invariant under one of the transformations

described in (2.4a), (2.3a-c) provided vector-potential Aµ

satisfies one of the relations

respectively with λ and σ being fixed. On the other hand, if we

(3.2)

(3.3a)

(3.3b)

(3.3c)

require that (3.1) admits one of the symmetries (2.11a-c),

vector-potential Aµ has to satisfy one of the corresponding

relations

respectively.

(3.4a)

(3.4b)

(3.4c)

We notice that relations (3.3) and (3.4) leave the Lorentz

gauge invariant.

To reduce (3.1) we diagonalize the corresponding symmetries

(2.6). Let us consider in detail the case (3.2), i.e. when

equation (3.1) is invariant under the transformation
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To diagonalize this symmetry we use the operator

(3.5)

with , then

(3.6)

Simultaneously operator L of (3.1) is reduced to the block

(3.7)

diagonal form:

Thus the transformed equation

(3.8)

has the desired reduced form

(3.9)

where are two-component spinors, i.e., non-zero components

(3.10)

of eigenvectors of γ5 satisfying .

For Aµ=0 equation (3.10) is equivalent to the one considered

in [17].

If equations (3.10) again admit a discrete symmetry, say

(which is the case if A0(x’)=A0(x), A1(x’)=-A1(x’), A2(x’)=-A2(x),

(3.11)

A3(x’)=A3(x)), then they can further be reduced to one-component

uncoupled subsystems. Indeed, by diagonalyzing symmetry
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and using transformation (the corresponding

transformation operator is , W -1=W †) we

change equation (3.10) to the following one

where both µ and λ runs independently over the values +,- and ψµλ

(3.12)

are one-component functions, i.e., nonzero components of

eigenvectors of matrix σ3 satisfying

We notice that transformations (3.6), (3.7), (3.8) can be

used also for reduction of Dirac’s equation with the anomalous

(Pauli) interaction:

where

(3.13)

For example, if Aµ satisfies (2.4a), then (3.13) is reduced to

the following two subsystems for two-component spinors:

where H and E are vectors of the magnetic and electric field

strengths: .

In an analogous way it is possible to reduce the Dirac

equation (3.1) if vector-potentials satisfy one of relations

(3.3) or (3.4). We present the complete list of the corresponding

reductions in the Appendix.
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VI. REDUCTION OF THE DIRAC OSCILLATOR

The Dirac oscillator equation [14,15] can be written as

This equation is P-invariant, i.e., admits the following

(4.1)

involutive symmetry

and consequently can be reduced to two uncoupled subsystems.

Indeed, using the transformation ψ→ψ’=Wψ where ,

equation (4.1) decouples and can be expressed as

Equations (4.2) admit involutive symmetry (3.9) and by means

(4.2)

of operator W for (3.9) can be reduced to four one-component

uncoupled equations.

However, there is another involutive symmetry for equation

(4.2) which can be written as

where B is the Biedenharn operator [18]:

(4.3)

Operator B anticommutes with and , thus Q

(4.4)

introduced in (4.3) commutes with the operator in square brackets

defined in (4.2). On the set of functions satisfying
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(4.5)

equations (4.2) are reduced to the form

In other words, the Dirac oscillator equation is reduced to

(4.6)

four uncoupled two-component subsystems.

Setting m=0 in (4.2) and (4.6), we receive the equations

which we shall call the Weyl oscillators. Analogously to the

Dirac oscillator case they generate oscillator-like spectra and

are related to the free (Weyl) equation by changing p → p -iωxß

with ß=P or ß=B being an operator anticommuting with the

differential part of the corresponding Hamiltonian in (4.2) or

(4.6) respectively.

The Weyl oscillators will be studied in more detail in the

next paper. It appears they have very interesting symmetries and

supersymmetries which are preserved if we change in (4.6),

where W(x) is an arbitrary even superpotential.

V. EXTENDED SUPERSYMMETRIES

We say that an equation of motion is supersymmetric if it

admits specific symmetries (supercharges) Qa, a=1,2, which form

the Witten superalgebra [19] (we choose Qa Hermitian):

is the related Hamiltonian.

(5.1)
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To search for SUSY we use the following anticommutative

relations for involutive symmetries (2.6)

We start with the Dirac equation (3.1) for a charged

(5.2)

particle interacting with the time-independent magnetic field.

The corresponding vector-potentials have the form

Denoting we have

(5.3)

where and are two component spinors, and 0 is the two

(5.4)

component zero column. Expressing ψ- via ψ+ we come from (3.1),

(5.3) to the following equations:

We will search for the SUSY of equation (5.5). The

(5.5)

(5.6)

corresponding symmetries for (3.1) can be found using relations

(5.4), (5.6).

For the case of arbitrary vector-potential A(x) equation

(5.5) admits the following symmetry operator (supercharge)

which satisfies the relation and so commutes with the

(5.7)

"Hamiltonian" .

To find additional supercharges we suppose that the vector-
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potential Aa(x) satisfies one of the relations (3.3) where µ, σ

= 1,2,3. The corresponding equation (5.5) admits the following

symmetries:

Operators (5.8) satisfy the following relations (compare

(5.8a)

(5.8b)

(5.8c)

with (5.2))

(now sum over b) and

(5.9)

which enable us to construct the second supercharges

(5.10)

for the cases (3.3a) and (3.3c) respectively.

(5.11)

Thus the corresponding equation (3.3) admits N=2 SUSY.

If Aa(x) satisfy two or more relations (3.3) simultaneously,

then equation (5.5) admits extended SUSY. All nonequivalent

possibilities are listed in the following formulae:

Relations (5.12) define three classes of vector-potentials

(5.12)

Aµ (corresponding to different fixed values of b,c) which
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generate SUSY. Operators Qa (5.12), (5.13) realize N=3 extended

(5.13)

(5.14)

SUSY, while the corresponding operators (5.14) realize N=4

extended SUSY.

It is necessary to note that the extended SUSY found in the

above does not have direct connections with SUSY quantum field

theory and cannot be used for a nontrivial extension of the

Poincare group. But the symmetries (5.12)-(5.14) have rather

nontrivial consequences in the quantum mechanical context, which

consists of the specific degeneration of the corresponding energy

spectra. Indeed, calculating commutation relations for the

supercharges (5.12), we obtain

It follows from (5.9), (5.15) that on the subspace of

(5.15)

solutions of equation (5.5), corresponding to the nonzero

eigenvalue E of the Hamiltonian ,the operators

satisfy relations (2.7) and (5.17):

(5.16)
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Eigenvalues of rab are equal to ± 1, and so operators (5.16)

(5.17)

realize the representation of the algebra

so(4).

In an analogous way, choosing the basis (5.16), we conclude

that the supercharges (5.13) generate the same representation of

the algebra so(4), but the supercharges (5.14) generate the

representation of the algebra so(5) (in the last

case we have in (5.16) k,l=1,2,3,5). The corresponding

commutation relations for operators (5.16) again can be expressed

in the form (2.7).

Thus, for any symmetry (5.12)-(5.14) each nonzero eigenvalue

of the Hamiltonian has four-fold degeneracy due to the hidden

symmetry so(4) or so(5).

N=2 and N=1 SUSY aspects of the Dirac equation were

discussed by a number of authors, refer, e.g., to papers [20],

surveys [12,21] and monograph [22].We extend the list of problems

generating this symmetry and find a class of potentials

generating extended SUSY.

VI. REDUCTION TECHNIQUE IN SUPERSYMMETRIC QUANTUM MECHANICS

The idea of diagonalyzing a discrete symmetry in order to

reduce the corresponding equation of motion can be applied to

many problems in mathematical physics. Continuing the theme of

SUSY, we apply this idea to one-dimensional SUSY quantum

mechanics [19]. The corresponding equation of motion has the form
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where H is the Hamiltonian with matrix potential

(6.1)

Equation (6.1) admits specific symmetries (supercharges) of

(6.2)

the form

which transform solutions into themselves and generate the

(6.3)

following superalgebra (which is isomorphic to (5.1):

Let us demonstrate that this superalgebra is reducible for

(6.4)

odd superpotentials W(x), i.e., for which W(-x)=-W(x) . Indeed,

for W odd there exists the invariant operator

(pψ(x)=ψ(-x)) which commutes with supercharges and . In

(6.5)

order to diagonalize K we apply the operator

so that

(6.6)

The corresponding supercharges are transformed into the diagonal

(6.7)

form
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i.e.,

(6.8)

where

Thus supercharges (6.3) generate a reducible representation

(6.9a)

(6.9b)

of the algebra (6.4) which is equivalent to a direct sum of

representations (6.9a) and (6.9b). The corresponding Hamiltonians

are of the form

and

(6.10a)

Operators (6.9a) and (6.10a) (as well as (6.9b) and (6.10b))

(6.10b)

form a one-dimensional realization of SSQM, which has a very

unique property: supercharges and are not products of
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commutive bosonic and fermionic operators. As a consequence of

this fact the spectra of superhamiltonians with familiar

potentials differ from the corresponding spectra in standard

realization of SSQM. For instance, if W=ωx then supercharges

(6.9b) and Hamiltonian (6.10b) correspond to a specific version

of the supersymmetric oscillator for which differences between

eigenvalues are not equal to ω (compare with paper [19]) but to

2ω, whereas supercharges (6.9a) and Hamiltonian (6.10a) present

a supersymmetric system with spontaneously broken supersymmetry

(i.e., with a degenerated ground state).

In conclusion we notice that the N=2 Wess-Zumino SSQM [23]

with a superpotential being an odd complex function is completely

reducible too.

VII. CONCLUSION

We present the extended Lie algebra formed by involutive

symmetries of the Dirac equation and apply it to reduction of a

number of problems connected with interaction of a spin-1/2

particle with an external field.

Such a reduction technique can be generalized for reduction

of systems of ordinary differential equations as well as many

other systems of partial differential equations, including

nonlinear ones. We plan to outline the results of our

investigations of these possibilities elsewhere.

The other interesting application of involutive symmetries

is searching for exact SUSY for the Dirac equation. We

demonstrate that in addition to the known class of systems with
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N=2 SUSY this equation generates also extended supersymmetries.

Moreover, the list of supersymmetric problems can be extended by

including antilinear involutive symmetries.

The other goal of the present article is to demonstrate that

a wide class of realizations of SSQM is completely reducible. We

obtain a one-dimensional representations of the Witten

superalgebra (6.4) which can be extended to the case of

multidimensional space of independent variables.

Finally we note that the Weyl oscillators of Section V are

the simplest consistent examples of generalizations of the Dirac

oscillator [14,15]. Such generalizations for the cases of

arbitrary spin multi-body systems are intensively discussed in

literature [24, 25].

APPENDIX

EXPLICIT FORM OF REDUCTIONS

Here we present in explicit form reductions of the Dirac

equation which are possible if vector-potential Aµ satisfies one

of the relations (3.3a-c) or (3.4a-c). To reduce (3.1) it is

sufficient to diagonalize the corresponding symmetries (2.6) or

(2.8). This can be done by using the operators

(A1.a)

(A1.b)
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(A1.c)

or

In all the cases we have WABRABW
†
AB=iγ5 or The

(A2.a)

(A2.b)

(A2.c)

transformations ψ→WABψ reduce equation (3.1) to uncoupled

subsystems of the following form:

or

(A3.a)

(A3.b)

(A3.c)

(no sums over repeated indices). Here ψ± are two-component wave

functions, i.e., nonzero components of eigenvectors of the matrix
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γ5, corresponding to the eigenvalues ±1.

(A4.a)

(A4.b)

(A4.c)

Symmetry (4.8) commutes with operator L of (3.1) iff Aµ=0

and so can be used only for reduction of the free Dirac equation

(2.1). The corresponding operator diagonalizes

symmetry (2.9) to the form γ5 and reduces equation (2.1) to the

following uncoupled subsystems:

Imposing condition (4.5) on solutions of the first equation

(A.5)

(A3.a) and setting Aµ=0 we come to the equations proposed in

[18].

If the vector-potential Aµ has such parities that the

corresponding Dirac equation (3.1) admits two commuting

symmetries from the set (2.6), (2.8) then we can reduce (3.1) to

four uncoupled subsystems. If we find such a pair (S1, S2), then

(S1, S1S2) and (S2, S1S2) are also sets of commuting symmetries

equivalent to the set (S1, S2). Using (2.7), (2.12), it is not

difficult to write down the 51 nonequivalent pairs of commuting

symmetries:

In other words, there are 51 possible reductions of the
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Dirac equation to four uncoupled subsystems by means of linear

and antilinear involutive symmetries. The explicit form of these

reductions can be found in analogy with the above.

We notice that only two of the involutive symmetries of the

Dirac equation commute with any Lorentz transformation, namely

R and C given in (3.5) and (2.9) respectively. Consequently the

corresponding reduced equations (3.9) and (4.19) are Lorentz-

invariant.
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