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Abstract. A new algebra of involutive symmetries of the Dirac equation is found. This algebra
is used to reduce the Dirac equation for a charged particle, interacting with an external field
and to describe hidden supersymmetries of this equation. Reducibility of a class of equations
of supersymmetric quantum mechanics is established.

1. Introduction

It is well known that symmetries of differential equations form powerful tools for the study
of these equations. They are used to separate variables [1], to derive conservation laws
[2], to construct exact solutions of linear and nonlinear differential equations [3–6], to find
spectra of linear differential operators [7, 8], and so on.

In this paper we investigate special involutive symmetries of the Dirac equation.
It is well known that this equation is invariant with respect to the extended Poincaré
group. Pauli, G̈ursey, Plebanski and Pursey [9] found the additionalSL(2, C) symmetry
of the Dirac equation, which is realized by antilinear transformations (i.e., including the
complex conjugation). HiddenSL(2, C) symmetry of this equation (generated by linear
non-local integro-differential operators and by first-order differential operators with matrix
coefficients) was described in [10] and [11] (refer also to [8]).

In this paper we present a new symmetry algebra of the Dirac equation. It is specified
by the following features.

(i) All its basis element are involutions.
(ii) It includes proper discrete symmetries (like reflectionsP , T and charge conjugation

C) as well as finite rotations.
(iii) It is a finite-dimensional Lie algebra whose dimension is much more extended than

dimensions of other finite symmetry algebras of the Dirac equation.
We use this symmetry algebra for two purposes. First, to reduce the Dirac equation

to two uncoupled subsystems or even to four uncoupled one-component equations. The
necessary and sufficient condition for existence of such a reduction is that the components
of the vector potentialAµ (treated as given functions ofx0, x1, x2, x3) have definite parities,
i.e., are invariant (up to a sign) under reflections ofxµ.

The other important application of involutive symmetries is searching for systems with
exact supersymmetry (SUSY). Using the former algebra we extend the list of known systems
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with N = 2 SUSY [12, 13] and find a class of external potentials for the Dirac equation
which generated extended SUSY.

In section 2 we describe the involutive symmetry algebra of the Dirac equation. The
corresponding reductions for the Dirac equation are discussed in section 3 and are presented
explicitly in the appendix.

Sections 4 and 5 are devoted to reduction of the Dirac oscillator and to searching for
exact SUSY. Section 6 includes application of the reduction technique to SUSY quantum
mechanics.

2. Involutive symmetries of the Dirac equation

We start with the free Dirac equation

L0ψ ≡ (γ µpµ −m)ψ = 0 (2.1)

which is invariant with respect to the complete Lorentz group. Hereγµ (µ = 0, 1, 2, 3) are
the Dirac matrices with diagonalγ5 = iγ0γ1γ2γ3:

γ0 =
(

0 I2
I2 0

)
γa =

(
0 −σa

σa 0

)
γ5 = iγ0γ1γ2γ3 =

(
I2 0
0 −I2

)
(2.2)

σa, a = 1, 2, 3, are the Pauli matrices andI2 denotes a 2× 2 unit matrix.
Let us note that this equation admits also non-Lie symmetries [8, 10, 11].
Here we study the class of involutive symmetries of (2.1). Such symmetries form a

subset of the complete Lorentz group, which is defined by reflections of coordinate axes,
rotations by the angleπ with respect to a given axis (each of them can be reduced to a
reflection of a pair of axes) and by products of these transformations. There are 16 of them,
and they form a finite group composed of:

• four reflections of coordinatesxµ,

xµ → (θλx)µ = (1 − 2δλµ)xµ λ = 0, 1, 2, 3 (2.3a)

• six reflections of pairs of coordinates,

xµ → (θλσ x)µ = (1 − 2δλµ − 2δσµ)xµ λ 6= σ λ, σ = 0, 1, 2, 3 (2.3b)

• four reflections of triplets of coordinates,

xµ → (θ ′
λx)µ = (2δλµ − 1)xµ λ = 0, 1, 2, 3 (2.3c)

• a complete reflection of all coordinates,

xµ → (θx)µ = −xµ (2.4a)

• and the identity transformation

xµ → (Ixµ) = xµ (2.4b)

(µ = 0, 1, 2, 3; no sums overµ in (2.3)). We will also use the following notation for
reflections (2.3) and (2.4):

θ = θ54 θν = θ5ν θ ′
ν = θ4ν . (2.5)

We see that forλ, σ = 1, 2, 3 transformations (2.3b) are rotations while (2.3a), (2.3c)
and (2.3b) for zeroλ or σ are proper reflections.

The corresponding symmetries of the Dirac equation form a projective representation
[14] of the 16-dimensional group (2.3) and (2.4), and have the following form

ψ(x) → Rklψ(x) = Ŝkl θ̂klψ(x) ≡ Ŝklψ(θklx) (2.6)
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where

Ŝµν = γ̃µγ̃ν Ŝ5µ = γ̃5γ̃µ Ŝ4µ = −Ŝµ4 = γµ

γ̃0 = γ0 γ̃5 = γ5 γ̃a = iγa
k, l,= 0, 1, . . .5 m = 0, 1, 2, 3 a = 1, 2, 3

and the trivial identity transformation (corresponding to (2.4b) is omitted.
It is easy to verify that such defined operatorsRkl commute with the operatorL0 and

so transform solutions of (2.1) into themselves.
Symmetries (2.6) satisfy the following commutation relations

[Rkl, Rmn] = 2i(δknRlm + δlmRkn − δlnRkm − δkmRln) (2.7)

(by definitionRab = −Rba).
In accordance with (2.7) symmetries (2.6) realize a representation of the algebraso(6).
Let us now specify antilinear (i.e. including the complex conjugation) symmetries of

equation (2.1) corresponding to reflections (2.3) and (2.4). On the set of solutions of the
Dirac equation they are reduced to the form

ψ(x) → Bklψ(x) ≡ CRklψ(x) (2.8)

whereRkl are transformations (2.6) andC is the charge conjugation transformation

Cψ(x) = γ2cψ(x) ≡ iγ2ψ
∗(x). (2.9)

Using the relations

[C,Rλa] = {C,Rλσ } = {C,Rab} = 0

a, b, c = 1, 2, 3 λ, σ = 0, 4, 5 (2.10)

we conclude that among the transformations (2.7) there are six representatives which satisfy
(BAC)

2 = −I (for A,C = 0, 4, 5 or A,C = 1, 2, 3) and nine representatives which satisfy
the condition(BAC)2 = I , where I is the identity operator. We have a special interest
in such transformations (2.7) whose square is positive (otherwise the correspondingBµλ
cannot be diagonalized to the real matrixγ5 and so they cannot be used for reductions
considered in the following section). The corresponding symmetries are

B4a = CR4a (2.11a)

B5a = CR5a (2.11b)

B0a = CR0a. (2.11c)

Using (2.7) and (2.10) it is not difficult to specify commutation and anticommutation
relations for operators (2.6) and (2.11). We notice that the set of operators{R̂kl =
iRkl, Bαa, C} forms a basis of the 25-dimensional Lie algebraA25 characterized by
commutation relations (2.7) and (2.12):

[Bαa, Bβb] = −2(δabR̂αβ + δαβR̂ab)

[Bαa, R̂βσ ] = 2(δαβBσa − δασBβa)

[Bαa, R̂bc] = −2(δacBαb − δabBαc)

[Bαa, R̂βb] = εaαbβcσBσc − 2δabδαβC (2.12)

[C,Bαa] = 2R̂αa [C, R̂αa] = 2Bαa
[C, R̂ab] = [C, R̂αβ ] = 0

a, b, c = 1, 2, 3 α, β, σ = 0, 4, 5.



1002 J Niederle and A G Nikitin

Remark. By including all symmetries (2.8) and products of symmetries (2.6) and (2.8),
and the operator of multiplication i= √−1, the algebraA25 can be extended to the 64-
dimensional Lie algebra defined over the field of real numbers. Additional extensions can
be made by including the non-Lie involutive symmetries [8, 11].

Thus involutive symmetries of the Dirac equation generate the extended Lie algebra
A25. In the following sections we use it to reduce the Dirac equation for a charged particle
interacting with various external fields and to search for supersymmetries of the Dirac
equation.

3. Reduction of the Dirac equation

Now we shall apply the results of the previous subsection to reduce the Dirac equation for
a charged particle in an external field

Lψ ≡ (γ µπµ −m)ψ = 0 (3.1)

whereπµ = pµ − eAµ, pµ = i∂/∂xµ, Aµ = Aµ(x) = Aµ(x0,x) is the vector potential.
Equation (3.1) is invariant under one of the transformations described in (2.4a) and

(2.3a–c) provided the vector potentialAµ satisfies one of the relations,

Aµ(−x0,−x) = −Aµ(x0,x) (3.2)

Aµ(θλx) = (1 − 2δµλ)Aµ(x) (3.3a)

Aµ(θλσ x) = (1 − 2δµλ − 2δµσ )Aµ(x) (3.3b)

Aµ(θ
′
λx) = (2δµλ − 1)Aµ(x) (3.3c)

respectively, withλ andσ being fixed. On the other hand, if we require that (3.1) admits one
of the symmetries (2.11a–c), the vector potentialAµ has to satisfy one of the corresponding
relations,

Aµ(θ
′
ax) = −(2δµa − 1)Aµ(x) (3.4a)

Aµ(θax) = −(1 − 2δµa)Aµ(x) (3.4b)

Aµ(θ0ax) = −(1 − 2δµ0 − 2δµa)Aµ(x) (3.4c)

respectively.
We note that relations (3.3) and (3.4) leave the Lorentz gauge∂µA

µ = 0 invariant.
To reduce (3.1) we diagonalize the corresponding symmetries (2.6). Let us consider in

detail the case (3.2), i.e. when equation (3.1) is invariant under the transformation

R̂ψ(x) = γ5θ̂ψ(x) = γ5ψ(−x). (3.5)

To diagonalize this symmetry we use the operator

W = 1√
2
(1 + γ5γ0)

1√
2
(1 + γ5γ0θ̂ ) = θ̂+ + γ0γ5θ̂− (3.6)

with θ̂± = 1
2(1 ± θ̂ ), then

WR̂W † ≡ Wγ5θW
† = γ5. (3.7)

Simultaneously, the operatorL of (3.1) is reduced to the block diagonal form:

WLW † = L′ = −γ5π0 − 1
2iεabcγaγbπcθ̂ −m. (3.8)
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Thus the transformed equation

L′ψ ′ = 0 ψ ′ = Uψ (3.9)

has the desired reduced form

(−µπ0 − σ · πθ̂ −m)ψ ′
µ = 0 µ = ±1 (3.10)

where ψ ′
µ are two-component spinors, i.e. non-zero components of eigenvectors ofγ5

satisfyingγ5ψ
′ = µψ ′.

For Aµ = 0 equation (3.10) is equivalent to the one considered in [15].
If equations (3.10) again admit a discrete symmetry, say

ψµ(x) → R̂ψµ = σ3θ̂12ψµ(x) ≡ σ3ψµ(x
′) x ′ = (θ12x) (3.11)

(which is the case ofA0(x
′) = A0(x), A1(x

′) = −A1(x
′), A2(x

′) = −A2(x), A3(x
′) =

A3(x)), then they can further be reduced to one-component uncoupled subsystems. Indeed,
by diagonalizing symmetrŷR = σ3θ̂12 and using the transformationψ ′

µ → ψ ′′
µ = Wψ ′

µ (the

corresponding transformation operator isW = [1 − θ̂12 − iσ2(1 + θ̂12)]/2, W−1 = W †) we
change equation (3.10) to the following,

[−µπ0 − λπ1 − θ̂12(π3 + iπ2)−m]ψµλ = 0 (3.12)

where bothµ andλ runs independently over the values+,− andψµλ are one-component
functions, i.e. non-zero components of eigenvectors of matrixσ3 satisfyingσ3ψ

′′
µ = λψ ′′

µ.
We notice that transformations (3.6), (3.7) and (3.8) can also be used for the reduction

of Dirac’s equation with the anomalous (Pauli) interaction:(
γ µπµ −m− ke

2m
SµνF

µν

)
ψ = 0 (3.13)

where

Sµν = i

4
[γµ, γν ] Fµν = i[πµ, πν ].

For example, ifAµ satisfies (2.4a), then (3.13) is reduced to the following two subsystems
for two-component spinors:(

−µπ0 − σ · πθ̂ + ek

m
σ · H − µ

iek

m
σ · Eθ̂ −m

)
ψµ = 0 µ = ±1

where H and E are vectors of the magnetic and electric field strengths:Ea = F0a,
Ha = εabcFbc/2.

In an analogous way it is possible to reduce the Dirac equation (3.1) if vector potentials
satisfy one of the relations (3.3) or (3.4). We present the complete list of the corresponding
reductions in the appendix.

4. Reduction of the Dirac oscillator

The Dirac oscillator equation [17, 18] can be written as

(γ µpµ − iωγ0γaxa −m)ψ = 0. (4.1)

This equation isP -invariant, i.e. admits the following involutive symmetry,

x0 → x ′
0 = x0 x → x′ = −x ψ(x0,x) → γ0ψ(x0,−x)
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and consequently can be reduced to two uncoupled subsystems. Indeed, using the
transformationψ → ψ ′ = Wψ whereW = (1/

√
2)(1 − iγ5R40), equation (4.1) decouples

and can be expressed as

p0ψ± = [±(σ · p +mθ̂ ′
0)+ iωσ · xθ̂ ′

0]ψ±. (4.2)

Equations (4.2) admit involutive symmetry (3.9) and by means of the operatorW for
(3.9) can be reduced to four one-component uncoupled equations.

However, there is another involutive symmetry for equation (4.2) which can be written
as

Q = Bθ̂ ′
0 Q2 ≡ 1 (4.3)

whereB is the Biedenharn operator [18]:

B = q

|q| q = σ · L + 1 L = x × p. (4.4)

OperatorB anticommutes withσ · p andσ · x; thusQ introduced in (4.3) commutes
with the operator in square brackets defined in (4.2). On the set of functionsψµ

ρ satisfying

Qψµ
ρ = µψµ

ρ ρ = ± µ = ±1 (4.5)

equations (4.2) are reduced to the form

p0ψ
µ
ρ = (ρσ · p + µρmB + iµσ · xB)ψµ

ρ . (4.6)

In other words, the Dirac oscillator equation is reduced to four uncoupled two-component
subsystems.

Settingm = 0 in (4.2) and (4.6), we receive the equations which we shall call the Weyl
oscillators. Analogously to the Dirac oscillator case they generate oscillator-like spectra and
are related to the free (Weyl) equation by changingp → p − iωxβ with β = P or β = B

being an operator anticommuting with the differential part of the corresponding Hamiltonian
in (4.2) or (4.6), respectively.

The Weyl oscillators will be studied in more detail in the next paper. It appears they
have very interesting symmetries and supersymmetries which are preserved if we change
x → ∂W/∂x in (4.6), whereW(x) is an arbitrary even superpotential.

5. Extended supersymmetries

We say that an equation of motion is supersymmetric if it admits specific symmetries
(supercharges)Qa, a = 1, 2, which form the Witten superalgebra [19] (we chooseQa

Hermitian):

{Qa,Qb} = 2δabĤ [Qa, Ĥ ] = 0 (5.1)

Ĥ is the related Hamiltonian.
To search for SUSY we use the following anticommutative relations for involutive

symmetries (2.6):

{Rkl, Rmn} = εklmngf Rfg + 2δkmδlnI − 2δlmδknI. (5.2)

We start with the Dirac equation (3.1) for a charged particle interacting with the time-
independent magnetic field. The corresponding vector potentials have the form

A0 = 0 Aa = Aa(x) (5.3)
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Denotingψ± = 1
2(1 ∓ iγ5)ψ we have

ψ = ψ+ + ψ− ψ+ =
(
8

0

)
ψ− =

(
0
ξ

)
(5.4)

where8 and ξ are two component spinors, and 0 is the two component zero column.
Expressingψ− via ψ+ we come from (3.1) and (5.3) to the following equations:

(p2
0 −m2)8 = Ĥ8 Ĥ = π2 − eσ · H (5.5)

ξ = 1

m
(p0 − σ · π)8. (5.6)

We will search for the SUSY of equation (5.5). The corresponding symmetries for (3.1)
can be found using relations (5.4) and (5.6).

For the case of arbitrary vector potentialA(x) equation (5.5) admits the following
symmetry operator (supercharge),

Q1 = σ · π (5.7)

which satisfies the relationQ2
1 = Ĥ and so commutes with the ‘Hamiltonian’̂H .

To find additional supercharges we suppose that the vector potentialAa(x) satisfies one
of the relations (3.3) whereµ, σ = 1, 2, 3. The corresponding equation (5.5) admits the
following symmetries:

8(t,x) → ra8(t,x) ≡ σa8(t, θax) (5.8a)

8(t,x) → rab8(t,x) ≡ εabcσc8(t, θabx) (5.8b)

8(t,x) → r8(t,x) ≡ 8(t, θx). (5.8c)

Operators (5.8) satisfy the following relations (compare with (5.2)),

r2
a = r2

ab = r2 = 1 {rab, rb} = 0 {ra, rb} = 0 a 6= b (5.9)

(now sum overb) and

{r,σ · π} = {ra,σ · π} = 0 [rab,σ · π] = 0 (5.10)

which enable us to construct the second supercharges

Q2 = iraσ · π and Q2 = irσ · π (5.11)

for the cases (3.3a) and (3.3c), respectively.
Thus the corresponding equation (3.3) admitsN = 2 SUSY.
If Aa(x) satisfy two or more relations (3.3) simultaneously, then equation (5.5) admits

extended SUSY. All non-equivalent possibilities are listed in the following formulae:{
Aa(θbx) = (1 − 2δab)Aa(x)

Aa(θcx) = (1 − 2δac)Aa(x)
(5.12)

Q1 = σ · π Q2 = irbσ · π Q3 = ircσ · π c 6= b b, c = 1, 2, 3{
Aa(θ12x) = (1 − 2δa1 − 2δa2)A(x)

Aa(θ31x) = (1 − 2δa1 − 2δa3)A(x)
(5.13)

Q1 = ir23σ · π Q2 = ir31σ · π Q3 = ir12σ · π
Aa(r1x) = (1 − 2δa1)Aa(x)

Aa(r2x) = (1 − 2δ2a)Aa(x)

Aa(r3x) = (1 − 2δ3a)Aa(x)

(5.14)

Q1 = ir1σ · π Q2 = ir2σ · π Q3 = ir3σ · π Q4 = σ · π.
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Relations (5.12) define three classes of vector potentialsAµ (corresponding to different
fixed values ofb, c). OperatorsQa (5.12) and (5.13) realizeN = 3 extended SUSY, while
the corresponding operators (5.14) realizeN = 4 extended SUSY.

It is necessary to note that the extended SUSY found in the above does not have
direct connections with SUSY quantum field theory and cannot be used for a non-trivial
extension of the Poincaré group. However, the symmetries (5.12)–(5.14) have rather non-
trivial consequences in the quantum mechanical context, which consists of the specific
degeneration of the corresponding energy spectra. Indeed, calculatingcommutationrelations
for the supercharges (5.12), we obtain

[Q1,Q2] = −irbĤ [Q2,Q3] = −irbcĤ [Q3,Q1] = ircĤ . (5.15)

It follows from (5.9) and (5.15) that on the subspace of solutions of equation (5.5),
corresponding to the non-zero eigenvalueE of the HamiltonianĤ , the operators

R̂4k = 1√
E
Qk R̂kl = i

2|E| [Qk,Ql ] (5.16)

satisfy relations (2.7) and (5.17):

R̂2
kl = 1

1

4!
εklmnR̂klR̂mn = 3rab. (5.17)

Eigenvalues ofrab are equal to±1, and so operators (5.16) realize the representation
D( 1

2,
1
2)⊕D( 1

2,− 1
2) of the algebraso(4).

In an analogous way, choosing the basis (5.16), we conclude that the supercharges
(5.13) generate the same representation of the algebraso(4), but the supercharges (5.14)
generate the representationD( 1

2,
1
2,

1
2) of the algebraso(5) (in the last case we have in (5.16)

k, l = 1, 2, 3, 5). The corresponding commutation relations for operators (5.16) again can
be expressed in form (2.7).

Thus, for any symmetry (5.12)–(5.14) each non-zero eigenvalue of the HamiltonianĤ

has fourfold degeneracy due to the hidden symmetryso(4) or so(5).
N = 2 andN = 1 SUSY aspects of the Dirac equation were discussed by a number of

authors, refer, for example, to papers [20], surveys [12, 21] and the monograph [22]. We
extend the list of problems generating this symmetry and find a class of potentials generating
extended SUSY.

6. Reduction technique in supersymmetric quantum mechanics

The idea of diagonalizing a discrete symmetry in order to reduce the corresponding equation
of motion can be applied to many problems in mathematical physics. Continuing the theme
of SUSY, we apply this idea to one-dimensional SUSY quantum mechanics [19]. The
corresponding equation of motion has the form

i
∂

∂x0
ψ = Hψ (6.1)

whereH is the Hamiltonian with matrix potential

H = 1

2
(p̂2 +W 2 +W ′σ3) p̂ = −i

∂

∂x
. (6.2)

Equation (6.1) admits specific symmetries (supercharges) of the form

Q = 1

2
√

2
(σ2 + iσ1)(p̂ + iW) Q = 1

2
√

2
(σ2 − iσ1)(p̂ − iW) (6.3)
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which transform solutions into themselves and generate the following superalgebra (which
is isomorphic to (5.1):

Q2 = Q
2 = 0 QQ+QQ = H

[Q,H ] = [Q,H ] = 0. (6.4)

Let us demonstrate that this superalgebra is reducible for odd superpotentialsW(x), i.e.
for whichW(−x) = −W(x). Indeed, forW odd there exists the invariant operator

K = σ3p (6.5)

(pψ(x) = ψ(−x)) which commutes with superchargesQ andQ. In order to diagonalize
K we apply the operator

U = p+ − iσ2p− p± = 1
2(1 ± p) (6.6)

so that

UKU † = σ3. (6.7)

The corresponding supercharges are transformed into the diagonal form

UQU † = Q′ = i

2
√

2
[(1 − σ3)p+ − (1 + σ3)p−](p̂ + iW)

UQU † = Q
′ = − i

2
√

2
[(1 − σ3)p− − (1 + σ3)p+](p̂ − iW)

i.e.

Q′ =
(
Q+ 0
0 Q−

)
Q

′ =
(
Q+ 0
0 Q−

)
(6.8)

where

Q+ = − i√
2
(p̂ + iW)p+ Q+ = i√

2
(p̂ − iW)p− (6.9a)

Q− = i√
2
(p̂ + iW)p− Q− = − i√

2
(p̂ − iW)p+. (6.9b)

Thus supercharges (6.3) generate a reducible representation of the algebra (6.4) which
is equivalent to a direct sum of representations (6.9a) and (6.9b). The corresponding
Hamiltonians are of the form

H+ = 1
2(p̂

2 +W 2 +W ′p) (6.10a)

and

H− = 1
2(p̂

2 +W 2 −W ′p). (6.10b)

Operators (6.9a) and (6.10a) (as well as (6.9b) and (6.10b)) form a one-dimensional
realization of SSQM, which has a very unique property: superchargesQ± andQ± are not
products of commutive bosonic and fermionic operators. As a consequence of this fact the
spectra of superhamiltonians with familiar potentials differ from the corresponding spectra
in standard realization of SSQM. For instance, ifW = ωx then supercharges (6.9b) and
Hamiltonian (6.10b) correspond to a specific version of the supersymmetric oscillator for
which differences between eigenvalues are not equal toω ( compare with [19]) but to 2ω,
whereas supercharges (6.9a) and Hamiltonian (6.10a) present a supersymmetric system with
spontaneously broken supersymmetry (i.e. with a degenerated ground state).

In conclusion we notice that theN = 2 Wess–Zumino SSQM [23] with a superpotential
being an odd complex function is also completely reducible too.
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7. Conclusion

We present the extended Lie algebra formed by involutive symmetries of the Dirac equation
and apply it to reduction of a number of problems connected with interaction of a spin-1

2
particle with an external field.

Such a reduction technique can be generalized for reduction of systems of ordinary
differential equations as well as many other systems of partial differential equations,
including nonlinear ones. We plan to outline the results of our investigations of these
possibilities elsewhere.

The other interesting application of involutive symmetries is searching for exact SUSY
for the Dirac equation. We demonstrate that in addition to the known class of systems with
N = 2 SUSY this equation also generates extended supersymmetries. Moreover, the list of
supersymmetric problems can be extended by including antilinear involutive symmetries.

The other goal of the present paper is to demonstrate that a wide class of realizations
of SSQM is completely reducible. We obtain a one-dimensional representation of the
Witten superalgebra (6.4) which can be extended to the case of multidimensional space of
independent variables.

Finally, we note that the Weyl oscillators of section 5 are the simplest consistent
examples of generalizations of the Dirac oscillator [17, 18]. Such generalizations for the
cases of arbitrary spin multi-body systems are intensively discussed in the literature [24, 25].
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Appendix. Explicit form of reductions

Here we present in explicit form reductions of the Dirac equation which are possible if the
vector potentialAµ satisfies one of the relations (3.3a–c) or (3.4a–c). To reduce (3.1) it is
sufficient to diagonalize the corresponding symmetries (2.6) or (2.8). This can be done by
using the operators

W4ν = 1√
2
(1 − iγ5R4ν) ν = 0, 1, 2, 3 (A1a)

Wνa = 1

2
(1 + iγ5γa)(1 + γaRνa) a = 1, 2, 3 (A1b)

W5ν = 1√
2
(1 − iγ5R5ν) (A1c)

or

W 4a′ = 1

2
(1 + iγ5γ2)(1 − iγ2B4a′) a′ = 1, 3

W 42 = 1

2
(1 + iγ5γ0θ̂

′
2c)(1 + γ0) (A2a)

W 5a = 1

2
(1 + γ4γ0)(1 + γ0B5a) a = 1, 2, 3 (A2b)
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W 0a = 1√
2
(1 + γ5B0a). (A2c)

In all the cases we haveWABRABW
†
AB = iγ5 or WABBABW

†
AB = γ5.

The transformationsψ → WABψ reduce equation (3.1) to uncoupled subsystems of the
following form:

[π0 ∓ (σ · π − imθ̂0)]ψ± = 0

[π0 ∓ (σ · π −mθ̂aσa)]ψ± = 0 (A3a)

[σa(∓π0 +m)θ0a + σ · π]ψ± = 0

[π0 ∓ σ · π − σbm+ (iσaθab ± σb)πb]ψ± = 0 (A3b)

[π0 ∓ (σ · π +mθ̂ ′
0)]ψ± = 0

[π0 ∓ σ · π + imθ̂ ′
aσa]ψ± = 0 (A3c)

or

(θ̂2cπ0 − σ · π ± im)ψ± = 0

(∓π0 − σ · π + πa′(σa′ ∓ icθ̂ ′
a′)− cθ̂ ′

a′m)ψ± = 0 a′ = 1, 3 (A4a)

(no sums over repeated indices). Hereψ± are two-component wavefunctions, i.e. non-zero
components of eigenvectors of the matrix

(±π0 + θ̂a′σa′σ · π −m)ψ± = 0

(±π0 + cθ̂2σ · π −m)ψ± = 0 (A4b)

(±π0 − σ · π − icθ̂03σ1m)ψ± = 0

(±π0 − σ · π − icθ̂01σ3m)ψ± = 0

(π0 ∓ σ · π ∓ cθ̂02m)ψ± = 0. (A4c)

γ5 correspond to the eigenvalues±1.
Symmetry (4.8) commutes with operatorL of (3.1) iff Aµ = 0 and so can be used

only for reduction of the free Dirac equation (2.1). The corresponding operatorW =
(1/

√
2)(1 + iγ5C) diagonalizes symmetry (2.9) to the formγ5 and reduces equation (2.1)

to the following uncoupled subsystems:

(p0 − µσ · p + iσ2cm)ψµ = 0 µ = ±1. (A5)

Imposing condition (4.5) on solutions of the first equation (A3a) and settingAµ = 0
we come to the equations proposed in [16].

If the vector potentialAµ has such parities that the corresponding Dirac equation (3.1)
admits two commuting symmetries from the set (2.6) and (2.8) then we can reduce (3.1) to
four uncoupled subsystems. If we find such a pair(S1, S2), then(S1, S1S2) and (S2, S1S2)

are also sets of commuting symmetries equivalent to the set(S1, S2). Using (2.7) and (2.12),
it is not difficult to write down the 51 non-equivalent pairs of commuting symmetries.

In other words, there are 51 possible reductions of the Dirac equation to four uncoupled
subsystems by means of linear and antilinear involutive symmetries. The explicit form of
these reductions can be found in analogy with the above.

{R0a, Rbc}, {R4a, Rbc}, {R0a, R4b}, {R04, Rab}, {B4a, R0b},
{B0a, R5b}, {B5a, R4b}, {B5a, Rab}, {B4a, Rab}, {B4a, R54},
{B0a, R40}, {B0a, R50}, {B0a, R50}
a, b, c,= 1, 2, 3, a 6= b, a 6= c, b 6= c.
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We notice that only two of the involutive symmetries of the Dirac equation commute
with any Lorentz transformation, namelyR andC given in (3.5) and (2.9), respectively.
Consequently the corresponding reduced equations (3.9) and (4.19) are Lorentz invariant.
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